1
|
Vermeij GJ, DeVries TJ, Griffin M, Nielsen SN, Ochoa D, Rivadeneira MM, Salas‐Gismondi R, Valdovinos F. The temperate marine Peruvian Province: How history accounts for its unusual biota. Ecol Evol 2024; 14:e70048. [PMID: 39041018 PMCID: PMC11260884 DOI: 10.1002/ece3.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
The Peruvian Province, from 6° S in Peru to 42° S in Chile, is a highly productive coastal marine region whose biology and fossil record have long been studied separately but never integrated. To understand how past events and conditions affected today's species composition and interactions, we examined the role of extinction, colonization, geologic changes to explain previously unrecognized peculiar features of the biota and to compare the Peruvian Province's history to that of other climatically similar temperate coasts. We synthesized all available data on the benthic (or benthically feeding) biota, with emphasis on fossilizable taxa, for the interval from the Miocene (23-5.4 Ma) and Pliocene (5.4-2.5 Ma) to the present. We outline the history of ecological guilds including primary producers, herbivores, predators, and suspension-feeders and document patterns of extinction, colonization, and geographic restriction. We identify twelve unusual attributes of the biota, most of which are the result of repeated episodes of extinction. Several guilds present during the Miocene and Pliocene are not represented in the province today, while groups such as kelps and perhaps intertidal predatory sea stars are relative newcomers. Guilds on soft bottoms and in sheltered habitats were severely affected by extinction, whereas those on hard bottoms were most affected by colonists and held their own in diversity. The Peruvian Province has not served as a biogeographic refuge, in contrast to the coasts of Australasia and Argentina, where lineages no longer present in the Peruvian Province survive. The loss of sheltered habitats since the Pliocene explains many of the present-day peculiarities of the biota. The history of the province's biota explains its unique attributes. High productivity, a rich Southern Hemisphere heritage, and colonization from the north account for the present-day composition and unusual characteristics of the biota.
Collapse
Affiliation(s)
- Geerat J. Vermeij
- Department of Earth and Planetary SciencesUniversity of California, DavisDavisCaliforniaUSA
| | - Thomas J. DeVries
- Burke Museum of Natural History and CultureUniversity of WashingtonSeattleWashingtonUSA
| | - Miguel Griffin
- División Paleozoología InvertebradosMuseo de La PlataLa PlataArgentina
| | - Sven N. Nielsen
- Instituto de Ciencias de la TierraUniversidad Austral de ChileValdiviaChile
| | - Diana Ochoa
- Centro de Investigación Para el Desarrollo Integral y Sostenible (CIDIS)Universidad Peruana Cayetano HeredioLimaPeru
| | - Marcelo M. Rivadeneira
- Centro de Estudios Avanzados en Zonas ÁridasCoquimboChile
- Departamento de Biologia Marina, Facultad de Ciencias del MarUniversidad Catolica del NorteAntofagastaChile
| | - Rodolfo Salas‐Gismondi
- Departamento de Paleontología de VertebradosMuseo de Historia Natural‐Universidad Nacional Mayor San MarcosLimaPeru
| | - Fernanda Valdovinos
- Department of Environmental Science and PolicyUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
Herbivory and functional traits suggest that enemy release is not an important mechanism driving invasion success of brown seaweeds. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractInvasive species are a global threat to biodiversity and there is a pressing need to better understand why some species become invasive outside of their native range, and others do not. One explanation for invasive species success is their release from concurrent natural enemies upon introduction to the non-native range. The so-called enemy release hypothesis (ERH) has conflicting support, depending upon the ecosystem and species investigated. To date, most studies testing the generality of the ERH have focused on terrestrial ecosystems. Here, we tested whether enemy release might contribute to the success of the invasive non-native brown seaweeds Undaria pinnatifida and Sargassum muticum in the United Kingdom. We conducted choice and no choice experiments to determine herbivore preference on these invaders relative to six functionally-similar native species. We also measured and compared species traits associated with defence against herbivory (carbon to nitrogen ratio, polyphenolic concentration, tensile strength, and compensatory growth). There were no differences in the biomass consumed between invasive and native species for either choice or no choice tests. The carbon to nitrogen ratio (a measure of nutritional quality) was significantly lower for S. muticum compared to the three native fucoid species, but measures of the other three defence traits were similar or even greater for invasive species compared with native species. Taken together, it is unlikely that the ERH applies to invasive seaweeds in the northeast Atlantic, suggesting that other factors may contribute to the success of invasive species in this system.
Collapse
|
3
|
Barrientos S, Zarco-Perello S, Piñeiro-Corbeira C, Barreiro R, Wernberg T. Feeding preferences of range-shifting and native herbivorous fishes in temperate ecosystems. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105508. [PMID: 34710739 DOI: 10.1016/j.marenvres.2021.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Temperate reefs are being tropicalized worldwide. In temperate Western Australia, a marine heatwave led to a regime shift from kelp (Ecklonia radiata) dominated to canopy-free reefs, together with an increase in tropical herbivorous fishes that contribute to keeping low kelp abundances and even prevent kelp reestablishment in northern regions. However, whether tropical herbivorous fishes prefer kelps over other seaweeds and/or whether this preference changes with latitude remains untested. Multiple-choice experiments (young kelp vs. other seaweeds) with tropical, subtropical and temperate herbivorous fishes show shifting species-specific preferences and fish-to-fish interference shifting with latitude (assays replicated in two regions four degrees of latitude apart). Against expectations, only the temperate Kyphosus sydneyanus preferred kelp over other seaweeds, but only in the lower latitude region. Siganus fuscescens, the most abundant tropical herbivore in both regions, preferred grazing on turf, suggesting that tropical fish might reduce kelp recruitment by consuming microscopic sporophytes in turf matrix.
Collapse
Affiliation(s)
- Sara Barrientos
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain.
| | - Salvador Zarco-Perello
- School of Biological Sciences and UWA Oceans Institute. The University of Western Australia, 39 Fairway, Crawley, 6009, Western Australia, Australia
| | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Rodolfo Barreiro
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Thomas Wernberg
- School of Biological Sciences and UWA Oceans Institute. The University of Western Australia, 39 Fairway, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
4
|
Fong CR, Sura SA, Ford AT, Howard HB, Molina NE, Smith NN, Fong P. TESTING THE CONCEPTUAL AND OPERATIONAL UNDERPINNINGS OF HERBIVORY ASSAYS: DOES VARIATION IN PREDICTABILITY OF RESOURCES, ASSAY DESIGN, AND DEPLOYMENT METHOD AFFECT OUTCOMES? JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2020; 533:151469. [PMID: 36936734 PMCID: PMC10019850 DOI: 10.1016/j.jembe.2020.151469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Herbivory assays are a valuable tool used by ecologists to understand many of the patterns and processes affecting herbivory, a widely recognized driving force in marine communities. However, methods vary substantially among studies in both design and operation, and the effect of these differences has yet to be evaluated. We assessed the effects of several key components of assay design on estimates of herbivory to offer four recommendations. First, we found assays out-planted on sequential days in both predictable and random locations within a 60m2 site experienced temporal increases in herbivory by an increasingly diverse assemblage of fishes. Thus, we strongly advise against placing herbivory assays in the same site over a series of days. Second, we found while the amount of biomass consumed in assays was density dependent, the percent loss was not. Thus, we recommend researchers report percent consumption because this metric is robust to differences in biomass offered and will facilitate comparisons across studies. Third, we found associational effects, where proximity of species of differing palatabilities impacted estimates of herbivory rate on one or both species, but these impacts were not consistent across species or sites. Thus, we recommend the effect of association be directly tested for multi specie herbivory assays. Fourth, we found no effect of attachment method on estimates of herbivory rate and recommend researchers continue to use the attachment method in which they are most confident. We hope our experimental results prove useful in the future when designing, conducting, and interpreting herbivory assays.
Collapse
Affiliation(s)
- Caitlin R. Fong
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106
- Corresponding author:
| | - Shayna A. Sura
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Ashlyn T. Ford
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL 32307
| | - Hunter B. Howard
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853
| | - Nury E. Molina
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Nefertiti N. Smith
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23668
| | - Peggy Fong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| |
Collapse
|
5
|
Aguilera MA, Valdivia N, Broitman BR, Jenkins SR, Navarrete SA. Novel co-occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology 2020; 101:e03150. [PMID: 32730670 DOI: 10.1002/ecy.3150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 11/06/2022]
Abstract
Ongoing climate change is shifting the geographic distributions of some species, potentially imposing rapid changes in local community structure and ecosystem functioning. Besides changes in population-level interspecific interactions, such range shifts may also cause changes in functional structure within the host assemblages, which can result in losses or gains in ecosystem functions. Because consumer-resource dynamics are central to community regulation, functional reorganization driven by introduction of new consumer species can have large consequences on ecosystem functions. Here we experimentally examine the extent to which the recent poleward range expansion of the intertidal grazer limpet Scurria viridula along the coast of Chile has altered the role of the resident congeneric limpet S. zebrina, and whether the net collective impacts, and functional structure, of the entire herbivore guild have been modified by the introduction of this new member. We examined the functional role of Scurria species in controlling ephemeral algal cover, bare rock availability, and species richness and diversity, and compared the effects in the region of range overlap against their respective "native" abutted ranges. Experiments showed depression of per capita effects of the range-expanded species within the region of overlap, suggesting environmental conditions negatively affect individual performance. In contrast, effects of S. zebrina were commonly invariant at its range edge. When comparing single species versus polycultures, effects on bare rock cover were altered by the presence of the other Scurria species, suggesting competition between Scurria species. Importantly, although the magnitude of S. viridula effects at the range overlap was reduced, its addition to the herbivore guild seems to complement and intensify the role of the guild in reducing green algal cover, species richness and increasing bare space provision. Our study thus highlights that range expansion of an herbivore can modify the functional guild structure in the recipient community. It also highlights the complexity of predicting how functional structure may change in the face of natural or human-induced range expansions. There is a need for more field-based examination of regional functional compensation, complementarity, or inhibition before we can construct a conceptual framework to anticipate the consequences of species range expansions.
Collapse
Affiliation(s)
- Moisés A Aguilera
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Ossandón 877, Coquimbo, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 5110236, Chile.,Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL), Chile
| | - Bernardo R Broitman
- Departamento de Ciencias Biológicas, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Viña de Mar, Chile
| | - Stuart R Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Sergio A Navarrete
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| |
Collapse
|
6
|
Schreiber L, López BA, Rivadeneira MM, Thiel M. Connections Between Benthic Populations and Local Strandings of the Southern Bull Kelp Durvillaea Antarctica Along the Continental Coast of Chile 1. JOURNAL OF PHYCOLOGY 2020; 56:185-197. [PMID: 31562638 DOI: 10.1111/jpy.12926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Floating seaweeds are important dispersal vectors in marine ecosystems. However, the relationship between benthic populations and stranded seaweeds has received little attention. After detachment, a fraction of floating specimens returns to the shore, resulting in strandings that fluctuate in space and time. It has been hypothesized that the availability of stranded seaweeds is related to their benthic abundance on adjacent coasts. Using the large fucoid Durvillaea antarctica, we tested whether stranded biomasses are higher at sites with dense adjacent benthic populations. Benthic abundance of D. antarctica along the continental coast of Chile was estimated using three approximations: (i) availability of potentially suitable habitat (PSH), (ii) categorical visual abundance estimates in the field, and (iii) abundance measurements in the intertidal zone. Higher PSH for D. antarctica was observed between 31° S-32° S and 40° S-42° S than between 33° S and 39° S. Lowest benthic biomasses were estimated for the northern latitudes (31° S-32° S). Regression models showed that the association between stranded biomass and PSH was highest when only the extent of rocky shore 10 km to the south of each beach was included, suggesting relatively short-distance dispersal and asymmetrical transport of floating kelps, which is further supported by low proportions of rafts with Lepas spp. (indicator of rafting). The results indicate that stranded biomasses are mostly subsidized by nearby benthic populations, which can partly explain the low genetic connectivity among populations in the study region. Future studies should also incorporate other local factors (e.g., winds, currents, wave-exposure) that influence stranding dynamics.
Collapse
Affiliation(s)
- Lennart Schreiber
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
- Faculty of Life Sciences, Biological Institute, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Boris A López
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Av. Fuchslocher 1305, Osorno, Chile
| | - Marcelo M Rivadeneira
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
- Centro de Estudios Avanzados en Zonas Áridas, CEAZA, Av. Bernardo Ossandón 877, Coquimbo, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Martin Thiel
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
- Centro de Estudios Avanzados en Zonas Áridas, CEAZA, Av. Bernardo Ossandón 877, Coquimbo, Chile
- Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile
| |
Collapse
|
7
|
Fellous A, Andrade S, Vidal-Ramirez F, Calderón R, Beltran J, Correa JA. Modulatory effect of the exudates released by the brown kelp Lessonia spicata on the toxicity of copper in early developmental stages of ecologically related organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3900-3911. [PMID: 27905044 PMCID: PMC5348571 DOI: 10.1007/s11356-016-8120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Lessonia spicata is a key dominant species along the Pacific coast of South America, providing a habitat for many organisms. However, this role can be affected by abiotic stress, such as metals. To counteract the toxic effect, L. spicata, among other seaweeds, releases exudates that bind metals. In this study, tolerances to copper of organisms related to the kelp forest (spores of Ulva lactuca (Chlorophyceae) and L. spicata (Phaeophyceae) and Zoea I of Taliepus dentatus (Milne-Edwards, Crustacea)) were studied; then, exudates are assessed by their protective effect. Exudates increase the 48-h 50% effective concentration (EC50) of the germination of spores from 8 to 23 μg Cu L-1 for U. lactuca and from 119 to 213 μg Cu L-1 for L. spicata and the survival of the larvae Zoea I 48-h 50% of lethal concentration (LC50) from 144 to 249 μg Cu L-1. Results indicated that exudates had a protective effect. Each species is specifically sensitive to copper. Crab larvae Zoea I were able to support higher doses, and exposure before hatching increased their tolerance.
Collapse
Affiliation(s)
- Alexandre Fellous
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile.
- Université Pierre et Marie Curie (Sorbonne-Universités, Paris VI), 4 Place Jussieu, 75005, Paris, France.
| | - Santiago Andrade
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
| | - Francisco Vidal-Ramirez
- Estación Costera de Investigaciones Marinas La Cruces, Pontificia Universidad Católica de Chile, Osvaldo Marín 1672, Las Cruces, Comuna El Tabo, Región de Valparaíso, Chile
- School of Biological Sciences and Australian Research Council Centre for Excellence in Coral Reef Studies, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ricardo Calderón
- Estación Costera de Investigaciones Marinas La Cruces, Pontificia Universidad Católica de Chile, Osvaldo Marín 1672, Las Cruces, Comuna El Tabo, Región de Valparaíso, Chile
| | - Jessica Beltran
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
| | - Juan A Correa
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
| |
Collapse
|
8
|
Tejada-Martinez D, López DN, Bonta CC, Sepúlveda RD, Valdivia N. Positive and negative effects of mesograzers on early-colonizing species in an intertidal rocky-shore community. Ecol Evol 2016; 6:5761-70. [PMID: 27547352 PMCID: PMC4983589 DOI: 10.1002/ece3.2323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 11/25/2022] Open
Abstract
The ecological consequences of human‐driven overexploitation and loss of keystone consumers are still unclear. In intertidal rocky shores over the world, the decrease of keystone macrograzers has resulted in an increase in the dominance of herbivores with smaller body (i.e., “mesograzers”), which could potentially alter community assembly and structure. Here, we experimentally tested whether mesograzers affect the structure of rocky intertidal communities during the period of early colonization after the occurrence of a disturbance. A manipulative field experiment was conducted to exclude mesograzers (i.e., juvenile chitons, small snails, amphipods, and juvenile limpets) from experimental areas in an ecosystem characterized by the overexploitation of keystone macrograzers and predators. The results of multivariate analyses suggest that mesograzers had significant effects on intertidal community structure through negative and positive effects on species abundances. Mesograzers had negative effects on filamentous algae, but positive effects on opportunistic foliose algae and barnacles. Probably, mesograzers indirectly favored the colonization of barnacles and foliose algae by removing preemptive competitors, as previously shown for other meso‐ and macrograzer species. These results strongly support the idea that small herbivores exert a firm controlling effect on the assembly process of natural communities. Therefore, changes in functional roles of top‐down controllers might have significant implications for the structure of intertidal communities.
Collapse
Affiliation(s)
- Daniela Tejada-Martinez
- Doctorado en Ciencias, mención en Ecología y Evolución Facultad de Ciencias Universidad Austral de Chile Campus Isla Teja Valdivia Chile; Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - Daniela N López
- Doctorado en Ciencias, mención en Ecología y Evolución Facultad de Ciencias Universidad Austral de Chile Campus Isla Teja Valdivia Chile; Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - César C Bonta
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - Roger D Sepúlveda
- Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias Universidad Austral de Chile Campus Isla Teja Valdivia Chile; South American Research Group on Coastal Ecosystems (SARCE) Universidad Simón Bolivar Caracas Venezuela
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile Campus Isla Teja Valdivia Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) Valdivia Chile
| |
Collapse
|
9
|
Aguilera MA, Valdivia N, Broitman BR. Facilitative Effect of a Generalist Herbivore on the Recovery of a Perennial Alga: Consequences for Persistence at the Edge of Their Geographic Range. PLoS One 2015; 10:e0146069. [PMID: 26716986 PMCID: PMC4696856 DOI: 10.1371/journal.pone.0146069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/11/2015] [Indexed: 11/22/2022] Open
Abstract
Understanding the impacts of consumers on the abundance, growth rate, recovery and persistence of their resources across their distributional range can shed light on the role of trophic interactions in determining species range shifts. Here, we examined if consumptive effects of the intertidal grazer Scurria viridula positively influences the abundance and recovery from disturbances of the alga Mazzaella laminarioides at the edge of its geographic distributions in northern-central Chilean rocky shores. Through field experiments conducted at a site in the region where M. laminarioides overlaps with the polar range edge of S. viridula, we estimated the effects of grazing on different life stages of M. laminarioides. We also used long-term abundance surveys conducted across ~700 km of the shore to evaluate co-occurrence patterns of the study species across their range overlap. We found that S. viridula had positive net effects on M. laminarioides by increasing its cover and re-growth from perennial basal crusts. Probability of occurrence of M. laminarioides increased significantly with increasing density of S. viridula across the range overlap. The negative effect of S. viridula on the percentage cover of opportunistic green algae—shown to compete for space with corticated algae—suggests that competitive release may be part of the mechanism driving the positive effect of the limpet on the abundance and recovery from disturbance of M. laminarioides. We suggest that grazer populations contribute to enhance the abundance of M. laminarioides, facilitating its recolonization and persistence at its distributional range edge. Our study highlights that indirect facilitation can determine the recovery and persistence of a resource at the limit of its distribution, and may well contribute to the ecological mechanisms governing species distributions and range shifts.
Collapse
Affiliation(s)
- Moisés A. Aguilera
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Ossandón 877, Coquimbo, Chile
- * E-mail:
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n,Valdivia, Chile
| | - Bernardo R. Broitman
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Ossandón 877, Coquimbo, Chile
| |
Collapse
|