1
|
Goldsmith JA, Nguyen AW, Wilen RE, Wijagkanalan W, McLellan JS, Maynard JA. Structural basis for neutralizing antibody binding to pertussis toxin. Proc Natl Acad Sci U S A 2025; 122:e2419457122. [PMID: 40172968 PMCID: PMC12002313 DOI: 10.1073/pnas.2419457122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
Pertussis toxin (PT) is a key protective antigen in vaccine- and natural immunity-mediated protection from Bordetella pertussis infection. Despite its importance, no PT-neutralizing epitopes have been characterized structurally. To define neutralizing epitopes and identify key structural elements to preserve during PT antigen design, we determined a 3.6 Å cryoelectron microscopy structure of genetically detoxified PT (PTg) bound to hu11E6 and hu1B7, two potently neutralizing anti-PT antibodies with complementary mechanisms: disruption of toxin adhesion to cells and intracellular activities, respectively. Hu11E6 binds the paralogous S2 and S3 subunits of PTg via a conserved epitope but surprisingly did not span the previously identified sialic acid-binding site implicated in toxin adhesion. Hu11E6 specifically prevented PTg binding to sialylated N-glycans and a sialylated model receptor, as demonstrated by high-throughput glycan array analysis and ELISA, while a T cell activation assay showed that it blocks PTg mitogenic activities to define its neutralizing mechanism. Hu1B7 bound a quaternary epitope spanning the S1 and S5 subunits, although functional studies of hu1B7 variants suggested that S5 binding is not involved in its PT neutralization mechanism. These results structurally define neutralizing epitopes on PT, improving our molecular understanding of immune protection from B. pertussis and providing key information for the future development of PT immunogens.
Collapse
Affiliation(s)
- Jory A. Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Annalee W. Nguyen
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Rebecca E. Wilen
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | | | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Jennifer A. Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
2
|
Liu Y, Yu D, Wang K, Ye Q. Global resurgence of pertussis: A perspective from China. J Infect 2024; 89:106289. [PMID: 39357571 DOI: 10.1016/j.jinf.2024.106289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Pertussis (or whooping cough) is a highly infectious acute respiratory disease primarily caused by Bordetella pertussis, which is also one of the most important causes of infant death worldwide. The widespread use of vaccines has greatly reduced the morbidity and mortality of pertussis. However, since the 1980s, in a number of countries with high vaccine coverage, the incidence of pertussis has risen again after remaining low for many years, with outbreaks even occurring in some areas. The peak onset of pertussis is shifting from infancy to adolescence, and adolescence is becoming the main source of infection for infants. Despite the increasing incidence of pertussis, serological findings suggest that the true prevalence of the disease may be significantly underestimated. Therefore, in this narrative review, we summarize the pathogenic process and immune characteristics of bacteria, the diagnosis and treatment of diseases, as well as vaccination and prevalence of pertussis at home and abroad, and attempt to analyze the causes and influencing factors of pertussis resurgence and summarize some prevention and control strategies to assist in improving the understanding of pertussis and preventing unexpected outbreaks.
Collapse
Affiliation(s)
- Ying Liu
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Daojun Yu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Kaixuan Wang
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China.
| |
Collapse
|
3
|
Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Comput Struct Biotechnol J 2021; 19:4725-4737. [PMID: 34504665 PMCID: PMC8405906 DOI: 10.1016/j.csbj.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.
Collapse
Affiliation(s)
- Carlos Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jason John Paxman
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
4
|
Petersen RL. Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development. BIOSENSORS-BASEL 2017; 7:bios7040049. [PMID: 29088096 PMCID: PMC5746772 DOI: 10.3390/bios7040049] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022]
Abstract
Bio-layer interferometry (BLI) real-time, label-free technology has greatly contributed to advances in vaccine research and development. BLI Octet platforms offer high-throughput, ease of use, reliability, and high precision analysis when compared with common labeling techniques. Many different strategies have been used to immobilize the pathogen or host molecules on BLI biosensors for real-time kinetics and affinity analysis, quantification, or high-throughput titer. These strategies can be used in multiple applications and shed light onto the structural and functional aspects molecules play during pathogen-host interactions. They also provide crucial information on how to achieve protection. This review summarizes some key BLI strategies used in human vaccine research and development.
Collapse
|
5
|
Wagner EK, Wang X, Bui A, Maynard JA. Synergistic Neutralization of Pertussis Toxin by a Bispecific Antibody In Vitro and In Vivo. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:851-862. [PMID: 27581436 PMCID: PMC5098018 DOI: 10.1128/cvi.00371-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/25/2016] [Indexed: 02/08/2023]
Abstract
Bispecific antibodies are a rapidly growing class of therapeutic molecules, originally developed for the treatment of cancer but recently explored for the treatment of autoimmune and infectious diseases. Bordetella pertussis is a reemerging pathogen, and several of the key symptoms of infection are caused by the pertussis toxin (PTx). Two humanized antibodies, hu1B7 and hu11E6, bind distinct epitopes on PTx and, when coadministered, mitigate disease severity in murine and baboon models of infection. Here we describe the generation of a bispecific human IgG1 molecule combining the hu1B7 and hu11E6 binding sites via a knobs-in-holes design. The bispecific antibody showed binding activity equivalent to that of the antibody mixture in a competition enzyme-linked immunosorbent assay (ELISA). A CHO cell neutralization assay provided preliminary evidence for synergy between the two antibodies, while a murine model of PTx-induced leukocytosis definitively showed synergistic neutralization. Notably, the bispecific antibody retained the synergy observed for the antibody mixture, supporting the conclusion that synergy is due to simultaneous blockade of both the catalytic and receptor binding activities of pertussis toxin. These data suggest that a hu1B7/hu11E6 bispecific antibody is a viable alternative to an antibody mixture for pertussis treatment.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/therapeutic use
- Binding Sites, Antibody
- Bordetella pertussis/immunology
- CHO Cells
- Cricetinae
- Cricetulus
- Drug Synergism
- Enzyme-Linked Immunosorbent Assay
- Epitopes/chemistry
- Epitopes/immunology
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Immunoglobulin G/isolation & purification
- Immunoglobulin G/metabolism
- Mice
- Neutralization Tests
- Pertussis Toxin/immunology
- Whooping Cough/immunology
- Whooping Cough/prevention & control
- Whooping Cough/therapy
Collapse
Affiliation(s)
- Ellen K Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Xianzhe Wang
- Department of Biochemistry, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andre Bui
- Proteomics Facility, The University of Texas at Austin, Austin, Texas, USA
| | - Jennifer A Maynard
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Department of Biochemistry, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|