1
|
Zhao Q, Li X, Wen J, He Y, Zheng N, Li W, Cardona A, Gong Z. A two-layer neural circuit controls fast forward locomotion in Drosophila. Curr Biol 2024; 34:3439-3453.e5. [PMID: 39053465 DOI: 10.1016/j.cub.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Fast forward locomotion is critical for animal hunting and escaping behaviors. However, how the underlying neural circuit is wired at synaptic resolution to decide locomotion direction and speed remains poorly understood. Here, we identified in the ventral nerve cord (VNC) a set of ascending cholinergic neurons (AcNs) to be command neurons capable of initiating fast forward peristaltic locomotion in Drosophila larvae. Targeted manipulations revealed that AcNs are necessary and sufficient for fast forward locomotion. AcNs can activate their postsynaptic partners, A01j and A02j; both are interneurons with locomotory rhythmicity. Activated A01j neurons form a posterior-anteriorly descendent gradient in output activity along the VNC to launch forward locomotion from the tail. Activated A02j neurons exhibit quicker intersegmental transmission in activity that enables fast propagation of motor waves. Our work revealed a global neural mechanism that coordinately controls the launch direction and propagation speed of Drosophila locomotion, furthering the understanding of the strategy for locomotion control.
Collapse
Affiliation(s)
- Qianhui Zhao
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Xinhang Li
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Jun Wen
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Yinhui He
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Albert Cardona
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| | - Zhefeng Gong
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China.
| |
Collapse
|
2
|
Odierna GL, Kerwin SK, Shin GJE, Millard SS. Drosophila larval motor patterning relies on regulated alternative splicing of Dscam2. Front Mol Neurosci 2024; 17:1415207. [PMID: 39092203 PMCID: PMC11292952 DOI: 10.3389/fnmol.2024.1415207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Recent studies capitalizing on the newly complete nanometer-resolution Drosophila larval connectome have made significant advances in identifying the structural basis of motor patterning. However, the molecular mechanisms utilized by neurons to wire these circuits remain poorly understood. In this study we explore how cell-specific expression of two Dscam2 isoforms, which mediate isoform-specific homophilic binding, contributes to motor patterning and output of Drosophila larvae. Ablating Dscam2 isoform diversity resulted in impaired locomotion. Electrophysiological assessment at the neuromuscular junction during fictive locomotion indicated that this behavioral defect was largely caused by weaker bouts of motor neuron activity. Morphological analyses of single motor neurons using MultiColour FlpOut revealed severe errors in dendrite arborization and assessment of cholinergic and GABAergic projections to the motor domain revealed altered morphology of interneuron processes. Loss of Dscam2 did not affect locomotor output, motor neuron activation or dendrite targeting. Our findings thus suggest that locomotor circuit phenotypes arise specifically from inappropriate Dscam2 interactions between premotor interneurons and motor neurons when they express the same isoform. Indeed, we report here that first-order premotor interneurons express Dscam2A. Since motor neurons express Dscam2B, our results provide evidence that Dscam2 isoform expression alternates between synaptic partners in the nerve cord. Our study demonstrates the importance of cell-specific alternative splicing in establishing the circuitry that underlies neuromotor patterning without inducing unwanted intercellular interactions.
Collapse
Affiliation(s)
- G. Lorenzo Odierna
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sarah K. Kerwin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Grace Ji-eun Shin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Jonaitis J, Hibbard KL, McCafferty Layte K, Hiramoto A, Cardona A, Truman JW, Nose A, Zwart MF, Pulver SR. STEERING FROM THE REAR: COORDINATION OF CENTRAL PATTERN GENERATORS UNDERLYING NAVIGATION BY ASCENDING INTERNEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598162. [PMID: 38948859 PMCID: PMC11212907 DOI: 10.1101/2024.06.17.598162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system project to anterior higher-order regions to influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of Drosophila larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated central nervous system (CNS) preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.
Collapse
Affiliation(s)
- Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | | | - Atsuki Hiramoto
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge UK
| | - James W. Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Maarten F. Zwart
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
4
|
Giachello CNG, Hunter I, Pettini T, Coulson B, Knüfer A, Cachero S, Winding M, Arzan Zarin A, Kohsaka H, Fan YN, Nose A, Landgraf M, Baines RA. Electrophysiological Validation of Monosynaptic Connectivity between Premotor Interneurons and the aCC Motoneuron in the Drosophila Larval CNS. J Neurosci 2022; 42:6724-6738. [PMID: 35868863 PMCID: PMC9435966 DOI: 10.1523/jneurosci.2463-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The Drosophila connectome project aims to map the synaptic connectivity of entire larval and adult fly neural networks, which is essential for understanding nervous system development and function. So far, the project has produced an impressive amount of electron microscopy data that has facilitated reconstructions of specific synapses, including many in the larval locomotor circuit. While this breakthrough represents a technical tour de force, the data remain underutilized, partly because of a lack of functional validation of reconstructions. Attempts to validate connectivity posited by the connectome project, have mostly relied on behavioral assays and/or GFP reconstitution across synaptic partners (GRASP) or GCaMP imaging. While these techniques are useful, they have limited spatial or temporal resolution. Electrophysiological assays of synaptic connectivity overcome these limitations. Here, we combine patch-clamp recordings with optogenetic stimulation in male and female larvae, to test synaptic connectivity proposed by connectome reconstructions. Specifically, we use multiple driver lines to confirm that several connections between premotor interneurons and the anterior corner cell motoneuron are, as the connectome project suggests, monosynaptic. In contrast, our results also show that conclusions based on GRASP imaging may provide false-positive results regarding connectivity between cells. We also present a novel imaging tool, based on the same technology as our electrophysiology, as a favorable alternative to GRASP imaging. Finally, of eight Gal4 lines tested, five are reliably expressed in the premotor interneurons they are targeted to. Thus, our work highlights the need to confirm functional synaptic connectivity, driver line specificity, and use of appropriate genetic tools to support connectome projects.SIGNIFICANCE STATEMENT The Drosophila connectome project aims to provide a complete description of connectivity between neurons in an organism that presents experimental advantages over other models. It has reconstructed hundreds of thousands of synaptic connections of the fly larva by manual identification of anatomic landmarks present in serial section transmission electron microscopy (ssTEM) volumes of the larval CNS. We use a highly reliable electrophysiological approach to verify these connections, providing useful insight into the accuracy of work based on ssTEM. We also present a novel imaging tool for validating excitatory monosynaptic connections between cells and show that several genetic driver lines designed to target neurons of the larval connectome exhibit nonspecific and/or unreliable expression.
Collapse
Affiliation(s)
- Carlo N G Giachello
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Iain Hunter
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Tom Pettini
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Athene Knüfer
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Michael Winding
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yuen Ngan Fan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| |
Collapse
|
5
|
Heckman EL, Doe CQ. Presynaptic contact and activity opposingly regulate postsynaptic dendrite outgrowth. eLife 2022; 11:82093. [PMID: 36448675 PMCID: PMC9728994 DOI: 10.7554/elife.82093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The organization of neural circuits determines nervous system function. Variability can arise during neural circuit development (e.g. neurite morphology, axon/dendrite position). To ensure robust nervous system function, mechanisms must exist to accommodate variation in neurite positioning during circuit formation. Previously, we developed a model system in the Drosophila ventral nerve cord to conditionally induce positional variability of a proprioceptive sensory axon terminal, and used this model to show that when we altered the presynaptic position of the sensory neuron, its major postsynaptic interneuron partner modified its dendritic arbor to match the presynaptic contact, resulting in functional synaptic input (Sales et al., 2019). Here, we investigate the cellular mechanisms by which the interneuron dendrites detect and match variation in presynaptic partner location and input strength. We manipulate the presynaptic sensory neuron by (a) ablation; (b) silencing or activation; or (c) altering its location in the neuropil. From these experiments we conclude that there are two opposing mechanisms used to establish functional connectivity in the face of presynaptic variability: presynaptic contact stimulates dendrite outgrowth locally, whereas presynaptic activity inhibits postsynaptic dendrite outgrowth globally. These mechanisms are only active during an early larval critical period for structural plasticity. Collectively, our data provide new insights into dendrite development, identifying mechanisms that allow dendrites to flexibly respond to developmental variability in presynaptic location and input strength.
Collapse
Affiliation(s)
- Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
6
|
Hunter I, Coulson B, Zarin AA, Baines RA. The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function. Front Neural Circuits 2021; 15:684969. [PMID: 34276315 PMCID: PMC8282269 DOI: 10.3389/fncir.2021.684969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
It is difficult to answer important questions in neuroscience, such as: "how do neural circuits generate behaviour?," because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion of the relatively complete connectome associated with one identified interneuron of the locomotor circuit, A27h, and relating it to similar circuits in mammals. Next, it is developed by examining its application to study two important areas of neuroscience research: critical periods of development and interindividual variability in neural circuits. In summary, this article highlights the potential to use the larval locomotor network as a "generic" model circuit, to provide insight into mammalian circuit development and function.
Collapse
Affiliation(s)
- Iain Hunter
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, The Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Hiramoto A, Jonaitis J, Niki S, Kohsaka H, Fetter RD, Cardona A, Pulver SR, Nose A. Regulation of coordinated muscular relaxation in Drosophila larvae by a pattern-regulating intersegmental circuit. Nat Commun 2021; 12:2943. [PMID: 34011945 PMCID: PMC8134441 DOI: 10.1038/s41467-021-23273-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
Typical patterned movements in animals are achieved through combinations of contraction and delayed relaxation of groups of muscles. However, how intersegmentally coordinated patterns of muscular relaxation are regulated by the neural circuits remains poorly understood. Here, we identify Canon, a class of higher-order premotor interneurons, that regulates muscular relaxation during backward locomotion of Drosophila larvae. Canon neurons are cholinergic interneurons present in each abdominal neuromere and show wave-like activity during fictive backward locomotion. Optogenetic activation of Canon neurons induces relaxation of body wall muscles, whereas inhibition of these neurons disrupts timely muscle relaxation. Canon neurons provide excitatory outputs to inhibitory premotor interneurons. Canon neurons also connect with each other to form an intersegmental circuit and regulate their own wave-like activities. Thus, our results demonstrate how coordinated muscle relaxation can be realized by an intersegmental circuit that regulates its own patterned activity and sequentially terminates motor activities along the anterior-posterior axis.
Collapse
Affiliation(s)
- Atsuki Hiramoto
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Sawako Niki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Gowda SBM, Salim S, Mohammad F. Anatomy and Neural Pathways Modulating Distinct Locomotor Behaviors in Drosophila Larva. BIOLOGY 2021; 10:90. [PMID: 33504061 PMCID: PMC7910854 DOI: 10.3390/biology10020090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022]
Abstract
The control of movements is a fundamental feature shared by all animals. At the most basic level, simple movements are generated by coordinated neural activity and muscle contraction patterns that are controlled by the central nervous system. How behavioral responses to various sensory inputs are processed and integrated by the downstream neural network to produce flexible and adaptive behaviors remains an intense area of investigation in many laboratories. Due to recent advances in experimental techniques, many fundamental neural pathways underlying animal movements have now been elucidated. For example, while the role of motor neurons in locomotion has been studied in great detail, the roles of interneurons in animal movements in both basic and noxious environments have only recently been realized. However, the genetic and transmitter identities of many of these interneurons remains unclear. In this review, we provide an overview of the underlying circuitry and neural pathways required by Drosophila larvae to produce successful movements. By improving our understanding of locomotor circuitry in model systems such as Drosophila, we will have a better understanding of how neural circuits in organisms with different bodies and brains lead to distinct locomotion types at the organism level. The understanding of genetic and physiological components of these movements types also provides directions to understand movements in higher organisms.
Collapse
Affiliation(s)
| | | | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar; (S.B.M.G.); (S.S.)
| |
Collapse
|
9
|
Murawski C, Pulver SR, Gather MC. Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes. Nat Commun 2020; 11:6248. [PMID: 33288763 PMCID: PMC7721879 DOI: 10.1038/s41467-020-20013-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022] Open
Abstract
Optogenetics allows light-driven, non-contact control of neural systems, but light delivery remains challenging, in particular when fine spatial control of light is required to achieve local specificity. Here, we employ organic light-emitting diodes (OLEDs) that are micropatterned into linear arrays to obtain precise optogenetic control in Drosophila melanogaster larvae expressing the light-gated activator CsChrimson and the inhibitor GtACR2 within their peripheral sensory system. Our method allows confinement of light stimuli to within individual abdominal segments, which facilitates the study of larval behaviour in response to local sensory input. We show controlled triggering of specific crawling modes and find that targeted neurostimulation in abdominal segments switches the direction of crawling. More broadly, our work demonstrates how OLEDs can provide tailored patterns of light for photo-stimulation of neuronal networks, with future implications ranging from mapping neuronal connectivity in cultures to targeted photo-stimulation with pixelated OLED implants in vivo.
Collapse
Affiliation(s)
- Caroline Murawski
- Organic Semiconductor Centre and Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., Kurt-Schwabe-Str. 4, 04736, Waldheim, Germany
| | - Stefan R Pulver
- School of Psychology and Neuroscience and Centre of Biophotonics, University of St Andrews, St Mary's Quad, South Street, St Andrews, KY16 9JP, UK
| | - Malte C Gather
- Organic Semiconductor Centre and Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939, Köln, Germany.
| |
Collapse
|
10
|
Mantziaris C, Bockemühl T, Büschges A. Central pattern generating networks in insect locomotion. Dev Neurobiol 2020; 80:16-30. [PMID: 32128970 DOI: 10.1002/dneu.22738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/08/2022]
Abstract
Central pattern generators (CPGs) are neural circuits that based on their connectivity can generate rhythmic and patterned output in the absence of rhythmic external inputs. This property makes CPGs crucial elements in the generation of many kinds of rhythmic motor behaviors in insects, such as flying, walking, swimming, or crawling. Arguably representing the most diverse group of animals, insects utilize at least one of these types of locomotion during one stage of their ontogenesis. Insects have been extensively used to study the neural basis of rhythmic motor behaviors, and particularly the structure and operation of CPGs involved in locomotion. Here, we review insect locomotion with regard to flying, walking, and crawling, and we discuss the contribution of central pattern generation to these three forms of locomotion. In each case, we compare and contrast the topology and structure of the CPGs, and we point out how these factors are involved in the generation of the respective motor pattern. We focus on the importance of sensory information for establishing a functional motor output and we indicate behavior-specific adaptations. Furthermore, we report on the mechanisms underlying coordination between different body parts. Last but not least, by reviewing the state-of-the-art knowledge concerning the role of CPGs in insect locomotion, we endeavor to create a common ground, upon which future research in the field of motor control in insects can build.
Collapse
Affiliation(s)
- Charalampos Mantziaris
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Abstract
Locomotion is an ancient and fundamental output of the nervous system required for animals to perform many other complex behaviors. Although the formation of motor circuits is known to be under developmental control of transcriptional mechanisms that define the fates and connectivity of the many neurons, glia and muscle constituents of these circuits, relatively little is known about the role of post-transcriptional regulation of locomotor behavior. MicroRNAs have emerged as a potentially rich source of modulators for neural development and function. In order to define the microRNAs required for normal locomotion in Drosophila melanogaster, we utilized a set of transgenic Gal4-dependent competitive inhibitors (microRNA sponges, or miR-SPs) to functionally assess ca. 140 high-confidence Drosophila microRNAs using automated quantitative movement tracking systems followed by multiparametric analysis. Using ubiquitous expression of miR-SP constructs, we identified a large number of microRNAs that modulate aspects of normal baseline adult locomotion. Addition of temperature-dependent Gal80 to identify microRNAs that act during adulthood revealed that the majority of these microRNAs play developmental roles. Comparison of ubiquitous and neural-specific miR-SP expression suggests that most of these microRNAs function within the nervous system. Parallel analyses of spontaneous locomotion in adults and in larvae also reveal that very few of the microRNAs required in the adult overlap with those that control the behavior of larval motor circuits. These screens suggest that a rich regulatory landscape underlies the formation and function of motor circuits and that many of these mechanisms are stage and/or parameter-specific.
Collapse
|
12
|
Loveless J, Lagogiannis K, Webb B. Modelling the mechanics of exploration in larval Drosophila. PLoS Comput Biol 2019; 15:e1006635. [PMID: 31276489 PMCID: PMC6636753 DOI: 10.1371/journal.pcbi.1006635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 07/17/2019] [Accepted: 11/08/2018] [Indexed: 12/03/2022] Open
Abstract
The Drosophila larva executes a stereotypical exploratory routine that appears to consist of stochastic alternation between straight peristaltic crawling and reorientation events through lateral bending. We present a model of larval mechanics for axial and transverse motion over a planar substrate, and use it to develop a simple, reflexive neuromuscular model from physical principles. The mechanical model represents the midline of the larva as a set of point masses which interact with each other via damped translational and torsional springs, and with the environment via sliding friction forces. The neuromuscular model consists of: 1. segmentally localised reflexes that amplify axial compression in order to counteract frictive energy losses, and 2. long-range mutual inhibition between reflexes in distant segments, enabling overall motion of the model larva relative to its substrate. In the absence of damping and driving, the mechanical model produces axial travelling waves, lateral oscillations, and unpredictable, chaotic deformations. The neuromuscular model counteracts friction to recover these motion patterns, giving rise to forward and backward peristalsis in addition to turning. Our model produces spontaneous exploration, even though the nervous system has no intrinsic pattern generating or decision making ability, and neither senses nor drives bending motions. Ultimately, our model suggests a novel view of larval exploration as a deterministic superdiffusion process which is mechanistically grounded in the chaotic mechanics of the body. We discuss how this may provide new interpretations for existing observations at the level of tissue-scale activity patterns and neural circuitry, and provide some experimental predictions that would test the extent to which the mechanisms we present translate to the real larva. We investigate the relationship between brain, body and environment in the exploratory behaviour of fruitfly larva. A larva crawls forward by propagating a wave of compression through its segmented body, and changes its crawling direction by bending to one side or the other. We show first that a purely mechanical model of the larva’s body can produce travelling compression waves, sideways bending, and unpredictable, chaotic motions. For this body to locomote through its environment, it is necessary to add a neuromuscular system to counteract the loss of energy due to friction, and to limit the simultaneous compression of segments. These simple additions allow our model larva to generate life-like forward and backward crawling as well as spontaneous turns, which occur without any direct sensing or control of reorientation. The unpredictability inherent in the larva’s physics causes the model to explore its environment, despite the lack of any neural mechanism for rhythm generation or for deciding when to switch from crawling to turning. Our model thus demonstrates how understanding body mechanics can generate and simplify neurobiological hypotheses as to how behaviour arises.
Collapse
Affiliation(s)
- Jane Loveless
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Konstantinos Lagogiannis
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- MRC Centre for Developmental Neurobiology, New Hunt’s House, King’s College London, London, United Kingdom
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Malloy CA, Somasundaram E, Omar A, Bhutto U, Medley M, Dzubuk N, Cooper RL. Pharmacological identification of cholinergic receptor subtypes: modulation of locomotion and neural circuit excitability in Drosophila larvae. Neuroscience 2019; 411:47-64. [DOI: 10.1016/j.neuroscience.2019.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023]
|
14
|
Kohsaka H, Zwart MF, Fushiki A, Fetter RD, Truman JW, Cardona A, Nose A. Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae. Nat Commun 2019; 10:2654. [PMID: 31201326 PMCID: PMC6572865 DOI: 10.1038/s41467-019-10695-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/26/2019] [Indexed: 01/09/2023] Open
Abstract
Animal locomotion requires spatiotemporally coordinated contraction of muscles throughout the body. Here, we investigate how contractions of antagonistic groups of muscles are intersegmentally coordinated during bidirectional crawling of Drosophila larvae. We identify two pairs of higher-order premotor excitatory interneurons present in each abdominal neuromere that intersegmentally provide feedback to the adjacent neuromere during motor propagation. The two feedback neuron pairs are differentially active during either forward or backward locomotion but commonly target a group of premotor interneurons that together provide excitatory inputs to transverse muscles and inhibitory inputs to the antagonistic longitudinal muscles. Inhibition of either feedback neuron pair compromises contraction of transverse muscles in a direction-specific manner. Our results suggest that the intersegmental feedback neurons coordinate contraction of synergistic muscles by acting as delay circuits representing the phase lag between segments. The identified circuit architecture also shows how bidirectional motor networks could be economically embedded in the nervous system. Locomotion involves the coordinated contraction of antagonistic muscles. Here, the authors report that in Drosophila larvae a pair of higher-order feedback neurons temporally regulates the intersegmental coordination of contraction of synergistic muscles enabling bidirectional movement.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Maarten F Zwart
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,School of Psychology and Neuroscience, University of St Andrews, KY16 9JP, Scotland, UK
| | - Akira Fushiki
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - James W Truman
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, 98250, USA
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan. .,Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| |
Collapse
|
15
|
Yoon Y, Park J, Taniguchi A, Kohsaka H, Nakae K, Nonaka S, Ishii S, Nose A. System level analysis of motor-related neural activities in larval Drosophila. J Neurogenet 2019; 33:179-189. [PMID: 31172848 DOI: 10.1080/01677063.2019.1605365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The way in which the central nervous system (CNS) governs animal movement is complex and difficult to solve solely by the analyses of muscle movement patterns. We tackle this problem by observing the activity of a large population of neurons in the CNS of larval Drosophila. We focused on two major behaviors of the larvae - forward and backward locomotion - and analyzed the neuronal activity related to these behaviors during the fictive locomotion that occurs spontaneously in the isolated CNS. We expressed a genetically-encoded calcium indicator, GCaMP and a nuclear marker in all neurons and then used digitally scanned light-sheet microscopy to record (at a fast frame rate) neural activities in the entire ventral nerve cord (VNC). We developed image processing tools that automatically detected the cell position based on the nuclear staining and allocate the activity signals to each detected cell. We also applied a machine learning-based method that we recently developed to assign motor status in each time frame. Our experimental procedures and computational pipeline enabled systematic identification of neurons that showed characteristic motor activities in larval Drosophila. We found cells whose activity was biased toward forward locomotion and others biased toward backward locomotion. In particular, we identified neurons near the boundary of the subesophageal zone (SEZ) and thoracic neuromeres, which were strongly active during an early phase of backward but not forward fictive locomotion.
Collapse
Affiliation(s)
- Youngteak Yoon
- a Department of Physics, Graduate School of Science , University of Tokyo , Tokyo , Japan
| | - Jeonghyuk Park
- a Department of Physics, Graduate School of Science , University of Tokyo , Tokyo , Japan
| | - Atsushi Taniguchi
- b Laboratory for Spatiotemporal Regulations , National Institute for Basic Biology , Aichi , Japan
| | - Hiroshi Kohsaka
- c Department of Complexity Science and Engineering , University of Tokyo , Chiba , Japan
| | - Ken Nakae
- d Graduate School of Informatics , Kyoto University , Kyoto , Japan
| | - Shigenori Nonaka
- b Laboratory for Spatiotemporal Regulations , National Institute for Basic Biology , Aichi , Japan
| | - Shin Ishii
- d Graduate School of Informatics , Kyoto University , Kyoto , Japan.,e ATR Cognitive Mechanisms Laboratories , Kyoto , Japan
| | - Akinao Nose
- a Department of Physics, Graduate School of Science , University of Tokyo , Tokyo , Japan.,c Department of Complexity Science and Engineering , University of Tokyo , Chiba , Japan
| |
Collapse
|
16
|
Sales EC, Heckman EL, Warren TL, Doe CQ. Regulation of subcellular dendritic synapse specificity by axon guidance cues. eLife 2019; 8:43478. [PMID: 31012844 PMCID: PMC6499537 DOI: 10.7554/elife.43478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Neural circuit assembly occurs with subcellular precision, yet the mechanisms underlying this precision remain largely unknown. Subcellular synaptic specificity could be achieved by molecularly distinct subcellular domains that locally regulate synapse formation, or by axon guidance cues restricting access to one of several acceptable targets. We address these models using two Drosophila neurons: the dbd sensory neuron and the A08a interneuron. In wild-type larvae, dbd synapses with the A08a medial dendrite but not the A08a lateral dendrite. dbd-specific overexpression of the guidance receptors Unc-5 or Robo-2 results in lateralization of the dbd axon, which forms anatomical and functional monosynaptic connections with the A08a lateral dendrite. We conclude that axon guidance cues, not molecularly distinct dendritic arbors, are a major determinant of dbd-A08a subcellular synapse specificity.
Collapse
Affiliation(s)
- Emily C Sales
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States.,Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States.,Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Timothy L Warren
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States.,Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States.,Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| |
Collapse
|
17
|
Gong C, Ouyang Z, Zhao W, Wang J, Li K, Zhou P, Zhao T, Zheng N, Gong Z. A Neuronal Pathway that Commands Deceleration in Drosophila Larval Light-Avoidance. Neurosci Bull 2019; 35:959-968. [PMID: 30810958 DOI: 10.1007/s12264-019-00349-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023] Open
Abstract
When facing a sudden danger or aversive condition while engaged in on-going forward motion, animals transiently slow down and make a turn to escape. The neural mechanisms underlying stimulation-induced deceleration in avoidance behavior are largely unknown. Here, we report that in Drosophila larvae, light-induced deceleration was commanded by a continuous neural pathway that included prothoracicotropic hormone neurons, eclosion hormone neurons, and tyrosine decarboxylase 2 motor neurons (the PET pathway). Inhibiting neurons in the PET pathway led to defects in light-avoidance due to insufficient deceleration and head casting. On the other hand, activation of PET pathway neurons specifically caused immediate deceleration in larval locomotion. Our findings reveal a neural substrate for the emergent deceleration response and provide a new understanding of the relationship between behavioral modules in animal avoidance responses.
Collapse
Affiliation(s)
- Caixia Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenhuan Ouyang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310007, China
| | - Weiqiao Zhao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kun Li
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Peipei Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 22011, USA
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310007, China.
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Oswald MC, Brooks PS, Zwart MF, Mukherjee A, West RJ, Giachello CN, Morarach K, Baines RA, Sweeney ST, Landgraf M. Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila. eLife 2018; 7:39393. [PMID: 30540251 PMCID: PMC6307858 DOI: 10.7554/elife.39393] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson’s disease-linked protein DJ-1β as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.
Collapse
Affiliation(s)
- Matthew Cw Oswald
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Paul S Brooks
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Amrita Mukherjee
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ryan Jh West
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Department of Biology, University of York, York, United Kingdom
| | - Carlo Ng Giachello
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Khomgrit Morarach
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Richard A Baines
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sean T Sweeney
- Department of Biology, University of York, York, United Kingdom
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Karagyozov D, Mihovilovic Skanata M, Lesar A, Gershow M. Recording Neural Activity in Unrestrained Animals with Three-Dimensional Tracking Two-Photon Microscopy. Cell Rep 2018; 25:1371-1383.e10. [PMID: 30380425 PMCID: PMC6287944 DOI: 10.1016/j.celrep.2018.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022] Open
Abstract
Optical recordings of neural activity in behaving animals can reveal the neural correlates of decision making, but brain motion, which often accompanies behavior, compromises these measurements. Two-photon point-scanning microscopy is especially sensitive to motion artifacts, and two-photon recording of activity has required rigid coupling between the brain and microscope. We developed a two-photon tracking microscope with extremely low-latency (360 μs) feedback implemented in hardware. This microscope can maintain continuous focus on neurons moving with velocities of 3 mm/s and accelerations of 1 m/s2 both in-plane and axially. We recorded calcium dynamics of motor neurons and inter-neurons in unrestrained freely behaving fruit fly larvae, correlating neural activity with stimulus presentations and behavioral outputs, and we measured light-induced depolarization of a visual interneuron in a moving animal using a genetically encoded voltage indicator. Our technique can be extended to stabilize recordings in a variety of moving substrates.
Collapse
Affiliation(s)
| | | | - Amanda Lesar
- Department of Physics, New York University, New York, NY, USA
| | - Marc Gershow
- Department of Physics, New York University, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, New York University, New York, NY, USA.
| |
Collapse
|
20
|
Park J, Kondo S, Tanimoto H, Kohsaka H, Nose A. Data-driven analysis of motor activity implicates 5-HT2A neurons in backward locomotion of larval Drosophila. Sci Rep 2018; 8:10307. [PMID: 29985473 PMCID: PMC6037780 DOI: 10.1038/s41598-018-28680-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/27/2018] [Indexed: 01/16/2023] Open
Abstract
Rhythmic animal behaviors are regulated in part by neural circuits called the central pattern generators (CPGs). Classifying neural population activities correlated with body movements and identifying the associated component neurons are critical steps in understanding CPGs. Previous methods that classify neural dynamics obtained by dimension reduction algorithms often require manual optimization which could be laborious and preparation-specific. Here, we present a simpler and more flexible method that is based on the pre-trained convolutional neural network model VGG-16 and unsupervised learning, and successfully classifies the fictive motor patterns in Drosophila larvae under various imaging conditions. We also used voxel-wise correlation mapping to identify neurons associated with motor patterns. By applying these methods to neurons targeted by 5-HT2A-GAL4, which we generated by the CRISPR/Cas9-system, we identified two classes of interneurons, termed Seta and Leta, which are specifically active during backward but not forward fictive locomotion. Optogenetic activation of Seta and Leta neurons increased backward locomotion. Conversely, thermogenetic inhibition of 5-HT2A-GAL4 neurons or application of a 5-HT2 antagonist decreased backward locomotion induced by noxious light stimuli. This study establishes an accelerated pipeline for activity profiling and cell identification in larval Drosophila and implicates the serotonergic system in the modulation of backward locomotion.
Collapse
Affiliation(s)
- Jeonghyuk Park
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, University of Tokyo, Chiba, 277-8561, Japan
| | - Akinao Nose
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan.
- Department of Complexity Science and Engineering, University of Tokyo, Chiba, 277-8561, Japan.
| |
Collapse
|
21
|
Clark MQ, Zarin AA, Carreira-Rosario A, Doe CQ. Neural circuits driving larval locomotion in Drosophila. Neural Dev 2018; 13:6. [PMID: 29673388 PMCID: PMC5907184 DOI: 10.1186/s13064-018-0103-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 11/10/2022] Open
Abstract
More than 30 years of studies into Drosophila melanogaster neurogenesis have revealed fundamental insights into our understanding of axon guidance mechanisms, neural differentiation, and early cell fate decisions. What is less understood is how a group of neurons from disparate anterior-posterior axial positions, lineages and developmental periods of neurogenesis coalesce to form a functional circuit. Using neurogenetic techniques developed in Drosophila it is now possible to study the neural substrates of behavior at single cell resolution. New mapping tools described in this review, allow researchers to chart neural connectivity to better understand how an anatomically simple organism performs complex behaviors.
Collapse
Affiliation(s)
- Matthew Q Clark
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasedena, CA, 91125, USA
| | - Aref Arzan Zarin
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
| | | | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
22
|
Widmann A, Eichler K, Selcho M, Thum AS, Pauls D. Odor-taste learning in Drosophila larvae. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:47-54. [PMID: 28823531 DOI: 10.1016/j.jinsphys.2017.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
The Drosophila larva is an attractive model system to study fundamental questions in the field of neuroscience. Like the adult fly, the larva offers a seemingly unlimited genetic toolbox, which allows one to visualize, silence or activate neurons down to the single cell level. This, combined with its simplicity in terms of cell numbers, offers a useful system to study the neuronal correlates of complex processes including associative odor-taste learning and memory formation. Here, we summarize the current knowledge about odor-taste learning and memory at the behavioral level and integrate the recent progress on the larval connectome to shed light on the sub-circuits that allow Drosophila larvae to integrate present sensory input in the context of past experience and to elicit an appropriate behavioral response.
Collapse
Affiliation(s)
| | - Katharina Eichler
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany; HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mareike Selcho
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Andreas S Thum
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany; Department of Genetics, University of Leipzig, D-04103 Leipzig, Germany.
| | - Dennis Pauls
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| |
Collapse
|
23
|
GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila. Proc Natl Acad Sci U S A 2018; 115:E2115-E2124. [PMID: 29440493 PMCID: PMC5834679 DOI: 10.1073/pnas.1713869115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Inhibition is an important feature of the neuronal circuit, and in walking, it aids in controlling coordinated movement of legs, leg segments, and joints. Recent studies in Drosophila report the role of premotor inhibitory interneurons in regulation of larval locomotion. However, in adult walking, the identity and function of premotor interneurons are poorly understood. Here, we use genetic methods for targeted knockdown of inhibitory neurotransmitter receptors in leg motoneurons, combined with automated video recording methods we have developed for quantitative analysis of fly leg movements and walking parameters, to reveal the resulting slower walking speed and defects in walking parameters. Our results indicate that GABAergic premotor inhibition to leg motoneurons is required to control the normal walking behavior in adult Drosophila. Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila. Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila.
Collapse
|
24
|
Takagi S, Cocanougher BT, Niki S, Miyamoto D, Kohsaka H, Kazama H, Fetter RD, Truman JW, Zlatic M, Cardona A, Nose A. Divergent Connectivity of Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in Drosophila. Neuron 2017; 96:1373-1387.e6. [PMID: 29198754 DOI: 10.1016/j.neuron.2017.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/23/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
Animals adaptively respond to a tactile stimulus by choosing an ethologically relevant behavior depending on the location of the stimuli. Here, we investigate how somatosensory inputs on different body segments are linked to distinct motor outputs in Drosophila larvae. Larvae escape by backward locomotion when touched on the head, while they crawl forward when touched on the tail. We identify a class of segmentally repeated second-order somatosensory interneurons, that we named Wave, whose activation in anterior and posterior segments elicit backward and forward locomotion, respectively. Anterior and posterior Wave neurons extend their dendrites in opposite directions to receive somatosensory inputs from the head and tail, respectively. Downstream of anterior Wave neurons, we identify premotor circuits including the neuron A03a5, which together with Wave, is necessary for the backward locomotion touch response. Thus, Wave neurons match their receptive field to appropriate motor programs by participating in different circuits in different segments.
Collapse
Affiliation(s)
- Suguru Takagi
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Sawako Niki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Dohjin Miyamoto
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Hokto Kazama
- RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Richard Doty Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James William Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Akinao Nose
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan.
| |
Collapse
|
25
|
Lee D, Huang TH, De La Cruz A, Callejas A, Lois C. Methods to investigate the structure and connectivity of the nervous system. Fly (Austin) 2017; 11:224-238. [PMID: 28277925 PMCID: PMC5552278 DOI: 10.1080/19336934.2017.1295189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Understanding the computations that take place in neural circuits requires identifying how neurons in those circuits are connected to one another. In addition, recent research indicates that aberrant neuronal wiring may be the cause of several neurodevelopmental disorders, further emphasizing the importance of identifying the wiring diagrams of brain circuits. To address this issue, several new approaches have been recently developed. In this review, we describe several methods that are currently available to investigate the structure and connectivity of the brain, and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Donghyung Lee
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| | - Ting-Hao Huang
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| | - Aubrie De La Cruz
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| | - Antuca Callejas
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA.,b Department of Cell Biology, School of Science , University of Extremadura , Badajoz , Spain
| | - Carlos Lois
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| |
Collapse
|
26
|
Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila. J Neurosci 2017; 37:2045-2060. [PMID: 28115483 DOI: 10.1523/jneurosci.1453-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/23/2022] Open
Abstract
In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B2 (shakB2 ) or ogre2 , gap-junction mutations in Drosophila, or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system.SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the central pattern-generating circuits in larval Drosophila, providing novel insights into motor circuit control. The experimental system introduced in this study also presents a new approach for studying intersegmentally coordinated locomotion. Unlike traditional electrophysiology methods, this system enables the simultaneous recording and manipulation of populations of neurons that are genetically specified and span multiple segments.
Collapse
|
27
|
Kohsaka H, Guertin PA, Nose A. Neural Circuits Underlying Fly Larval Locomotion. Curr Pharm Des 2017; 23:1722-1733. [PMID: 27928962 PMCID: PMC5470056 DOI: 10.2174/1381612822666161208120835] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022]
Abstract
Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Pierre A. Guertin
- Department of Psychiatry & Neurosciences, Laval University, Québec City, QC, Canada
| | - Akinao Nose
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion. Sci Rep 2016; 6:30806. [PMID: 27470675 PMCID: PMC4965782 DOI: 10.1038/srep30806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/11/2016] [Indexed: 11/18/2022] Open
Abstract
We use Drosophila larval locomotion as a model to elucidate the working principles of motor circuits. Larval locomotion is generated by rhythmic and sequential contractions of body-wall muscles from the posterior to anterior segments, which in turn are regulated by motor neurons present in the corresponding neuromeres. Motor neurons are known to receive both excitatory and inhibitory inputs, combined action of which likely regulates patterned motor activity during locomotion. Although recent studies identified candidate inhibitory premotor interneurons, the identity of premotor interneurons that provide excitatory drive to motor neurons during locomotion remains unknown. In this study, we searched for and identified two putative excitatory premotor interneurons in this system, termed CLI1 and CLI2 (cholinergic lateral interneuron 1 and 2). These neurons were segmentally arrayed and activated sequentially from the posterior to anterior segments during peristalsis. Consistent with their being excitatory premotor interneurons, the CLIs formed GRASP- and ChAT-positive putative synapses with motoneurons and were active just prior to motoneuronal firing in each segment. Moreover, local activation of CLI1s induced contraction of muscles in the corresponding body segments. Taken together, our results suggest that the CLIs directly activate motoneurons sequentially along the segments during larval locomotion.
Collapse
|
29
|
Abstract
Locomotion in an organism is a consequence of the coupled interaction between brain, body and environment. Motivated by qualitative observations and quantitative perturbations of crawling in Drosophila melanogaster larvae, we construct a minimal integrative mathematical model for its locomotion. Our model couples the excitation-inhibition circuits in the nervous system to force production in the muscles and body movement in a frictional environment, thence linking neural dynamics to body mechanics via sensory feedback in a heterogeneous environment. Our results explain the basic observed phenomenology of crawling with and without proprioception, and elucidate the stabilizing role that proprioception plays in producing a robust crawling phenotype in the presence of biological perturbations. More generally, our approach allows us to make testable predictions on the effect of changing body-environment interactions on crawling, and serves as a step in the development of hierarchical models linking cellular processes to behavior.
Collapse
Affiliation(s)
- Cengiz Pehlevan
- The Swartz Program in Theoretical Neuroscience, Harvard University, Cambridge, United States
- Simons Center for Data Analysis, Simons Foundation, New York, United States
| | - Paolo Paoletti
- School of Engineering, The University of Liverpool, Liverpool, United Kingdom
| | - L Mahadevan
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
- Wyss Institute for Bioinspired Engineering, Harvard University, Cambridge, United States
- Kavli Institute for BioNano Science and Technology, Harvard University, Cambridge, United States
- Department of Physics, Harvard University, Cambridge, United States
| |
Collapse
|
30
|
Fushiki A, Zwart MF, Kohsaka H, Fetter RD, Cardona A, Nose A. A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. eLife 2016; 5. [PMID: 26880545 PMCID: PMC4829418 DOI: 10.7554/elife.13253] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/14/2016] [Indexed: 12/20/2022] Open
Abstract
Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for the propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion. DOI:http://dx.doi.org/10.7554/eLife.13253.001 Rhythmic movements such as walking and swimming require the coordinated contraction of many different muscles. Throughout the animal kingdom, from insects to mammals, animals possess specialized circuits of neurons that are responsible for producing these patterns of muscle contraction. These circuits are known as ‘central pattern generators’. Central pattern generators are made up of multiple types of neurons that exchange information. However, it is unclear how neurons controlling the movement of one part of the body relay information to neurons controlling the movement of other parts. To answer this question, Fushiki et al. used larvae from the fruit fly Drosophila melanogaster as a model, and combined techniques such as electrophysiology and electron microscopy with measures of the insect’s behavior. Fruit fly larvae have bodies that are made of segments, and they can contract and relax these segments in a sequence to propel themselves forwards or backwards. The contraction of one segment is accompanied by relaxation of the segment immediately in front. Fushiki et al. found that each body segment contains a copy of the same basic neuronal circuit. This circuit is made up of excitatory and inhibitory neurons. Both types of neurons regulate movement, but the inhibitory neurons must be suppressed for movement to occur. The experiments also showed that each circuit receives both long-range input from the brain and local sensory feedback. This combination of inputs ensures that the segments contract and relax in the correct order. Future challenges are to determine how the brain controls larval movement via its long-range projections to the body. A key step will be to map these circuits at the level of the individual neurons and the connections between them. DOI:http://dx.doi.org/10.7554/eLife.13253.002
Collapse
Affiliation(s)
- Akira Fushiki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Maarten F Zwart
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan.,Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|