1
|
Lui VCH. Organoids in biliary atresia. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e001010. [PMID: 40385243 PMCID: PMC12083310 DOI: 10.1136/wjps-2025-001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/27/2025] [Indexed: 05/20/2025] Open
Abstract
Organoids are three-dimensional and self-organizing cell cultures of various lineages that resemble structures and functions of an organ in many ways, and they are versatile tools in disease modeling and patho-mechanistic study of human diseases affecting their tissues of origin. Biliary atresia (BA), a cholangiopathy affecting the bile ducts of the liver, is a heterogeneous and multifaceted liver disease of complex pathogenesis. Cholangiopathies refer to a category of liver diseases that affect the cholangiocytes, the epithelial cells lining the lumen of the biliary trees. Biliary organoids consist of cholangiocytes in a spherical monolayer epithelium, which favorably resembles the structures and functional properties of the bile duct cholangiocytes. Biliary tissue-derived cells, pluripotent stem cells or embryonic stem cells, and hepatic progenitor cells are capable of generating biliary organoids. In the last decade, a considerable advancement has been made in the generation of biliary organoids for modeling liver physiology and pathophysiology. Using biliary organoids, scientists have advanced our knowledge underlying the pathogenic roles of genetic susceptibility, dysregulated hepatobiliary development/structure, environmental factors, and dysregulated immune-inflammatory responses to an injury in BA. This review will summarize and discuss the derivation and the use of biliary organoids in the disease modeling and patho-mechanistic study of BA.
Collapse
|
2
|
Lin Q, Tam PKH, Tang CSM. Genetics of biliary atresia: Approaches, pathological insights and challenges. Semin Pediatr Surg 2024; 33:151477. [PMID: 39862688 DOI: 10.1016/j.sempedsurg.2025.151477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Biliary atresia (BA) is a severe neonatal cholestatic disorder marked by fibro-obliteration of the extrahepatic and intrahepatic bile ducts. It is the most common cause of pediatric end-stage liver disease and the leading indication for liver transplantation in children. There is significant heterogeneity in the etiology, involving various genetic and environmental factors such as viral infection, immune dysregulation and genetic predisposition to defective hepatobiliary development. In this review, we discuss the strategies to uncover the genetic factors underlying BA and highlight their associated molecular and pathological mechanisms, as well as the challenges faced in this area of research.
Collapse
Affiliation(s)
- Qiongfen Lin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Precision and Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao, China.
| | - Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China.
| |
Collapse
|
3
|
Kamp JC, Madadi-Sanjani O, Uecker M, Werlein C, Neubert L, Kübler JF, Obed M, Junge N, Welte T, Ruwisch J, Jonigk DD, Stolk J, Vieten G, Janciauskiene S. Amyloid precursor protein as a fibrosis marker in infants with biliary atresia. Pediatr Res 2024:10.1038/s41390-024-03582-w. [PMID: 39341941 DOI: 10.1038/s41390-024-03582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Biliary atresia (BA) is a rare condition of unknown origin in newborns with jaundice. In BA bile ducts are non-functional, causing neonatal cholestasis and following liver fibrosis and failure. METHODS This retrospective study included liver biopsies of 14 infants with BA aged [mean ± SD] 63 ± 23 days. Patients were grouped according to the clinical course (jaundice-free vs recurrent jaundice vs required liver transplantation or liver fibrosis (Ishak fibrosis score)) and followed for 1.61-5.64 years (mean 4.03). Transcriptome profiles were assessed using a panel of 768 fibrosis-specific genes, reanalyzed via qRT-PCR, and confirmed via immunostaining. Plasma from an additional 30 BA infants and 10 age-matched controls were used for amyloid precursor protein (APP) quantification by ELISA. RESULTS Different clinical outcome groups showed a homogeneous mRNA expression. Altered amyloid-metabolism-related gene expression was found between cases with Ishak fibrosis score greater than 4. Immunostaining confirmed a distinct presence of APP in the livers of all BA subjects. APP plasma levels were higher in BA than in age-matched controls and correlated with the histological fibrosis grade. CONCLUSIONS These results suggest that amyloidosis may contribute to BA and liver fibrosis, indicating that APP could serve as a potential liquid biomarker for these conditions. IMPACT Biliary atresia patients with higher fibrosis scores according to Ishak have higher hepatic expression of amyloid-related genes while amyloid precursor protein accumulates in the liver and increases in the circulation. After a recent study revealed beta-amyloid deposition as a mechanism potentially involved in biliary atresia, we were able to correlate amyloid-metabolism-related transcript levels as well as amyloid precursor protein tissue and plasma levels with the degree of hepatic fibrosis. These findings suggest that amyloid precursor protein is a fibrosis marker in infants with biliary atresia, reinforcing the role of amyloid metabolism in the pathogenesis of this serious disease.
Collapse
Affiliation(s)
- Jan C Kamp
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| | | | - Marie Uecker
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Christopher Werlein
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Joachim F Kübler
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Mikal Obed
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Norman Junge
- Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jannik Ruwisch
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Danny D Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Member of European Reference Network Lung, Section Alpha-1-Antitrypsin Deficiency, Leiden, The Netherlands
| | - Gertrud Vieten
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
4
|
Tidwell J, Wu GY. Heritable Chronic Cholestatic Liver Diseases: A Review. J Clin Transl Hepatol 2024; 12:726-738. [PMID: 39130622 PMCID: PMC11310751 DOI: 10.14218/jcth.2024.00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 08/13/2024] Open
Abstract
Chronic cholestasis due to heritable causes is usually diagnosed in childhood. However, many cases can present and survive into adulthood. The time course varies considerably depending on the underlying etiology. Laboratory data usually reveal elevated conjugated hyperbilirubinemia, alkaline phosphatase, and gamma-glutamyl transpeptidase. Patients may be asymptomatic; however, when present, the typical symptoms are pruritus, jaundice, fatigue, and alcoholic stools. The diagnostic methods and management required depend on the underlying etiology. The development of genome-wide associated studies has allowed the identification of specific genetic mutations related to the pathophysiology of cholestatic liver diseases. The aim of this review was to highlight the genetics, clinical pathophysiology, presentation, diagnosis, and treatment of heritable etiologies of chronic cholestatic liver disease.
Collapse
Affiliation(s)
- Jasmine Tidwell
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
- Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
5
|
Tam PKH, Wells RG, Tang CSM, Lui VCH, Hukkinen M, Luque CD, De Coppi P, Mack CL, Pakarinen M, Davenport M. Biliary atresia. Nat Rev Dis Primers 2024; 10:47. [PMID: 38992031 PMCID: PMC11956545 DOI: 10.1038/s41572-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Biliary atresia (BA) is a progressive inflammatory fibrosclerosing disease of the biliary system and a major cause of neonatal cholestasis. It affects 1:5,000-20,000 live births, with the highest incidence in Asia. The pathogenesis is still unknown, but emerging research suggests a role for ciliary dysfunction, redox stress and hypoxia. The study of the underlying mechanisms can be conceptualized along the likely prenatal timing of an initial insult and the distinction between the injury and prenatal and postnatal responses to injury. Although still speculative, these emerging concepts, new diagnostic tools and early diagnosis might enable neoadjuvant therapy (possibly aimed at oxidative stress) before a Kasai portoenterostomy (KPE). This is particularly important, as timely KPE restores bile flow in only 50-75% of patients of whom many subsequently develop cholangitis, portal hypertension and progressive fibrosis; 60-75% of patients require liver transplantation by the age of 18 years. Early diagnosis, multidisciplinary management, centralization of surgery and optimized interventions for complications after KPE lead to better survival. Postoperative corticosteroid use has shown benefits, whereas the role of other adjuvant therapies remains to be evaluated. Continued research to better understand disease mechanisms is necessary to develop innovative treatments, including adjuvant therapies targeting the immune response, regenerative medicine approaches and new clinical tests to improve patient outcomes.
Collapse
Affiliation(s)
- Paul K H Tam
- Medical Sciences Division, Macau University of Science and Technology, Macau, China.
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Rebecca G Wells
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clara S M Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent C H Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Maria Hukkinen
- Section of Paediatric Surgery, Paediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Carlos D Luque
- Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paolo De Coppi
- NIHR Biomedical Research Centre, Great Ormond Street Hospital for Children NHS Foundation Trust and Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cara L Mack
- Department of Paediatrics, Division of Paediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, USA
| | - Mikko Pakarinen
- Section of Paediatric Surgery, Paediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| |
Collapse
|
6
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Glessner JT, Ningappa MB, Ngo KA, Zahid M, So J, Higgs BW, Sleiman PMA, Narayanan T, Ranganathan S, March M, Prasadan K, Vaccaro C, Reyes-Mugica M, Velazquez J, Salgado CM, Ebrahimkhani MR, Schmitt L, Rajasundaram D, Paul M, Pellegrino R, Gittes GK, Li D, Wang X, Billings J, Squires R, Ashokkumar C, Sharif K, Kelly D, Dhawan A, Horslen S, Lo CW, Shin D, Subramaniam S, Hakonarson H, Sindhi R. Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes. J Hepatol 2023; 79:1385-1395. [PMID: 37572794 PMCID: PMC10729795 DOI: 10.1016/j.jhep.2023.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND & AIMS Biliary atresia (BA) is poorly understood and leads to liver transplantation (LT), with the requirement for and associated risks of lifelong immunosuppression, in most children. We performed a genome-wide association study (GWAS) to determine the genetic basis of BA. METHODS We performed a GWAS in 811 European BA cases treated with LT in US, Canadian and UK centers, and 4,654 genetically matched controls. Whole-genome sequencing of 100 cases evaluated synthetic association with rare variants. Functional studies included whole liver transcriptome analysis of 64 BA cases and perturbations in experimental models. RESULTS A GWAS of common single nucleotide polymorphisms (SNPs), i.e. allele frequencies >1%, identified intronic SNPs rs6446628 in AFAP1 with genome-wide significance (p = 3.93E-8) and rs34599046 in TUSC3 at sub-threshold genome-wide significance (p = 1.34E-7), both supported by credible peaks of neighboring SNPs. Like other previously reported BA-associated genes, AFAP1 and TUSC3 are ciliogenesis and planar polarity effectors (CPLANE). In gene-set-based GWAS, BA was associated with 6,005 SNPs in 102 CPLANE genes (p = 5.84E-15). Compared with non-CPLANE genes, more CPLANE genes harbored rare variants (allele frequency <1%) that were assigned Human Phenotype Ontology terms related to hepatobiliary anomalies by predictive algorithms, 87% vs. 40%, p <0.0001. Rare variants were present in multiple genes distinct from those with BA-associated common variants in most BA cases. AFAP1 and TUSC3 knockdown blocked ciliogenesis in mouse tracheal cells. Inhibition of ciliogenesis caused biliary dysgenesis in zebrafish. AFAP1 and TUSC3 were expressed in fetal liver organoids, as well as fetal and BA livers, but not in normal or disease-control livers. Integrative analysis of BA-associated variants and liver transcripts revealed abnormal vasculogenesis and epithelial tube formation, explaining portal vein anomalies that co-exist with BA. CONCLUSIONS BA is associated with polygenic susceptibility in CPLANE genes. Rare variants contribute to polygenic risk in vulnerable pathways via unique genes. IMPACT AND IMPLICATIONS Liver transplantation is needed to cure most children born with biliary atresia, a poorly understood rare disease. Transplant immunosuppression increases the likelihood of life-threatening infections and cancers. To improve care by preventing this disease and its progression to transplantation, we examined its genetic basis. We find that this disease is associated with both common and rare mutations in highly specialized genes which maintain normal communication and movement of cells, and their organization into bile ducts and blood vessels during early development of the human embryo. Because defects in these genes also cause other birth defects, our findings could lead to preventive strategies to lower the incidence of biliary atresia and potentially other birth defects.
Collapse
Affiliation(s)
- Joseph T Glessner
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mylarappa B Ningappa
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kim A Ngo
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, USA
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juhoon So
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon W Higgs
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tejaswini Narayanan
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, USA
| | - Sarangarajan Ranganathan
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael March
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krishna Prasadan
- Rangos Research Center Animal Imaging Core, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Courtney Vaccaro
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel Reyes-Mugica
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy Velazquez
- Department of Pathology, School of Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia M Salgado
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lori Schmitt
- Histology Core Laboratory Manager, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan Paul
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renata Pellegrino
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George K Gittes
- Surgeon-in-Chief Emeritus, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dong Li
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang Wang
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Billings
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Squires
- Pediatric Gastroenterology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Chethan Ashokkumar
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khalid Sharif
- Paediatric Liver Unit Including Intestinal Transplantation, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Deirdre Kelly
- Paediatric Liver Unit Including Intestinal Transplantation, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center and MowatLabs, NHS Foundation Trust, King's College Hospital, London, UK
| | - Simon Horslen
- Pediatric Gastroenterology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, and Nanoengineering, University of California, San Diego, San Diego, La Jolla, CA, USA.
| | - Hakon Hakonarson
- Divisions of Human Genetics and Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Lin Z, Tian Y, Chai C, Fu M, Wu Q, Tan L, Li L, Guan X, Wang Z, Zhao J, Wang H, Tong Y, Zhang Y, Zhang R. The association of immune-related genes and the potential role of IL10 with biliary atresia. Pediatr Res 2023; 94:1659-1666. [PMID: 37296215 DOI: 10.1038/s41390-023-02626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biliary atresia (BA) is a severe immune-related disease that is characterized by biliary obstruction and cholestasis. The etiology of BA is unclear, our aim was to explore the relationship between biliary tract inflammation and immune-related genes. METHODS We selected 14 SNPs in 13 immune-related genes and investigated their associations with BA by using a large case‒control cohort with a total of 503 cases and 1473 controls from southern China. RESULTS SNP rs1518111 in interleukin10 (IL10) was identified as associated with BA (P = 5.79E-03; OR: 0.80; 95% CI: 0.68-0.94). The epistatic effects of the following pairwise interactions among these SNPs were associated with BA: signal transducer and activator of transcription 4 (STAT4) and chemokine (C-X-C motif) ligand 3 (CXCL3); STAT4 and damage-regulated autophagy modulator1 (DRAM1); CXCL3 and RAD51 paralog B (RAD51B); and interferon gamma (IFNG) and interleukin26 (IL26). Furthermore, we explored the potential role of IL-10 in the pathogenesis of the neonatal mouse model of BA. IL-10 effectively prevented biliary epithelial cell injury and biliary obstruction in murine BA as well as inhibit the activation of BA-related immune cells. CONCLUSIONS In conclusion, this study provided strong evidence implicating IL10 as a susceptibility gene for BA in the southern Chinese population. IMPACT This study provided strong evidence implicating IL10 as a susceptibility gene for BA in the southern Chinese population. This study could infer that IL-10 may play a protective role in BA mouse model. We found that four SNPs (rs7574865, rs352038, rs4622329, and rs4902562) have genetic interactions.
Collapse
Affiliation(s)
- Zefeng Lin
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Tian
- Department of Anesthesiology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Chengwei Chai
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Fu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qi Wu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ledong Tan
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Le Li
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xisi Guan
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhe Wang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinglu Zhao
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hezhen Wang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanlu Tong
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Zhang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruizhong Zhang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Tamaoka S, Fukuda A, Nakabayashi K, Matsubara K, Ogata-Kawata H, Muranishi Y, Hata K, Kato-Fukui Y, Sakamoto S, Kasahara M, Fukami M. Rare sequence variants associated with the risk of non-syndromic biliary atresia. Hepatol Res 2023; 53:1134-1141. [PMID: 37491771 DOI: 10.1111/hepr.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
AIM The etiology of non-syndromic biliary atresia (BA) remains largely unknown. In this study, we performed genome-wide screening of genes associated with the risk of non-syndromic BA. METHODS We analyzed exome data of 15 Japanese patients with non-syndromic BA and 509 control individuals using an optimal sequence kernel association test (SKAT-O), a gene-based association study optimized for small-number subjects. Furthermore, we examined the frequencies of known BA-related single-nucleotide polymorphisms in the BA and control groups. RESULTS SKAT-O showed that rare damaging variants of MFHAS1, a ubiquitously expressed gene encoding a Toll-like receptor-associated protein, were more common in the BA group than in the control group (Bonferroni corrected p-value = 0.0097). Specifically, p.Val106Gly and p.Arg556Cys significantly accumulated in the patient group. These variants resided within functionally important domains. SKAT-O excluded the presence of other genes significantly associated with the disease risk. Of 60 known BA-associated single-nucleotide polymorphisms, only eight were identified in the BA group. In particular, p.Ile3421Met of MYO15A and p.Ala421Thr of THOC2 were more common in the BA group than in the control group. However, the significance of these two variants is questionable, because MYO15A has been linked to deafness, but not to BA, and the p.Ala421Thr of THOC2 represents a relatively common single-nucleotide polymorphism in Asia. CONCLUSIONS The results of this study indicate that rare damaging variants in MFHAS1 may constitute a risk factor for non-syndromic BA, whereas the contribution of other monogenic variants to the disease predisposition is limited.
Collapse
Affiliation(s)
- Satoshi Tamaoka
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Akinari Fukuda
- Center for Organ Transplantation, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuki Muranishi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuko Kato-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Center for Organ Transplantation, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Center for Organ Transplantation, National Center for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
10
|
Zheng Q, Li M, Chen L, Zhang C, Zhao Y, Liu G, Yang F, Zhan J. Potential therapeutic target of EGF on bile duct ligation model and biliary atresia children. Pediatr Res 2023; 94:1297-1307. [PMID: 37138025 DOI: 10.1038/s41390-023-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND The pathogenesis of liver fibrosis in biliary atresia (BA) is unclear. Epidermal growth factor (EGF) plays a vital role in liver fibrosis. This study aims to investigate the expression of EGF and the mechanisms of its pro-fibrotic effects in BA. METHODS EGF levels in serum and liver samples of BA and non-BA children were detected. Marker proteins of EGF signaling and epithelial-mesenchymal transition (EMT) in liver sections were evaluated. Effects of EGF on intrahepatic cells and the underlying mechanisms were explored in vitro. Bile duct ligation (BDL) mice with/without EGF antibody injection were used to verify the effects of EGF on liver fibrosis. RESULTS Serum levels and liver expression of EGF elevated in BA. Phosphorylated EGF receptor (p-EGFR) and extracellular regulated kinase 1/2 (p-ERK1/2) increased. In addition, EMT and proliferation of biliary epithelial cells were present in BA liver. In vitro, EGF induced EMT and proliferation of HIBEpic cells and promoted IL-8 expression in L-02 cells by phosphorylating ERK1/2. And EGF activated LX-2 cells. Furthermore, EGF antibody injection reduced p-ERK1/2 levels and alleviated liver fibrosis in BDL mice. CONCLUSION EGF is overexpressed in BA. It aggravates liver fibrosis through EGF/EGFR-ERK1/2 pathway, which may be a therapeutic target for BA. IMPACT The exact pathogenesis of liver fibrosis in BA is unknown, severely limiting the advancement of BA treatment strategies. This study revealed that serum and liver tissue levels of EGF were increased in BA, and its expression in liver tissues was correlated with the degree of liver fibrosis. EGF may promote EMT and proliferation of biliary epithelial cells and induce IL-8 overexpression in hepatocytes through EGF/EGFR-ERK1/2 signaling pathway. EGF can also activate HSCs in vitro. The EGF/EGFR-ERK1/2 pathway may be a potential therapeutic target for BA.
Collapse
Affiliation(s)
- Qipeng Zheng
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Mengdi Li
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Lingzhi Chen
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Cong Zhang
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Yilin Zhao
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Gengxin Liu
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Fang Yang
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Jianghua Zhan
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China.
| |
Collapse
|
11
|
Cui MM, Gong YM, Pan WH, Pei HY, Bai MR, Song HL, Han XR, Wu WJ, Yu WW, Gu BL, Cai W, Zhou Y, Chu X. Contribution of ADD3 and the HLA Genes to Biliary Atresia Risk in Chinese. Int J Mol Sci 2023; 24:14719. [PMID: 37834180 PMCID: PMC10572496 DOI: 10.3390/ijms241914719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Nonsyndromic biliary atresia (BA) is a rare polygenic disease, with autoimmunity, virus infection and inflammation thought to play roles in its pathogenesis. We conducted a genome-wide association study in 336 nonsyndromic BA infants and 8900 controls. Our results validated the association of rs17095355 in ADD3 with BA risk (odds ratio (OR) = 1.70, 95% confidence interval (95% CI) = 1.49-1.99; p = 4.07 × 10-11). An eQTL analysis revealed that the risk allele of rs17095355 was associated with increased expression of ADD3. Single-cell RNA-sequencing data and immunofluorescence analysis revealed that ADD3 was moderately expressed in cholangiocytes and weakly expressed in hepatocytes. Immuno-fluorescent staining showed abnormal deposition of ADD3 in the cytoplasm of BA hepatocytes. No ADD3 auto-antibody was observed in the plasma of BA infants. In the HLA gene region, no variants achieved genome-wide significance. HLA-DQB1 residue Ala57 is the most significant residue in the MHC region (OR = 1.44, 95% CI = 1.20-1.74; p = 1.23 × 10-4), and HLA-DQB1 was aberrantly expressed in the bile duct cells. GWAS stratified by cytomegalovirus (CMV) IgM status in 87 CMV IgM (+) BA cases versus 141 CMV IgM (-) BA cases did not yield genome-wide significant associations. These findings support the notion that common variants of ADD3 account for BA risk. The HLA genes might have a minimal role in the genetic predisposition of BA due to the weak association signal. CMV IgM (+) BA patients might not have different genetic risk factor profiles compared to CMV IgM (-) subtype.
Collapse
Affiliation(s)
- Meng-Meng Cui
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; (M.-M.C.); (Y.-M.G.); (W.-H.P.); (W.-J.W.); (W.C.)
- Shanghai Institute of Pediatric Research, Shanghai 200092, China; (H.-Y.P.); (M.-R.B.); (H.-L.S.); (X.-R.H.); (W.-W.Y.); (B.-L.G.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Yi-Ming Gong
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; (M.-M.C.); (Y.-M.G.); (W.-H.P.); (W.-J.W.); (W.C.)
| | - Wei-Hua Pan
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; (M.-M.C.); (Y.-M.G.); (W.-H.P.); (W.-J.W.); (W.C.)
| | - Hao-Yue Pei
- Shanghai Institute of Pediatric Research, Shanghai 200092, China; (H.-Y.P.); (M.-R.B.); (H.-L.S.); (X.-R.H.); (W.-W.Y.); (B.-L.G.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Mei-Rong Bai
- Shanghai Institute of Pediatric Research, Shanghai 200092, China; (H.-Y.P.); (M.-R.B.); (H.-L.S.); (X.-R.H.); (W.-W.Y.); (B.-L.G.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Huan-Lei Song
- Shanghai Institute of Pediatric Research, Shanghai 200092, China; (H.-Y.P.); (M.-R.B.); (H.-L.S.); (X.-R.H.); (W.-W.Y.); (B.-L.G.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Xin-Ru Han
- Shanghai Institute of Pediatric Research, Shanghai 200092, China; (H.-Y.P.); (M.-R.B.); (H.-L.S.); (X.-R.H.); (W.-W.Y.); (B.-L.G.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Wen-Jie Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; (M.-M.C.); (Y.-M.G.); (W.-H.P.); (W.-J.W.); (W.C.)
| | - Wen-Wen Yu
- Shanghai Institute of Pediatric Research, Shanghai 200092, China; (H.-Y.P.); (M.-R.B.); (H.-L.S.); (X.-R.H.); (W.-W.Y.); (B.-L.G.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Bei-Lin Gu
- Shanghai Institute of Pediatric Research, Shanghai 200092, China; (H.-Y.P.); (M.-R.B.); (H.-L.S.); (X.-R.H.); (W.-W.Y.); (B.-L.G.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; (M.-M.C.); (Y.-M.G.); (W.-H.P.); (W.-J.W.); (W.C.)
- Shanghai Institute of Pediatric Research, Shanghai 200092, China; (H.-Y.P.); (M.-R.B.); (H.-L.S.); (X.-R.H.); (W.-W.Y.); (B.-L.G.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; (M.-M.C.); (Y.-M.G.); (W.-H.P.); (W.-J.W.); (W.C.)
| | - Xun Chu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; (M.-M.C.); (Y.-M.G.); (W.-H.P.); (W.-J.W.); (W.C.)
- Shanghai Institute of Pediatric Research, Shanghai 200092, China; (H.-Y.P.); (M.-R.B.); (H.-L.S.); (X.-R.H.); (W.-W.Y.); (B.-L.G.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
12
|
Abstract
Biliary atresia (BA) is the most prevalent serious liver disease of infancy and childhood, and the principal indication for liver transplantation in pediatrics. BA is best considered as an idiopathic panbiliary cholangiopathy characterized by obstruction of bile flow and consequent cholestasis presenting during fetal and perinatal periods. While several etiologies have been proposed, each has significant drawbacks that have limited understanding of disease progression and the development of effective treatments. Recently, modern genetic analyses have uncovered gene variants contributing to BA, thereby shifting the paradigm for explaining the BA phenotype from an acquired etiology (e.g., virus, toxin) to one that results from genetically altered cholangiocyte development and function. Herein we review recently reported genetic contributions to BA, highlighting the enhanced representation of variants in biological pathways involving ciliary function, cytoskeletal structure, and inflammation. Finally, we blend these findings as a new framework for understanding the resultant BA phenotype as a developmental cholangiopathy.
Collapse
Affiliation(s)
- Dominick J Hellen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
13
|
Bai MR, Pei HY, Zhou Y, Song HL, Pan WH, Gong YM, Wu WJ, Yu WW, Cui MM, Gu BL, Chu X, Cai W. Association analysis and functional follow-up identified common variants of JAG1 accounting for risk to biliary atresia. Front Genet 2023; 14:1186882. [PMID: 37255715 PMCID: PMC10225652 DOI: 10.3389/fgene.2023.1186882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Background: Biliary atresia (BA) is a destructive, obliterative cholangiopathy characterized by progressive fibro-inflammatory disorder and obliteration of intra- and extrahepatic bile ducts. The Jagged1 (JAG1) gene mutations have been found in some isolated BA cases. We aim to explore the association of common variants in JAG1 with isolated BA risk in the Chinese Han population. Methods: We genotyped 31 tag single nucleotide polymorphisms covering the JAG1 gene region in 333 BA patients and 1,665 healthy controls from the Chinese population, and performed case-control association analysis. The expression patterns of JAG1 homologs were investigated in zebrafish embryos, and the roles of jag1a and jag1b in biliary development were examined by morpholino knockdown in zebrafish. Results: Single nucleotide polymorphisms rs6077861 [P Allelic = 1.74 × 10-4, odds ratio = 1.78, 95% confidence interval: 1.31-2.40] and rs3748478 (P Allelic = 5.77 × 10-4, odds ratio = 1.39, 95% confidence interval: 1.15-1.67) located in the intron region of JAG1 showed significant associations with BA susceptibility. The JAG1 homologs, jag1a and jag1b genes were expressed in the developing hepatobiliary duct of zebrafish, especially at 72 and 96 h postfertilization. Knockdown of both jag1a and jag1b led to poor biliary secretion, sparse intrahepatic bile duct network and smaller or no gallbladders compared with control embryos in the zebrafish model. Conclusion: Common genetic variants of JAG1 were associated with BA susceptibility. Knockdown of JAG1 homologs led to defective intrahepatic and extrahepatic bile ducts in zebrafish. These results suggest that JAG1 might be implicated in the etiology of BA.
Collapse
Affiliation(s)
- Mei-Rong Bai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Hao-Yue Pei
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huan-Lei Song
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei-Hua Pan
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Ming Gong
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Jie Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Wen Yu
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Meng-Meng Cui
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bei-Lin Gu
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xun Chu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
14
|
Muntean A, Davenport M. Biliary atresia & choledochal malformation--Embryological and anatomical considerations. Semin Pediatr Surg 2022; 31:151235. [PMID: 36442454 DOI: 10.1016/j.sempedsurg.2022.151235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The two main biliary pathologies in paediatric practice, biliary atresia and choledochal malformations (CM), have their origins within prenatal life. Nevertheless, the actual mechanisms remain elusive with many unanswered questions. The extrahepatic bile duct develops as a funnel-like structure emerging from the foregut from about 3-4 weeks of gestation into the mesenchyme of the septum transversum. The cranial elements of this contain hepatoblasts - the precursors to the two key cell lines that will become hepatocytes and biliary epithelial cells. The intrahepatic bile ducts develop separately and emerge from a complex process involving the ductal plate surrounding the in-growing portal venous system from about the 7-8th week of gestation. A developmental defect at some point(s) in this process may be the cause of at least some variants of BA - the Biliary Atresia Splenic Malformation syndrome particularly - though evidence in the more common isolated BA is much more circumstantial. Similarly, some types of choledochal malformation, specifically the cystic type of CM, are invariably present during prenatal life although again an actual aetiological mechanism remains elusive.
Collapse
Affiliation(s)
- Ancuta Muntean
- Deptartment of Paediatric Surgery, Kings College Hospital, London
| | - Mark Davenport
- Deptartment of Paediatric Surgery, Kings College Hospital, London.
| |
Collapse
|
15
|
Kotb MA, Kotb A, Talaat S, Shehata SM, El Dessouki N, ElHaddad AA, El Tagy G, Esmat H, Shehata S, Hashim M, Kotb HA, Zekry H, Abd Elkader HM, Kaddah S, Abd El Baky HE, Lotfi N. Congenital aflatoxicosis, mal-detoxification genomics & ontogeny trigger immune-mediated Kotb disease biliary atresia variant: SANRA compliant review. Medicine (Baltimore) 2022; 101:e30368. [PMID: 36181129 PMCID: PMC9524989 DOI: 10.1097/md.0000000000030368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biliary atresia (BA) is the most common indication for pediatric liver transplantation. We describe The BA variant: Kotb disease. Liver tissue in the Kotb disease BA is massively damaged by congenital aflatoxicosis resulting in inflammation, adhesions, fibrosis, bile duct proliferation, scarring, cholestasis, focal syncytial giant cell transformation, and typical immune response involving infiltration by CD4+, CD8+, CD68+, CD14+, neutrophil infiltration, neutrophil elastase spill, heavy loads of aflatoxin B1, accelerated cirrhosis, disruption of p53 and GSTPi, and have null glutathione S transferase M1 (GSTM1). All their mothers are heterozygous for GSTM1. This inability to detoxify aflatoxicosis results in progressive inflammatory adhesions and obliterative cholangiopathy early in life. The typical disruption of both p53 and GSTPi causes loss of fidelity of hepatic regeneration. Hence, regeneration in Kotb disease BA typically promotes accelerated cirrhosis. The immune response in Kotb disease BA is for damage control and initiation of regeneration, yet, this friendly fire incurs massive structural collateral damage. The Kotb disease BA is about actual ongoing hepatic entrapment of aflatoxins with lack of ability of safe disposal due to child detoxification-genomics disarray. The Kotb disease BA is a product of the interaction of persistent congenital aflatoxicosis, genetic lack of GSTM1 detoxification, ontogenically impaired activity of other hepatic detoxification, massive neutrophil-elastase, immune-induced damage, and disturbed regeneration. Ante-natal and neonatal screening for aflatoxicosis, avoiding cord milking, and stringent control of aflatoxicosis content of human, poultry and live-stock feeds might prove effective for prevention, prompt diagnosis and management based on our recent understanding of its patho-genomics.
Collapse
Affiliation(s)
- Magd A. Kotb
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
- *Correspondence: (e-mail: )
| | - Ahmed Kotb
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Sahar Talaat
- Department of Pathology, Faculty of Medicine, Cairo University, Egypt
| | - Sherif M. Shehata
- Department of Pediatric Surgery, Faculty of Medicine, Tanta University, Egypt
| | - Nabil El Dessouki
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed A. ElHaddad
- Department of Pediatric Surgery, Faculty of Medicine, Tanta University, Egypt
| | - Gamal El Tagy
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | - Haytham Esmat
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | - Sameh Shehata
- Department of Pediatric Surgery, Faculty of Medicine, Alexandria University, Egypt
| | - Mohamed Hashim
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Hanan A. Kotb
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Egypt
| | - Hanan Zekry
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | | | - Sherif Kaddah
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | | | - Nabil Lotfi
- Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
16
|
Pal N, Joy PS, Sergi CM. Biliary Atresia Animal Models: Is the Needle in a Haystack? Int J Mol Sci 2022; 23:7838. [PMID: 35887185 PMCID: PMC9324346 DOI: 10.3390/ijms23147838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) is a progressive fibro-obliterative process with a variable degree of inflammation involving the hepatobiliary system. Its consequences are incalculable for the patients, the affected families, relatives, and the healthcare system. Scientific communities have identified a rate of about 1 case per 10,000-20,000 live births, but the percentage may be higher, considering the late diagnoses. The etiology is heterogeneous. BA, which is considered in half of the causes leading to orthotopic liver transplantation, occurs in primates and non-primates. To consolidate any model, (1) more transport and cell membrane studies are needed to identify the exact mechanism of noxa-related hepatotoxicity; (2) an online platform may be key to share data from pilot projects and new techniques; and (3) the introduction of differentially expressed genes may be useful in investigating the liver metabolism to target the most intricate bilio-toxic effects of pharmaceutical drugs and toxins. As a challenge, such methodologies are still limited to very few centers, making the identification of highly functional animal models like finding a "needle in a haystack". This review compiles models from the haystack and hopes that a combinatorial search will eventually be the root for a successful pathway.
Collapse
Affiliation(s)
- Nutan Pal
- Jefferson Graduate School of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Parijat S. Joy
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Consolato M. Sergi
- Anatomic Pathology Division, Department of Laboratory Medicine and Pathology, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Lab. Medicine and Pathology, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
17
|
He L, Chung PHY, Lui VCH, Tang CSM, Tam PKH. Current Understanding in the Clinical Characteristics and Molecular Mechanisms in Different Subtypes of Biliary Atresia. Int J Mol Sci 2022; 23:ijms23094841. [PMID: 35563229 PMCID: PMC9103665 DOI: 10.3390/ijms23094841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
Biliary atresia is a severe obliterative cholangiopathy in early infancy that is by far the most common cause of surgical jaundice and the most common indicator for liver transplantation in children. With the advanced knowledge gained from different clinical trials and the development of research models, a more precise clinical classification of BA (i.e., isolated BA (IBA), cystic BA (CBA), syndromic BA (SBA), and cytomegalovirus-associated BA (CMVBA)) is proposed. Different BA subtypes have similar yet distinguishable clinical manifestations. The clinical and etiological heterogeneity leads to dramatically different prognoses; hence, treatment needs to be specific. In this study, we reviewed the clinical characteristics of different BA subtypes and revealed the molecular mechanisms of their developmental contributors. We aimed to highlight the differences among these various subtypes of BA which ultimately contribute to the development of a specific management protocol for each subtype.
Collapse
Affiliation(s)
- Lin He
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China;
| | - Patrick Ho Yu Chung
- Division of Paediatric Surgery, Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (V.C.H.L.); (C.S.M.T.); (P.K.H.T.)
- Correspondence: ; Tel.: +852-22554850; Fax: +852-28173155
| | - Vincent Chi Hang Lui
- Division of Paediatric Surgery, Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (V.C.H.L.); (C.S.M.T.); (P.K.H.T.)
| | - Clara Sze Man Tang
- Division of Paediatric Surgery, Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (V.C.H.L.); (C.S.M.T.); (P.K.H.T.)
| | - Paul Kwong Hang Tam
- Division of Paediatric Surgery, Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (V.C.H.L.); (C.S.M.T.); (P.K.H.T.)
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| |
Collapse
|
18
|
Sergi CM, Gilmour S. Biliary Atresia: A Complex Hepatobiliary Disease with Variable Gene Involvement, Diagnostic Procedures, and Prognosis. Diagnostics (Basel) 2022; 12:330. [PMID: 35204421 PMCID: PMC8870870 DOI: 10.3390/diagnostics12020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The diagnosis of biliary atresia is still terrifying at the 3rd decade of the 21st century. In a department of neonatal intensive care unit, parents and physicians face a challenge with a jaundiced baby, who may or may not have a surgically correctable hepatopathy. The approach has been systematically evaluated, but the etiology remains ambiguous. The study of families with recurrent biliary atresia has been undertaken at a molecular level. The primary interest with this disease is to identify the etiology and change the treatment from symptomatic to curative. The occurrence of this obstructive cholangio-hepatopathy in well-known genetic syndromes has suggested just coincidental finding, but the reality can be more intriguing because some of these diseases may have some interaction with the development of the intrahepatic biliary system. Several genes have been investigated thoroughly, including ADD3 and GPC1 shifting the interest from viruses to genetics. In this review, the intriguing complexities of this hepatobiliary disease are highlighted.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Stollery Children’s Hospital, Laboratory Medicine and Pathology, University Alberta Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Division of Anatomic Pathology, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Susan Gilmour
- Department of Pediatric Gastroenterology and Nutrition, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| |
Collapse
|
19
|
Quelhas P, Cerski C, Dos Santos JL. Update on Etiology and Pathogenesis of Biliary Atresia. Curr Pediatr Rev 2022; 19:48-67. [PMID: 35538816 DOI: 10.2174/1573396318666220510130259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/16/2022] [Accepted: 02/15/2022] [Indexed: 01/31/2023]
Abstract
Biliary atresia is a rare inflammatory sclerosing obstructive cholangiopathy that initiates in infancy as complete choledochal blockage and progresses to the involvement of intrahepatic biliary epithelium. Growing evidence shows that biliary atresia is not a single entity with a single etiology but a phenotype resulting from multifactorial events whose common path is obliterative cholangiopathy. The etiology of biliary atresia has been explained as resulting from genetic variants, toxins, viral infection, chronic inflammation or bile duct lesions mediated by autoimmunity, abnormalities in the development of the bile ducts, and defects in embryogenesis, abnormal fetal or prenatal circulation and susceptibility factors. It is increasingly evident that the genetic and epigenetic predisposition combined with the environmental factors to which the mother is exposed are potential triggers for biliary atresia. There is also an indication that a progressive thickening of the arterial middle layer occurs in this disease, suggestive of vascular remodeling and disappearance of the interlobular bile ducts. It is suggested that the hypoxia/ischemia process can affect portal structures in biliary atresia and is associated with both the extent of biliary proliferation and the thickening of the medial layer.
Collapse
Affiliation(s)
- Patrícia Quelhas
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Carlos Cerski
- Department of Pathology, University Federal Rio Grande do Sul, 90040-060, Porto Alegre, Brasil
| | - Jorge Luiz Dos Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
20
|
Wu LN, Zhu ZJ, Sun LY. Genetic Factors and Their Role in the Pathogenesis of Biliary Atresia. Front Pediatr 2022; 10:912154. [PMID: 35844731 PMCID: PMC9277099 DOI: 10.3389/fped.2022.912154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Biliary Atresia, a common basis for neonatal cholestasis and primary indication for Liver Transplantation, accounts for 60% of pediatric Liver Transplantations. While the pathogenesis of Biliary Atresia remains obscure, abnormalities within bile ducts and the liver, inflammation, fibrosis and cilia defects are thought to comprise the pathological basis for this condition. The findings of genetic variants in Biliary Atresia, such as Copy Number Variations and Single Nucleotide Polymorphism, are considered as essential factors in the development of this condition. In this review, we summarize and analyze these Biliary Atresia variants from a perspective of their pathological characteristics. In conclusion, such analyses may offer novel insights into the pathogenesis of Biliary Atresia and provide a foundation for future studies directed toward a better understanding and treatment of Biliary Atresia.
Collapse
Affiliation(s)
- Li-Na Wu
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Sun P, Xiao M, Chen H, Zhong Z, Jiang H, Feng X, Luo Z. A joint transcriptional regulatory network and protein activity inference analysis identifies clinically associated master regulators for biliary atresia. Front Pediatr 2022; 10:1050326. [PMID: 36440333 PMCID: PMC9691841 DOI: 10.3389/fped.2022.1050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Biliary atresia (BA) is a devastating cholangiopathy in neonate. Transcription factors (TFs), a type of master regulators in biological processes and diseases, have been implicated in pathogenesis of BA. However, a global view of TFs and how they link to clinical presentations remain explored. Here, we perform a joint transcriptional regulatory network and protein activity inference analysis in order to investigate transcription factor activity in BA. By integration of three independent human BA liver transcriptome datasets, we identify 22 common master regulators, with 14 activated- and 8 repressed TFs. Gene targets of activated TFs are enriched in biological processes of SMAD, NF-kappaB and TGF-beta, while those of repressed TFs are related to lipid metabolism. Mining the clinical association of TFs, we identify inflammation-, fibrosis- and survival associated TFs. In particular, ZNF14 is predictive of poor survival and advanced live fibrosis. Supporting this observation, ZNF14 is positively correlated with T helper cells, cholangiocytes and hepatic stellate cells. In sum, our analysis reveals key clinically associated master regulators for BA.
Collapse
Affiliation(s)
- Panpan Sun
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Manhuan Xiao
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhihai Zhong
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuyang Feng
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenhua Luo
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Lendahl U, Lui VCH, Chung PHY, Tam PKH. Biliary Atresia - emerging diagnostic and therapy opportunities. EBioMedicine 2021; 74:103689. [PMID: 34781099 PMCID: PMC8604670 DOI: 10.1016/j.ebiom.2021.103689] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Biliary Atresia is a devastating pediatric cholangiopathy affecting the bile ducts of the liver. In this review, we describe recent progress in the understanding of liver development with a focus on cholangiocyte differentiation and how use of technical platforms, including rodent, zebrafish and organoid models, advances our understanding of Biliary Atresia. This is followed by a description of potential pathomechanisms, such as autoimmune responses, inflammation, disturbed apical-basal cell polarity, primary cilia dysfunction as well as beta-amyloid accumulation. Finally, we describe current and emerging diagnostic opportunities and recent translation breakthroughs for Biliary Atresia in the area of emerging therapy development, including immunomodulation and organoid-based systems for liver and bile duct repair.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong.
| | - Vincent C H Lui
- Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong; Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Patrick H Y Chung
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Paul K H Tam
- Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong; Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Van Tung N, Lien NTK, Lan NN, Mai NTP, Yen PTH, Hoa NPA, Hoang NH. The role of p.Val444Ala variant in the ABCB11 gene and susceptibility to biliary atresia in Vietnamese patients. Medicine (Baltimore) 2021; 100:e28011. [PMID: 34964797 PMCID: PMC8615439 DOI: 10.1097/md.0000000000028011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Biliary atresia (BA) is the most serious type of obstructive cholangiopathy that occurs in infants. BA can be the cause of death in children under 2 years if untreated early. However, the etiology of the disease is not known. BA is considered to be the result of the destruction of the bile duct system including the accumulation of bile acids. The bile salt export pump, a transporter protein encoded by the ABCB11 gene, plays the main role in the exportation and accumulation of bile acids. The p.Val444Ala variant in this gene is known to be associated with many cholestatic diseases. However, to date no study have been performed to evaluate the association of this variant with susceptibility to the risk of BA. In this study, we aimed to identify the frequency of p.Val444Ala variant and the risk of BA in Vietnamese patients.The polymerase chain reaction (PCR)- restriction fragment length polymorphism method was used to determine the frequency of alleles c.1331T>C (p.Val444Ala, rs2287622) in the ABCB11 gene in 266 Vietnamese patients with BA and 150 healthy people. The gene segment containing the variant was amplified by PCR with specific primers, after that the PCR products were cut by HaeIII restriction enzyme and analyzed on agarose gel to determine the genotypes. The frequency of alleles was assessed statistically to determine the association between these alleles and the risk of disease in patients.In our study, the frequency of alleles c.1331T>C (p.Val444Ala, rs2287622) in the ABCB11 gene was investigated the first time in the patients with BA. The results showed that CC and TC genotypes were significantly different between BA patients and healthy people (P < .01), and the C allele was associated with an increased risk of BA (odds ratio = 2.47; 95% confidence interval: 1.84-3.32; P < .01). The initial results of clinical, biochemical, and genetic analysis in our study suggested that the p.Val444Ala variant in the ABCB11 gene may be a susceptibility factor for the disease in Vietnamese patients with BA. These results provided new insights into the role of this ABCB11 variant in the pathogenesis of BA.
Collapse
Affiliation(s)
- Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, Vietnam
| | - Nguyen Ngoc Lan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Vietnam
| | | | - Pham Thi Hai Yen
- Vietnam National Children's Hospital, Ministry of Health, Vietnam
| | | | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
| |
Collapse
|
24
|
Zhou JL, Zhao YZ, Wang SS, Chen MX, Zhou S, Chen C. RNA Splicing: A Versatile Regulatory Mechanism in Pediatric Liver Diseases. Front Mol Biosci 2021; 8:725308. [PMID: 34651015 PMCID: PMC8505697 DOI: 10.3389/fmolb.2021.725308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
With the development of high-throughput sequencing technology, the posttranscriptional mechanism of alternative splicing is becoming better understood. From decades of studies, alternative splicing has been shown to occur in multiple tissues, including the brain, heart, testis, skeletal muscle, and liver. This regulatory mechanism plays an important role in physiological functions in most liver diseases. Currently, due to the absence of symptoms, chronic pediatric liver diseases have a significant impact on public health. Furthermore, the progression of the disease is accelerated in children, leading to severe damage to their liver tissue if no precautions are taken. To this end, this review article summarizes the current knowledge of alternative splicing in pediatric liver diseases, paying special attention to liver damage in the child stage. The discussion of the regulatory role of splicing in liver diseases and its potential as a new therapeutic target is also included.
Collapse
Affiliation(s)
- Jian-Li Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yu-Zhen Zhao
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Shan-Shan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Chen Chen
- Department of Infectious Disease, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Lam WY, Tang CSM, So MT, Yue H, Hsu JS, Chung PHY, Nicholls JM, Yeung F, Lee CWD, Ngo DN, Nguyen PAH, Mitchison HM, Jenkins D, O'Callaghan C, Garcia-Barceló MM, Lee SL, Sham PC, Lui VCH, Tam PKH. Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary atresia patients implicates ciliary dysfunction as a novel disease mechanism. EBioMedicine 2021; 71:103530. [PMID: 34455394 PMCID: PMC8403738 DOI: 10.1016/j.ebiom.2021.103530] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Biliary atresia (BA) is the most common obstructive cholangiopathy in neonates, often progressing to end-stage cirrhosis. BA pathogenesis is believed to be multifactorial, but the genetic contribution, especially for nonsyndromic BA (common form: > 85%) remains poorly defined. Methods We conducted whole exome sequencing on 89 nonsyndromic BA trios to identify rare variants contributing to BA etiology. Functional evaluation using patients’ liver biopsies, human cell and zebrafish models were performed. Clinical impact on respiratory system was assessed with clinical evaluation, nasal nitric oxide (nNO), high speed video analysis and transmission electron microscopy. Findings We detected rare, deleterious de novo or biallelic variants in liver-expressed ciliary genes in 31.5% (28/89) of the BA patients. Burden test revealed 2.6-fold (odds ratio (OR) [95% confidence intervals (CI)]= 2.58 [1.15–6.07], adjusted p = 0.034) over-representation of rare, deleterious mutations in liver-expressed ciliary gene set in patients compared to controls. Functional analyses further demonstrated absence of cilia in the BA livers with KIF3B and TTC17 mutations, and knockdown of PCNT, KIF3B and TTC17 in human control fibroblasts and cholangiocytes resulted in reduced number of cilia. Additionally, CRISPR/Cas9-engineered zebrafish knockouts of KIF3B, PCNT and TTC17 displayed reduced biliary flow. Abnormally low level of nNO was detected in 80% (8/10) of BA patients carrying deleterious ciliary mutations, implicating the intrinsic ciliary defects. Interpretation Our findings support strong genetic susceptibility for nonsyndromic BA. Ciliary gene mutations leading to cholangiocyte cilia malformation and dysfunction could be a key biological mechanism in BA pathogenesis. Funding The study is supported by General Research Fund, HMRF Commissioned Paediatric Research at HKCH and Li Ka Shing Faculty of Medicine Enhanced New Staff Start-up Fund.
Collapse
Affiliation(s)
- Wai-Yee Lam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Clara Sze-Man Tang
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Man-Ting So
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - Haibing Yue
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - Jacob Shujui Hsu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ho-Yu Chung
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - John M Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fanny Yeung
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - Chun-Wai Davy Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | | | - Hannah M Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dagan Jenkins
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Christopher O'Callaghan
- Respiratory, Critical Care & Anaesthesia Section, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Maria-Mercè Garcia-Barceló
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - So-Lun Lee
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong SAR, China
| | - Pak-Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent Chi-Hang Lui
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Paul Kwong-Hang Tam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
26
|
Ningappa M, Adenuga M, Ngo KA, Mohamed N, Narayanan T, Prasadan K, Ashokkumar C, Das J, Schmitt L, Hartman H, Sehrawat A, Salgado CM, Reyes-Mugica M, Gittes GK, Lo CW, Subramaniam S, Sindhi R. Mechanisms of Impaired Lung Development and Ciliation in Mannosidase-1-Alpha-2 ( Man1a2) Mutants. Front Physiol 2021; 12:658518. [PMID: 34366878 PMCID: PMC8343402 DOI: 10.3389/fphys.2021.658518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Ciliary defects cause heterogenous phenotypes related to mutation burden which lead to impaired development. A previously reported homozygous deletion in the Man1a2 gene causes lethal respiratory failure in newborn pups and decreased lung ciliation compared with wild type (WT) pups. The effects of heterozygous mutation, and the potential for rescue are not known. PURPOSE We hypothesized that survival and lung ciliation, (a) would decrease progressively in Man1a2 +/- heterozygous and Man1a2 -/- null newborn pups compared with WT, and (b) could be enhanced by gestational treatment with N-Acetyl-cysteine (NAC), an antioxidant. METHODS Man1a2+/- adult mice were fed NAC or placebo from a week before breeding through gestation. Survival of newborn pups was monitored for 24 h. Lungs, liver and tails were harvested for morphology, genotyping, and transcriptional profiling. RESULTS Survival (p = 0.0001, Kaplan-Meier) and percent lung ciliation (p = 0.0001, ANOVA) measured by frequency of Arl13b+ respiratory epithelial cells decreased progressively, as hypothesized. Compared with placebo, gestational NAC treatment enhanced (a) lung ciliation in pups with each genotype, (b) survival in heterozygous pups (p = 0.017) but not in WT or null pups. Whole transcriptome of lung but not liver demonstrated patterns of up- and down-regulated genes that were identical in living heterozygous and WT pups, and completely opposite to those in dead heterozygous and null pups. Systems biology analysis enabled reconstruction of protein interaction networks that yielded functionally relevant modules and their interactions. In these networks, the mutant Man1a2 enzyme contributes to abnormal synthesis of proteins essential for lung development. The associated unfolded protein, hypoxic and oxidative stress responses can be mitigated with NAC. Comparisons with the developing human fetal lung transcriptome show that NAC likely restores normal vascular and epithelial tube morphogenesis in Man1a2 mutant mice. CONCLUSION Survival and lung ciliation in the Man1a2 mutant mouse, and its improvement with N-Acetyl cysteine is genotype-dependent. NAC-mediated rescue depends on the central role for oxidative and hypoxic stress in regulating ciliary function and organogenesis during development.
Collapse
Affiliation(s)
- Mylarappa Ningappa
- Hillman Center for Pediatric Transplantation, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Morayooluwa Adenuga
- Hillman Center for Pediatric Transplantation, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Kim A. Ngo
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, United States
| | - Nada Mohamed
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Tejaswini Narayanan
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, United States
| | - Krishna Prasadan
- Rangos Research Center Animal Imaging Core, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Chethan Ashokkumar
- Hillman Center for Pediatric Transplantation, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jishnu Das
- Hillman Center for Pediatric Transplantation, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
- Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lori Schmitt
- Histology Core Laboratory Manager, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Hannah Hartman
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Anuradha Sehrawat
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Claudia M. Salgado
- Division of Pediatric Pathology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Miguel Reyes-Mugica
- Division of Pediatric Pathology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - George K. Gittes
- Surgeon-in-Chief Emeritus, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, and Nanoengineering, University of California, San Diego, San Diego, La Jolla, CA, United States
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
27
|
Berg IC, Mohagheghian E, Habing K, Wang N, Underhill GH. Microtissue Geometry and Cell-Generated Forces Drive Patterning of Liver Progenitor Cell Differentiation in 3D. Adv Healthc Mater 2021; 10:e2100223. [PMID: 33890430 PMCID: PMC8222189 DOI: 10.1002/adhm.202100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/27/2021] [Indexed: 01/13/2023]
Abstract
3D microenvironments provide a unique opportunity to investigate the impact of intrinsic mechanical signaling on progenitor cell differentiation. Using a hydrogel-based microwell platform, arrays of 3D, multicellular microtissues in constrained geometries, including toroids and cylinders are produced. These generated distinct mechanical profiles to investigate the impact of geometry and stress on early liver progenitor cell fate using a model liver development system. Image segmentation allows the tracking of individual cell fate and the characterization of distinct patterning of hepatocytic makers to the outer shell of the microtissues, and the exclusion from the inner diameter surface of the toroids. Biliary markers are distributed throughout the interior regions of micropatterned tissues and are increased in toroidal tissues when compared with those in cylindrical tissues. Finite element models of predicted stress distributions, combined with mechanical measurements, demonstrates that intercellular tension correlates with increased hepatocytic fate, while compression correlates with decreased hepatocytic and increased biliary fate. This system, which integrates microfabrication, imaging, mechanical modeling, and quantitative analysis, demonstrates how microtissue geometry can drive patterning of mechanical stresses that regulate cell differentiation trajectories. This approach may serve as a platform for further investigation of signaling mechanisms in the liver and other developmental systems.
Collapse
Affiliation(s)
- Ian C. Berg
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Erfan Mohagheghian
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Krista Habing
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Ning Wang
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Gregory H. Underhill
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Zhou Y, Ji H, Xu Q, Zhang X, Cao X, Chen Y, Shao M, Wu Z, Zhang J, Lu C, Yang J, Shi Y, Bu H. Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver. Theranostics 2021; 11:7262-7275. [PMID: 34158849 PMCID: PMC8210598 DOI: 10.7150/thno.49116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Rationale: Congenital biliary atresia (BA) is a destructive obliterative cholangiopathy of neonates that affects both intrahepatic and extrahepatic bile ducts. However, the cause of BA is largely unknown. Methods: We explored the cell junctions and polarity complexes in early biopsy BA livers by immunofluorescence staining and western blot. Cdc42, as a key cell junction and polarity regulator, was found dramatically decreased in BA livers. Therefore, in order to investigate the role of Cdc42 in BA development, we constructed liver-specific and tamoxifen induced cholangiocyte-specific Cdc42 deleted transgenic mice. We further evaluated the role of bile acid in aggravating biliary damage in Cdc42 insufficient mouse liver. Results: We found a dramatic defect in the assembly of cell junctions and polarity complexes in both cholangiocytes and hepatocytes in BA livers. This defect was characterized by the disordered location of cell junction proteins, including ZO1, β-catenin, E-cadherin and claudin-3. Cdc42 and its active form, Cdc42-GTP, which serves as a small Rho GTPase to orchestrate the assembly of polarity complexes with Par6/Par3/αPKC, were substantially reduced in BA livers. Selective Cdc42 deficiency in fetal mouse cholangiocytes resulted in histological changes similar to those found in human BA livers, including obstruction in both the intra- and extrahepatic bile ducts, epithelial atrophy, and the disruption of cell junction and polarity complexes. A reduction in bile acids notably improved the histology and serological indices in Cdc42-mutant mice. Conclusion: Our results illustrate that BA is closely correlated with the impaired assembly of cell junction and polarity complexes in liver cells, which is likely caused by Cdc42 insufficiency and aggravated by bile acid corrosion.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongjie Ji
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyun Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyue Cao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwei Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingyang Shao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changli Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayin Yang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Bu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Monroe JD, Basheer F, Gibert Y. Xmrks the Spot: Fish Models for Investigating Epidermal Growth Factor Receptor Signaling in Cancer Research. Cells 2021; 10:1132. [PMID: 34067095 PMCID: PMC8150686 DOI: 10.3390/cells10051132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Studies conducted in several fish species, e.g., Xiphophorus hellerii (green swordtail) and Xiphophorus maculatus (southern platyfish) crosses, Oryzias latipes (medaka), and Danio rerio (zebrafish), have identified an oncogenic role for the receptor tyrosine kinase, Xmrk, a gene product closely related to the human epidermal growth factor receptor (EGFR), which is associated with a wide variety of pathological conditions, including cancer. Comparative analyses of Xmrk and EGFR signal transduction in melanoma have shown that both utilize STAT5 signaling to regulate apoptosis and cell proliferation, PI3K to modulate apoptosis, FAK to control migration, and the Ras/Raf/MEK/MAPK pathway to regulate cell survival, proliferation, and differentiation. Further, Xmrk and EGFR may also modulate similar chemokine, extracellular matrix, oxidative stress, and microRNA signaling pathways in melanoma. In hepatocellular carcinoma (HCC), Xmrk and EGFR signaling utilize STAT5 to regulate cell proliferation, and Xmrk may signal through PI3K and FasR to modulate apoptosis. At the same time, both activate the Ras/Raf/MEK/MAPK pathway to regulate cell proliferation and E-cadherin signaling. Xmrk models of melanoma have shown that inhibitors of PI3K and MEK have an anti-cancer effect, and in HCC, that the steroidal drug, adrenosterone, can prevent metastasis and recover E-cadherin expression, suggesting that fish Xmrk models can exploit similarities with EGFR signal transduction to identify and study new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jerry D. Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| | - Faiza Basheer
- School of Medicine, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| |
Collapse
|
30
|
Wang K, Xu Q, Zhong H. The Bruton's Tyrosine Kinase Inhibitor Ibrutinib Impairs the Vascular Development of Zebrafish Larvae. Front Pharmacol 2021; 11:625498. [PMID: 33519491 PMCID: PMC7838594 DOI: 10.3389/fphar.2020.625498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Ibrutinib is an orally bioavailable, irreversible selective Bruton’s tyrosine kinase inhibitor that has demonstrated impressive therapeutic effects in patients with B cell malignancies. However, adverse effects, such as bleeding and hypertension, are also reported, implying that studies on the toxicological effect of ibrutinib on living organisms are needed. Here, we have used zebrafish, a successful model organism for studying toxicology, to investigate the influence of ibrutinib during embryogenesis. We found that ibrutinib had potent toxicity on embryonic development, especially vascular development in zebrafish embryos. We also revealed that ibrutinib perturbed vascular formation by suppressing angiogenesis, rather than vasculogenesis. In addition, ibrutinib exposure led to the collapse of the vascular lumen, as well as reduced proliferation and enhanced apoptosis of vascular endothelial cells. Moreover, the expression of vascular development-related genes was also altered in ibrutinib-treated embryos. To our knowledge, this is the first study to describe the vascular toxicity of ibrutinib in an animal model, providing a theoretical basis for clinical safety guidelines in ibrutinib treatment.
Collapse
Affiliation(s)
- Kun Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qiushi Xu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Hanbing Zhong
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
31
|
Malik A, Thanekar U, Mourya R, Shivakumar P. Recent developments in etiology and disease modeling of biliary atresia: a narrative review. ACTA ACUST UNITED AC 2020; 3. [PMID: 33615212 PMCID: PMC7891552 DOI: 10.21037/dmr-20-97] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biliary atresia (BA) is a rare but severe fibroinflammatory disease of the extrahepatic and the intrahepatic bile ducts. Without prompt interventions, BA has fatal outcomes and is the most common indicator for pediatric liver transplantation (LTx). While the mainstay of treatment involves surgically correcting the extrahepatic biliary obstruction via Kasai hepato-portoenterostomy (KHPE), activation of a multitude of biological pathways and yet-to-be-determined etiology in BA continue to foster liver inflammation, cirrhosis and need for LTx. However, important caveats still exist in our understandings of the biliary pathophysiology, the rapidity of liver fibrosis and progression to liver failure, largely due to limited knowledge of the triggers of biliary injury and the inability to accurately model human BA. Although inconclusive, a large body of existing literature points to a potential viral infection in the early peri- or postnatal period as triggers of epithelial injury that perpetuates the downstream biliary disease. Further confounding this issue, are the lack of in-vivo and in-vitro models to efficiently recapitulate the cardinal features of BA, primarily liver fibrosis. To overcome these barriers in BA research, new directions in recent years have enabled (I) identification of additional triggers of biliary injury linked mostly to environmental toxins, (II) development of models to investigate liver fibrogenesis, and (III) translational research using patient-derived organoids. Here, we discuss recent advances that undoubtedly will stimulate future efforts investigating these new and exciting avenues towards mechanistic and drug discovery efforts and disease-preventive measures. The implications of these emerging scientific investigations and disease modeling in severe fibrosing cholangiopathies like BA are enormous and contribute substantially in our understandings of this rare but deadly disease. These findings are also expected to facilitate expeditious identification of translationally targetable pathways and bring us one step closer in treating an infant with BA, a population highly vulnerable to life-long liver related complications.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
32
|
Isaeva MK, Belova VA, Korostin DO, Degtyareva AV. Genetic aspects of biliary atresia etiology. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biliary atresia (BA) is a cholestatic disorder of infancy that is fatal if untreated. Despite years of study the etiology of BA remains unknown. Three etiopathogenic mechanisms may be involved, such as immune dysregulation, environmental factors and genetic susceptibility. Genetic predisposition is being actively studied. Candidate genes associated with BA in certain populations, genes affecting the cholangiocyte cilia function, as well as genes involved in stress responses have been identified. However, the long-term follow-up of twins with BA suggests that genotype is not of paramount importance for the disease development. Both epigenetic patterns and postzygotic somatic mutations may contribute to etiology of the disease. Recently, some evidence is being accumulated on the possible genetic predisposition to certain outcome of Kasai portoenterostomy performed in patients with BA. However, the presence of a number of factors contributing to the development of the disease makes it difficult to identify the genetic markers.
Collapse
Affiliation(s)
- MKh Isaeva
- Academician V. I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - VA Belova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - DO Korostin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - AV Degtyareva
- Academician V. I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
33
|
So J, Ningappa M, Glessner J, Min J, Ashokkumar C, Ranganathan S, Higgs BW, Li D, Sun Q, Schmitt L, Biery AC, Dobrowolski S, Trautz C, Fuhrman L, Schwartz MC, Klena NT, Fusco J, Prasadan K, Adenuga M, Mohamed N, Yan Q, Chen W, Horne W, Dhawan A, Sharif K, Kelly D, Squires RH, Gittes GK, Hakonarson H, Morell V, Lo C, Subramaniam S, Shin D, Sindhi R. Biliary-Atresia-Associated Mannosidase-1-Alpha-2 Gene Regulates Biliary and Ciliary Morphogenesis and Laterality. Front Physiol 2020; 11:538701. [PMID: 33192543 PMCID: PMC7662016 DOI: 10.3389/fphys.2020.538701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
Background/Aims Infectious and genetic factors are invoked, respectively in isolated biliary atresia (BA), or syndromic BA, with major extrahepatic anomalies. However, isolated BA is also associated with minor extrahepatic gut and cardiovascular anomalies and multiple susceptibility genes, suggesting common origins. Methods We investigated novel susceptibility genes with genome-wide association, targeted sequencing and tissue staining in BA requiring liver transplantation, independent of BA subtype. Candidate gene effects on morphogenesis, developmental pathways, and ciliogenesis, which regulates left-right patterning were investigated with zebrafish knockdown and mouse knockout models, mouse airway cell cultures, and liver transcriptome analysis. Results Single nucleotide polymorphisms in Mannosidase-1-α-2 (MAN1A2) were significantly associated with BA and with other polymorphisms known to affect MAN1A2 expression but were not differentially enriched in either BA subtype. In zebrafish embryos, man1a2 knockdown caused poor biliary network formation, ciliary dysgenesis in Kupffer’s vesicle, cardiac and liver heterotaxy, and dysregulated egfra and other developmental genes. Suboptimal man1a2 knockdown synergized with suboptimal EGFR signaling or suboptimal knockdown of the EGFR pathway gene, adenosine-ribosylation-factor-6, which had minimal effects individually, to reproduce biliary defects but not heterotaxy. In cultured mouse airway epithelium, Man1a2 knockdown arrested ciliary development and motility. Man1a2–/– mice, which experience respiratory failure, also demonstrated portal and bile ductular inflammation. Human BA liver and Man1a2–/– liver exhibited reduced Man1a2 expression and dysregulated ciliary genes, known to cause multisystem human laterality defects. Conclusion BA requiring transplantation associates with sequence variants in MAN1A2. man1a2 regulates laterality, in addition to hepatobiliary morphogenesis, by regulating ciliogenesis in zebrafish and mice, providing a novel developmental basis for multisystem defects in BA.
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mylarappa Ningappa
- Hillman Center for Pediatric Transplantation of the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Joseph Glessner
- Center for Applied Genomics of the Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jun Min
- Departments of Bioengineering, Cellular and Molecular Medicine, and Computer Science and Engineering, University of California San Diego, La Jolla, CA, United States
| | - Chethan Ashokkumar
- Hillman Center for Pediatric Transplantation of the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Sarangarajan Ranganathan
- Division of Pediatric Pathology, Department of Pathology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Brandon W Higgs
- Hillman Center for Pediatric Transplantation of the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Dong Li
- Center for Applied Genomics of the Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Qing Sun
- Hillman Center for Pediatric Transplantation of the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Lori Schmitt
- Histology Core Laboratory, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Amy C Biery
- Division of Pediatric Pathology, Department of Pathology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Steven Dobrowolski
- Division of Pediatric Pathology, Department of Pathology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Christine Trautz
- Hillman Center for Pediatric Transplantation of the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Leah Fuhrman
- Hillman Center for Pediatric Transplantation of the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | | | - Nikolai Thomas Klena
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Fusco
- Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Krishna Prasadan
- Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Morayooluwa Adenuga
- Hillman Center for Pediatric Transplantation of the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Nada Mohamed
- Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Qi Yan
- Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wei Chen
- Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Anil Dhawan
- Paediatric Liver, GI, and Nutrition, King's College Hospital, London, United Kingdom
| | - Khalid Sharif
- Children's Hospital of Birmingham, Birmingham, United Kingdom
| | - Deirdre Kelly
- Children's Hospital of Birmingham, Birmingham, United Kingdom
| | - Robert H Squires
- Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - George K Gittes
- Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics of the Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Victor Morell
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shankar Subramaniam
- Departments of Bioengineering, Cellular and Molecular Medicine, and Computer Science and Engineering, University of California San Diego, La Jolla, CA, United States
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation of the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
34
|
Min J, Ningappa M, So J, Shin D, Sindhi R, Subramaniam S. Systems Analysis of Biliary Atresia Through Integration of High-Throughput Biological Data. Front Physiol 2020; 11:966. [PMID: 32848883 PMCID: PMC7426509 DOI: 10.3389/fphys.2020.00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
Biliary atresia (BA), blockage of the proper bile flow due to loss of extrahepatic bile ducts, is a rare, complex disease of the liver and the bile ducts with unknown etiology. Despite ongoing investigations to understand its complex pathogenesis, BA remains the most common cause of liver failure requiring liver transplantation in children. To elucidate underlying mechanisms, we analyzed the different types of high-throughput genomic and transcriptomic data collected from the blood and liver tissue samples of children suffering from BA. Through use of a novel integrative approach, we identified potential biomarkers and over-represented biological functions and pathways to derive a comprehensive network showing the dysfunctional mechanisms associated with BA. One of the pathways highlighted in the integrative network was hypoxia signaling. Perturbation with hypoxia inducible factor activator, dimethyloxalylglycine, induced the biliary defects of BA in a zebrafish model, serving as a validation for our studies. Our approach enables a systems-level understanding of human BA biology that is highlighted by the interaction between key biological functions such as fibrosis, inflammation, immunity, hypoxia, and development.
Collapse
Affiliation(s)
- Jun Min
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Mylarappa Ningappa
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Departments of Cellular and Molecular Medicine and Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
35
|
Association of common variation in ADD3 and GPC1 with biliary atresia susceptibility. Aging (Albany NY) 2020; 12:7163-7182. [PMID: 32315284 PMCID: PMC7202506 DOI: 10.18632/aging.103067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
Biliary atresia (BA) is an idiopathic neonatal cholestatic disease. Recent genome-wide association study (GWAS) revealed that common variation of ADD3, GPC1, ARF6, and EFEMP1 gene was associated with BA susceptibility. We aimed to evaluate the association of these genes with BA in Chinese population. Twenty single nucleotide polymorphisms (SNPs) in these four genes were genotyped in 340 BA patients and 1,665 controls. Three SNPs in ADD3 were significantly associated with BA, and rs17095355 was the top SNP (PAllele = 3.23×10-6). Meta-analysis of published data and current data indicated that rs17095355 was associated with BA susceptibility in Asians and Caucasians. Three associated SNPs were expression quantitative trait loci (eQTL) for ADD3. Two GPC1 SNPs in high linkage disequilibrium (LD) showed nominal association with BA susceptibility (PAllele = 0.03 for rs6707262 and PAllele = 0.04 for rs6750380), and were eQTL of GPC1. Haplotype harboring these two SNPs almost reached the study-wide significance (P = 0.0035). No association for ARF6 and EFEMP1 was found with BA risk in the current population. Our study validated associations of ADD3 and GPC1 SNPs with BA risk in Chinese population and provided evidence of epistatic contributions of genetic factors to BA susceptibility.
Collapse
|
36
|
Rajagopalan R, Tsai EA, Grochowski CM, Kelly SM, Loomes KM, Spinner NB, Devoto M. Exome Sequencing in Individuals with Isolated Biliary Atresia. Sci Rep 2020; 10:2709. [PMID: 32066793 PMCID: PMC7026070 DOI: 10.1038/s41598-020-59379-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia (BA) is a severe pediatric liver disease resulting in necroinflammatory obliteration of the extrahepatic biliary tree. BA presents within the first few months of life as either an isolated finding or with additional syndromic features. The etiology of isolated BA is unknown, with evidence for infectious, environmental, and genetic risk factors described. However, to date, there are no definitive causal genes identified for isolated BA in humans, and the question of whether single gene defects play a major role remains open. We performed exome-sequencing in 101 North American patients of European descent with isolated BA (including 30 parent-child trios) and considered several experimental designs to identify potentially deleterious protein-altering variants that may be involved in the disease. In a case-only analysis, we did not identify genes with variants shared among more than two probands, and burden tests of rare variants using a case-case control design did not yield significant results. In the trio analysis of 30 simplex families (patient and parent trios), we identified 66 de novo variants in 66 genes including potentially deleterious variants in STIP1 and REV1. STIP1 is a co-chaperone for the heat-shock protein, HSP90, and has been shown to have diverse functions in yeast, flies and mammals, including stress-responses. REV1 is known to be a key player in DNA repair pathway and to interact with HSP90. In conclusion, our results do not support the hypothesis that a simple genetic model is responsible for the majority of cases of isolated BA. Our finding of de novo variants in genes linked to evolutionarily conserved stress responses (STIP1 and REV1) suggests that exploration of how genetic susceptibility and environmental exposure may interact to cause BA is warranted.
Collapse
Affiliation(s)
- Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ellen A Tsai
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Genomics and Computational Biology Graduate Group, The University of Pennsylvania, Philadelphia, PA, USA
- Genetic Epidemiology Group, Department of Translational Biology, Biogen, Cambridge, MA, USA
| | - Christopher M Grochowski
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Kelly
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Translational and Precision Medicine, University La Sapienza, Rome, Italy.
| |
Collapse
|
37
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
38
|
Lupo PJ, Mitchell LE, Jenkins MM. Genome-wide association studies of structural birth defects: A review and commentary. Birth Defects Res 2019; 111:1329-1342. [PMID: 31654503 DOI: 10.1002/bdr2.1606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND While there is strong evidence that genetic risk factors play an important role in the etiologies of structural birth defects, compared to other diseases, there have been relatively few genome-wide association studies (GWAS) of these conditions. We reviewed the current landscape of GWAS conducted for birth defects, noting novel insights, and future directions. METHODS This article reviews the literature with regard to GWAS of structural birth defects. Key defects included in this review include oral clefts, congenital heart defects (CHDs), biliary atresia, pyloric stenosis, hypospadias, craniosynostosis, and clubfoot. Additionally, other issues related to GWAS are considered, including the assessment of polygenic risk scores and issues related to genetic ancestry, as well as utilizing genome-wide single nucleotide polymorphism array data to evaluate gene-environment interactions and Mendelian randomization. RESULTS For some birth defects, including oral clefts and CHDs, several novel susceptibility loci have been identified and replicated through GWAS, including 8q24 for oral clefts, DGKK for hypospadias, and 4p16 for CHDs. Relatively common birth defects for which there are currently no published GWAS include neural tube defects, anotia/microtia, anophthalmia/microphthalmia, gastroschisis, and omphalocele. CONCLUSIONS Overall, GWAS have been successful in identifying several novel susceptibility genes and genomic regions for structural birth defects. These findings have provided new insights into the etiologies of these phenotypes. However, GWAS have been underutilized for understanding the genetic etiologies of several birth defects.
Collapse
Affiliation(s)
- Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
39
|
Lemaigre FP. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:1-22. [PMID: 31299162 DOI: 10.1146/annurev-pathmechdis-012418-013013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.
Collapse
Affiliation(s)
- Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Biliary atresia is a poorly understood deadly disease. Genetic predisposition factors are suspected albeit not firmly established. This review summarizes recent evidence of genetic alterations in biliary atresia. RECENT FINDINGS Whole-genome association studies in biliary atresia patients identified four distinct predisposition loci with four different genes potentially involved in the disease occurrence. Variations in these genes were searched for, but none were found in patients with biliary atresia suggesting complex mechanisms. SUMMARY Despite decades since its description and decades of intensive researches, cause of biliary atresia disease remains enigmatic. The inheritance of biliary atresia is not Mendelian. Genetic predisposition factor is one of the explored fields to explain biliary atresia pathogenicity. Biliary atresia has been associated with several inborn syndromes, chromosome anomalies, and gene polymorphisms in specific populations. Four predisposition loci encompassing genes relevant to the disease have been identified, but no pathogenic variations were found in biliary atresia patients. Few reported cases of isolated biliary atresia manifestation in the context of known genetic diseases suggest coincidental findings. Alternatives to classic genetic alterations are proposed to explain genetic predisposition in biliary atresia including noncoding and epigenetic factors. Biliary atresia is most likely related to complex traits making its genetic exploration challenging.
Collapse
|
41
|
Abstract
Cholestasis is a condition that impairs bile flow, resulting in retention of bile fluid in the liver. It may cause significant morbidity and mortality due to pruritus, malnutrition, and complications from portal hypertension secondary to biliary cirrhosis. The zebrafish (Danio rerio) has emerged as a valuable model organism for studying cholestasis that complements with the in vitro systems and rodent models. Its main advantages include conserved mechanisms of liver development and bile formation, rapid external development, ease of monitoring hepatobiliary morphology and function in live larvae, and accessibility to genetic and chemical manipulations. In this chapter, we provide an overview of the existing zebrafish models of cholestatic liver diseases. We discuss the strengths and limitations of using zebrafish to study cholestasis. We also provide step-by-step descriptions of the methodologies for analyzing cholestatic phenotypes in zebrafish.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
42
|
Wu Y, Liu T, Yuan Y, Zhang Z. Gene expression profile of TLR7 signaling pathway in the liver of rhesus rotavirus-induced murine biliary atresia. Biochem Biophys Res Commun 2018; 503:291-296. [PMID: 29909011 DOI: 10.1016/j.bbrc.2018.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE To identify genes potentially involved in the pathogenesis of bile duct obstruction in biliary atresia (BA). METHODS We used rhesus rotavirus (RRV) Balb/c mouse BA model to study BA. Liver and serum samples were harvested from BA and normal control (NC) groups at 1, 3, 5, 7, 10 and 14 days postinoculation. Serum total bilirubin (STB) and conjugated bilirubin (CB) were measured. Livers of each group at day 7 were used for a genome-wide expression analysis. Expression of TLR7 signaling pathway in liver was measured by immunohistochemical staining and western blotting, including expression of TLR7, activation of phosphorylated IRF7 and secretion of IFN-β, IL-1α and IL-6. Cell viability and survival rate after RRV infection were measured by using TLR7 knockdown human cholangiocarcinoma cell RBE. RESULTS STB was significantly elevated from day 5 postinoculation and CB was from day 7 postinoculation, while CK19 (the biomarker of biliary epithelial cells) expression by western blotting was decreased. By microarray analysis of liver tissues at day 7 postinoculation, TLR7 signaling pathway was up-regulated in BA mice. Based on the results of microarray analysis, the protein expression of TLR7 in the liver tissues of BA groups were found to be up-regulated from day 5 comparing to respective NC groups, although it was increased as pups aged in NC groups. And the level of p-IRF7 and secretion of cytokines were also statistically significant in BA groups. In vitro, TLR7 knockdown cell line showed less cellular proliferation and more susceptible to RRV infection. CONCLUSION By in vivo study, TLR7 signal pathway was up-regulated in BA group; by additional in vitro study, intact TLR7 signal pathway might have some protective abilities in BA pathogenesis.
Collapse
Affiliation(s)
- Yue Wu
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, 110004, PR China
| | - Tingzheng Liu
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, 110004, PR China
| | - Yuhang Yuan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China
| | - Zhibo Zhang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
43
|
Chen Y, Gilbert MA, Grochowski CM, McEldrew D, Llewellyn J, Waisbourd-Zinman O, Hakonarson H, Bailey-Wilson JE, Russo P, Wells RG, Loomes KM, Spinner NB, Devoto M. A genome-wide association study identifies a susceptibility locus for biliary atresia on 2p16.1 within the gene EFEMP1. PLoS Genet 2018; 14:e1007532. [PMID: 30102696 PMCID: PMC6107291 DOI: 10.1371/journal.pgen.1007532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 08/23/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) is a rare pediatric cholangiopathy characterized by fibrosclerosing obliteration of the extrahepatic bile ducts, leading to cholestasis, fibrosis, cirrhosis, and eventual liver failure. The etiology of BA remains unknown, although environmental, inflammatory, infectious, and genetic risk factors have been proposed. We performed a genome-wide association study (GWAS) in a European-American cohort of 343 isolated BA patients and 1716 controls to identify genetic loci associated with BA. A second GWAS was performed in an independent European-American cohort of 156 patients with BA and other extrahepatic anomalies and 212 controls to confirm the identified candidate BA-associated SNPs. Meta-analysis revealed three genome-wide significant BA-associated SNPs on 2p16.1 (rs10865291, rs6761893, and rs727878; P < 5 ×10-8), located within the fifth intron of the EFEMP1 gene, which encodes a secreted extracellular protein implicated in extracellular matrix remodeling, cell proliferation, and organogenesis. RNA expression analysis showed an increase in EFEMP1 transcripts from human liver specimens isolated from patients with either BA or other cholestatic diseases when compared to normal control liver samples. Immunohistochemistry demonstrated that EFEMP1 is expressed in cholangiocytes and vascular smooth muscle cells in liver specimens from patients with BA and other cholestatic diseases, but it is absent from cholangiocytes in normal control liver samples. Efemp1 transcripts had higher expression in cholangiocytes and portal fibroblasts as compared with other cell types in normal rat liver. The identification of a novel BA-associated locus, and implication of EFEMP1 as a new BA candidate susceptibility gene, could provide new insights to understanding the mechanisms underlying this severe pediatric disorder.
Collapse
Affiliation(s)
- Ying Chen
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Human Genetics, Department of Pediatrics, at The Children's Hospital of Philadelphia, and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Melissa A. Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher M. Grochowski
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Deborah McEldrew
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica Llewellyn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Orith Waisbourd-Zinman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics at The Children's Hospital of Philadelphia, and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Schneider Children's Medical Center of Israel, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hakon Hakonarson
- Division of Human Genetics, Department of Pediatrics, at The Children's Hospital of Philadelphia, and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Pierre Russo
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca G. Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kathleen M. Loomes
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics at The Children's Hospital of Philadelphia, and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marcella Devoto
- Division of Human Genetics, Department of Pediatrics, at The Children's Hospital of Philadelphia, and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
44
|
So J, Khaliq M, Evason K, Ninov N, Martin BL, Stainier DY, Shin D. Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating notch activity. Hepatology 2018; 67:2352-2366. [PMID: 29266316 PMCID: PMC5991997 DOI: 10.1002/hep.29752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/10/2017] [Accepted: 12/17/2017] [Indexed: 12/27/2022]
Abstract
UNLABELLED Malformations of the intrahepatic biliary structure cause cholestasis, a liver pathology that corresponds to poor bile flow, which leads to inflammation, fibrosis, and cirrhosis. Although the specification of biliary epithelial cells (BECs) that line the bile ducts is fairly well understood, the molecular mechanisms underlying intrahepatic biliary morphogenesis remain largely unknown. Wnt/β-catenin signaling plays multiple roles in liver biology; however, its role in intrahepatic biliary morphogenesis remains unclear. Using pharmacological and genetic tools that allow one to manipulate Wnt/β-catenin signaling, we show that in zebrafish both suppression and overactivation of Wnt/β-catenin signaling impaired intrahepatic biliary morphogenesis. Hepatocytes, but not BECs, exhibited Wnt/β-catenin activity; and the global suppression of Wnt/β-catenin signaling reduced Notch activity in BECs. Hepatocyte-specific suppression of Wnt/β-catenin signaling also reduced Notch activity in BECs, indicating a cell nonautonomous role for Wnt/β-catenin signaling in regulating hepatic Notch activity. Reducing Notch activity to the same level as that observed in Wnt-suppressed livers also impaired biliary morphogenesis. Intriguingly, expression of the Notch ligand genes jag1b and jag2b in hepatocytes was reduced in Wnt-suppressed livers and enhanced in Wnt-overactivated livers, revealing their regulation by Wnt/β-catenin signaling. Importantly, restoring Notch activity rescued the biliary defects observed in Wnt-suppressed livers. CONCLUSION Wnt/β-catenin signaling cell nonautonomously controls Notch activity in BECs by regulating the expression of Notch ligand genes in hepatocytes, thereby regulating biliary morphogenesis. (Hepatology 2018;67:2352-2366).
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mehwish Khaliq
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kimberley Evason
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Benjamin L. Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Didier Y.R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Donghun Shin
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA,Correspondence: Donghun Shin, 3501 5 Ave. #5063 Pittsburgh, PA 15260, 1-412-624-2144 (phone), 1-412-383-2211 (fax),
| |
Collapse
|
45
|
Pellat A, Vaquero J, Fouassier L. Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology 2018; 67:762-773. [PMID: 28671339 DOI: 10.1002/hep.29350] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/18/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
Abstract
The ErbB/HER family comprises four distinct tyrosine kinase receptors, EGFR/ErbB1/HER1, ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4, which trigger intracellular signals at the origin of essential cellular functions, including differentiation, proliferation, survival, and migration. Epithelial cells, named cholangiocytes, that line intrahepatic and extrahepatic bile ducts, contribute substantially to biliary secretory functions and bile transport. Although ErbB receptors have been widely studied in cholangiocarcinoma (CCA), a malignancy of the biliary tract, knowledge of these receptors in biliary epithelium physiology and in non-malignant cholangiopathies is far from complete. Current knowledge suggests a role for epidermal growth factor receptor (EGFR) in cholangiocyte specification and proliferation, and in hepatocyte transdifferentiation into cholangiocytes during liver regeneration to restore biliary epithelium integrity. High expression and activation of EGFR and/or ErbB2 were recently demonstrated in biliary lithiasis and primary sclerosing cholangitis, two cholangiopathies regarded as risk factors for CCA. In CCA, ErbB receptors are frequently overexpressed, leading to tumor progression and low prognosis. Anti-ErbB therapies were efficient only in preclinical trials and have suggested the existence of resistance mechanisms with the need to identify predictive factors of therapy response. This review aims to compile the current knowledge on the functions of ErbB receptors in physiology and physiopathology of the biliary epithelium. (Hepatology 2018;67:762-773).
Collapse
Affiliation(s)
- Anna Pellat
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Javier Vaquero
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,FONDATION ARC, Villejuif, France
| | - Laura Fouassier
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
46
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
47
|
Liu F, Zeng J, Zhu D, Zhang R, Xu X, Wang M, Zhang Y, Xia H, Feng Z. Association of polymorphism in the VEGFA gene 3'-UTR +936T/C with susceptibility to biliary atresia in a Southern Chinese Han population. J Clin Lab Anal 2017; 32:e22342. [PMID: 29251369 DOI: 10.1002/jcla.22342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biliary atresia (BA) is a neonatal disease characterized by chronic inflammation of the bile ducts and progressive aggravation of jaundice, but with a poor prognosis and high mortality. The etiology of BA is still uncertain which may be related to gene defect, virus infection, immune disorder, gene polymorphism. As a proinflammatory cytokine, VEGFA gene polymorphism (rs3025039) has been shown to be related to the pathogenesis of BA in Taiwanese population. METHODS We investigated the association between VEGFA gene polymorphism (rs3025039) and BA susceptibility using the largest case-control cohort, totaling with 506 BA patients and 1473 healthy controls in a Southern Chinese Han population. VEGFA gene polymorphism (rs3025039) was genotyped using the MassARRAY iPLEX Gold system (Sequenom). Odds ratios (OR) and 95% confidence intervals (CIs) were used to access the association between the VEGFA gene polymorphism (rs3025039) and BA risk. RESULTS No significant association was found between the VEGFA gene polymorphism (rs3025039) and BA risk in the overall analysis. CONCLUSION These results suggest that VEGFA gene polymorphism (rs3025039) may not be associated with the risk of BA in the Southern Chinese Han population.
Collapse
Affiliation(s)
- Fei Liu
- Southern Medical University, Guangzhou, Guangdong.,Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Jixiao Zeng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Deli Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xiaogang Xu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Mengmeng Wang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Huimin Xia
- Southern Medical University, Guangzhou, Guangdong.,Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Zhichun Feng
- Southern Medical University, Guangzhou, Guangdong.,Division of Neonatology, Affiliated BaYi Children's Hospital, Clinical Medical College in PLAArmy General Hospital, Southern Medical University, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| |
Collapse
|
48
|
Pham DH, Zhang C, Yin C. Using zebrafish to model liver diseases-Where do we stand? CURRENT PATHOBIOLOGY REPORTS 2017; 5:207-221. [PMID: 29098121 DOI: 10.1007/s40139-017-0141-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models. Recent Findings The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, such as polycystic liver disease, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration. Summary In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
49
|
Wang S, Miller SR, Ober EA, Sadler KC. Making It New Again: Insight Into Liver Development, Regeneration, and Disease From Zebrafish Research. Curr Top Dev Biol 2017; 124:161-195. [PMID: 28335859 PMCID: PMC6450094 DOI: 10.1016/bs.ctdb.2016.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adult liver of most vertebrates is predominantly comprised of hepatocytes. However, these cells must work in concert with biliary, stellate, vascular, and immune cells to accomplish the vast array of hepatic functions required for physiological homeostasis. Our understanding of liver development was accelerated as zebrafish emerged as an ideal vertebrate system to study embryogenesis. Through work in zebrafish and other models, it is now clear that the cells in the liver develop in a coordinated fashion during embryogenesis through a complex yet incompletely understood set of molecular guidelines. Zebrafish research has uncovered many key players that govern the acquisition of hepatic potential, cell fate, and plasticity. Although rare, some hepatobiliary diseases-especially biliary atresia-are caused by developmental defects; we discuss how research using zebrafish to study liver development has informed our understanding of and approaches to liver disease. The liver can be injured in response to an array of stressors including viral, mechanical/surgical, toxin-induced, immune-mediated, or inborn defects in metabolism. The liver has thus evolved the capacity to efficiently repair and regenerate. We discuss the emerging field of using zebrafish to study liver regeneration and highlight recent advances where zebrafish genetics and imaging approaches have provided novel insights into how cell plasticity contributes to liver regeneration.
Collapse
Affiliation(s)
- Shuang Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sophie R Miller
- Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Elke A Ober
- Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Kirsten C Sadler
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
50
|
Li J, Gao W, Zuo W, Liu X. Association between rs17095355 polymorphism on 10q24 and susceptibility to biliary atresia: a meta-analysis. J Matern Fetal Neonatal Med 2016; 30:1882-1886. [PMID: 27557278 DOI: 10.1080/14767058.2016.1228102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Recent studies have identified 10q24-rs17095355 as a susceptibility locus for biliary atresia (BA). To more precisely estimate the association between the rs17095355 polymorphism and BA risk, a meta-analysis was performed. METHODS A comprehensive search was conducted to examine all the eligible studies by electronic databases including Elsevier Science Direct, Pubmed, Google Scholar, China National Knowledge Infrastructure (CNKI) and Chinese Biomedical Literature (CBM) up to December 2015. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the strength of the association. RESULTS A total of 6 comparisons from 5 relevant studies involving 1000 patients and 3257 controls were included to analyze the association between rs17095355 and BA risk. The pooled OR for T allele of rs17095355 was 1.72 (95%CI 1.53-1.92, p < 0.01) in BA. Stratification by ethnicity indicated the degree of risk of rs17095355 with BA susceptibility was similar in populations of Asian origin. The pooled OR was 1.81 (95%CI 1.60-2.06, p < 0.01). CONCLUSIONS This meta-analysis confirms the association of rs17095355 polymorphism and BA development, especially in Asians. More original studies with large sample are needed to replicate this genetic association in different ethnic groups.
Collapse
Affiliation(s)
- Jing Li
- a Department of Public Health and General Medicine , Anhui University of Chinese Medicine , Hefei , Anhui , China and
| | - Wei Gao
- b Department of Pediatric Surgery , Anhui Provincial Children's Hospital , Hefei , Anhui , China
| | - Wei Zuo
- b Department of Pediatric Surgery , Anhui Provincial Children's Hospital , Hefei , Anhui , China
| | - Xiang Liu
- b Department of Pediatric Surgery , Anhui Provincial Children's Hospital , Hefei , Anhui , China
| |
Collapse
|