1
|
Zheng J, Wang Y, Zhou Y, Li Z, Yang L, Gao J, Zhu J. Augmentation of hepatocellular carcinoma malignancy by annexin A5 through modulation of invasion and angiogenesis. Scand J Gastroenterol 2024; 59:939-953. [PMID: 38742797 DOI: 10.1080/00365521.2024.2353103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to play a substantial role in cancer-related morbidity and mortality, largely owing to its pronounced tumor heterogeneity and propensity for recurrence. This underscores the pressing need for in-depth examination of its highly malignant mechanisms. Annexin A5 (ANXA5), recognized as a hallmark tumor protein, has emerged as a focal point of interest because of its ambiguous function and mechanism in HCC prognosis. This study aimed to provide a comprehensive understanding of the role of ANXA5 in the malignant progression of human HCC cells by employing an integrative approach that combines conventional experimental methods with RNA sequencing. METHODS Differences in ANXA5 expression between HCC tissues and corresponding nontumor tissues were evaluated using immunofluorescence (n = 25). Correlation analysis was subsequently performed to assess the association between ANXA5 expression and clinicopathological features (n = 65). The role of ANXA5 in human HCC cell lines with ANXA5 gene knockout and overexpression was explored in vitro using migration and invasion assays and Ki-67 indices and in vivo based on node mice xenograft model. A tube formation assay using human umbilical vein endothelial cells (HUVECs) was conducted to demonstrate the angiogenic effects of ANXA5 in HCC. Single-cell and bulk RNA sequencing was used to further investigate the underlying mechanisms involved. RESULTS This study revealed that ANXA5 is highly expressed in patients with HCC and correlates with poor prognosis. Assays for migration, invasion, and proliferation based on ANXA5 gene knockout and overexpression systems in human HCC cell lines have demonstrated that ANXA5 enhances HCC malignancy in vitro and in vivo. Tube formation assays of HUVECs indicated that ANXA5 facilitates angiogenesis and recruits endothelial cells to HCC cells. Single-cell and bulk RNA sequencing data analysis further confirmed that ANXA5 expression in HCC is associated with hepatocyte metabolism, immune response activation, and various oncogenic signaling pathways. CONCLUSIONS This study revealed a meaningful association between elevated ANXA5 expression in tumor tissues and an unfavorable prognosis in patients with HCC. In addition, ANXA5 promotes HCC malignancy by promoting invasion and angiogenesis. Thus, ANXA5 has emerged as a promising therapeutic target for HCC and has the potential to improve patient outcomes.
Collapse
Affiliation(s)
- Jiaxi Zheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Yuheng Zhou
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Li Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| |
Collapse
|
2
|
Annexin A5 as a targeting agent for cancer treatment. Cancer Lett 2022; 547:215857. [DOI: 10.1016/j.canlet.2022.215857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
|
3
|
Change of Apoptosis and Glucose Metabolism in Lung Cancer Xenografts during Cytotoxic and Anti-Angiogenic Therapy Assessed by Annexin V Based Optical Imaging and 18F-FDG-PET/CT. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6676337. [PMID: 34007252 PMCID: PMC8057888 DOI: 10.1155/2021/6676337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022]
Abstract
Methods For apoptosis imaging, the near-infrared probe Annexin Vivo750 was used in combination with fluorescence molecular tomography and microcomputed tomography (FMT/µCT). Glucose metabolism was assessed using 18F-FDG-PET/CT. Five groups of nude mice bearing lung cancer xenografts (A549) were investigated: (i) untreated controls and two groups after (ii) cytotoxic (carboplatin) or (iii) anti-angiogenic (sunitinib) treatment for four and nine days, respectively. Imaging data were validated by immunohistochemistry. Results In response to carboplatin treatment, an inverse relation was found between the change in glucose metabolism and apoptosis in A549 tumors. Annexin Vivo showed a continually increasing tumor accumulation, while the tumor-to-muscle ratio of 18F-FDG continuously decreased during therapy. Immunohistochemistry revealed a significantly higher tumor apoptosis (p=0.007) and a minor but not significant reduction in vessel density only at day 9 of carboplatin therapy. Interestingly, during anti-angiogenic treatment there was an early drop in the tumor-to-muscle ratio between days 0 and 4, followed by a subsequent minor decrease (18F-FDG tumor-to-muscle-ratio: 1.9 ± 0.4; day 4: 1.1 ± 0.2; day 9: 1.0 ± 0.2; p=0.021 and p=0.001, respectively). The accumulation of Annexin Vivo continuously increased over time (Annexin Vivo: untreated: 53.7 ± 36.4 nM; day 4: 87.2 ± 53.4 nM; day 9: 115.1 ± 103.7 nM) but failed to display the very prominent early induction of tumor apoptosis that was found by histology already at day 4 (TUNEL: p=0.0036) together with a decline in vessel density (CD31: p=0.004), followed by no significant changes thereafter. Conclusion Both molecular imaging approaches enable visualizing the effects of cytotoxic and anti-angiogenic therapy in A549 tumors. However, the early and strong tumor apoptosis induced by the anti-angiogenic agent sunitinib was more sensitively and reliably captured by monitoring of the glucose metabolism as compared to Annexin V-based apoptosis imaging.
Collapse
|
4
|
Dubash SR, Merchant S, Heinzmann K, Mauri F, Lavdas I, Inglese M, Kozlowski K, Rama N, Masrour N, Steel JF, Thornton A, Lim AK, Lewanski C, Cleator S, Coombes RC, Kenny L, Aboagye EO. Clinical translation of [ 18F]ICMT-11 for measuring chemotherapy-induced caspase 3/7 activation in breast and lung cancer. Eur J Nucl Med Mol Imaging 2018; 45:2285-2299. [PMID: 30259091 PMCID: PMC6208806 DOI: 10.1007/s00259-018-4098-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Effective anticancer therapy is thought to involve induction of tumour cell death through apoptosis and/or necrosis. [18F]ICMT-11, an isatin sulfonamide caspase-3/7-specific radiotracer, has been developed for PET imaging and shown to have favourable dosimetry, safety, and biodistribution. We report the translation of [18F]ICMT-11 PET to measure chemotherapy-induced caspase-3/7 activation in breast and lung cancer patients receiving first-line therapy. RESULTS Breast tumour SUVmax of [18F]ICMT-11 was low at baseline and unchanged following therapy. Measurement of M30/M60 cytokeratin-18 cleavage products showed that therapy was predominantly not apoptosis in nature. While increases in caspase-3 staining on breast histology were seen, post-treatment caspase-3 positivity values were only approximately 1%; this low level of caspase-3 could have limited sensitive detection by [18F]ICMT-11-PET. Fourteen out of 15 breast cancer patients responded to first-line chemotherapy (complete or partial response); one patient had stable disease. Four patients showed increases in regions of high tumour [18F]ICMT-11 intensity on voxel-wise analysis of tumour data (classed as PADS); response was not exclusive to patients with this phenotype. In patients with lung cancer, multi-parametric [18F]ICMT-11 PET and MRI (diffusion-weighted- and dynamic contrast enhanced-MRI) showed that PET changes were concordant with cell death in the absence of significant perfusion changes. CONCLUSION This study highlights the potential use of [18F]ICMT-11 PET as a promising candidate for non-invasive imaging of caspase3/7 activation, and the difficulties encountered in assessing early-treatment responses. We summarize that tumour response could occur in the absence of predominant chemotherapy-induced caspase-3/7 activation measured non-invasively across entire tumour lesions in patients with breast and lung cancer.
Collapse
Affiliation(s)
- S R Dubash
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - S Merchant
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - K Heinzmann
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - F Mauri
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - I Lavdas
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - M Inglese
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
- Department of Computer, Control and Management Engineering Antonio Ruberti, University of Rome, La Sapienza, Italy
| | - K Kozlowski
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - N Rama
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - N Masrour
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - J F Steel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - A Thornton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK
| | - A K Lim
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - C Lewanski
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - S Cleator
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - R C Coombes
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - Laura Kenny
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK.
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK.
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Rd, London, W120NN, UK.
| |
Collapse
|
5
|
Khan K, Rata M, Cunningham D, Koh DM, Tunariu N, Hahne JC, Vlachogiannis G, Hedayat S, Marchetti S, Lampis A, Damavandi MD, Lote H, Rana I, Williams A, Eccles SA, Fontana E, Collins D, Eltahir Z, Rao S, Watkins D, Starling N, Thomas J, Kalaitzaki E, Fotiadis N, Begum R, Bali M, Rugge M, Temple E, Fassan M, Chau I, Braconi C, Valeri N. Functional imaging and circulating biomarkers of response to regorafenib in treatment-refractory metastatic colorectal cancer patients in a prospective phase II study. Gut 2018; 67:1484-1492. [PMID: 28790159 PMCID: PMC6204951 DOI: 10.1136/gutjnl-2017-314178] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Regorafenib demonstrated efficacy in patients with metastatic colorectal cancer (mCRC). Lack of predictive biomarkers, potential toxicities and cost-effectiveness concerns highlight the unmet need for better patient selection. DESIGN Patients with RAS mutant mCRC with biopsiable metastases were enrolled in this phase II trial. Dynamic contrast-enhanced (DCE) MRI was acquired pretreatment and at day 15 post-treatment. Median values of volume transfer constant (Ktrans), enhancing fraction (EF) and their product KEF (summarised median values of Ktrans× EF) were generated. Circulating tumour (ct) DNA was collected monthly until progressive disease and tested for clonal RAS mutations by digital-droplet PCR. Tumour vasculature (CD-31) was scored by immunohistochemistry on 70 sequential tissue biopsies. RESULTS Twenty-seven patients with paired DCE-MRI scans were analysed. Median KEF decrease was 58.2%. Of the 23 patients with outcome data, >70% drop in KEF (6/23) was associated with higher disease control rate (p=0.048) measured by RECIST V. 1.1 at 2 months, improved progression-free survival (PFS) (HR 0.16 (95% CI 0.04 to 0.72), p=0.02), 4-month PFS (66.7% vs 23.5%) and overall survival (OS) (HR 0.08 (95% CI 0.01 to 0.63), p=0.02). KEF drop correlated with CD-31 reduction in sequential tissue biopsies (p=0.04). RAS mutant clones decay in ctDNA after 8 weeks of treatment was associated with better PFS (HR 0.21 (95% CI 0.06 to 0.71), p=0.01) and OS (HR 0.28 (95% CI 0.07-1.04), p=0.06). CONCLUSIONS Combining DCE-MRI and ctDNA predicts duration of anti-angiogenic response to regorafenib and may improve patient management with potential health/economic implications.
Collapse
Affiliation(s)
- Khurum Khan
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Mihaela Rata
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - David Cunningham
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Nina Tunariu
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - George Vlachogiannis
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Somaieh Hedayat
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Silvia Marchetti
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | | | - Hazel Lote
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Isma Rana
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Anja Williams
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Suzanne A Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London and Sutton, UK
| | - Elisa Fontana
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - David Collins
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Zakaria Eltahir
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Sheela Rao
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - David Watkins
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Naureen Starling
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Jan Thomas
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Eleftheria Kalaitzaki
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Department of Statistics, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Nicos Fotiadis
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Ruwaida Begum
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Maria Bali
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Massimo Rugge
- Department of Medicine (DIMED) and Surgical Pathology, University of Padua, Padua, Italy
| | - Eleanor Temple
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Matteo Fassan
- Department of Medicine (DIMED) and Surgical Pathology, University of Padua, Padua, Italy
| | - Ian Chau
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Chiara Braconi
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London and Sutton, UK
| | - Nicola Valeri
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| |
Collapse
|
6
|
Marelli G, Avigni R, Allavena P, Garlanda C, Mantovani A, Doni A, Erreni M. Optical in vivo imaging detection of preclinical models of gut tumors through the expression of integrin αVβ3. Oncotarget 2018; 9:31380-31396. [PMID: 30140377 PMCID: PMC6101137 DOI: 10.18632/oncotarget.25826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Optical imaging and Fluorescent Molecular Tomography (FMT) are becoming increasingly important for the study of different preclinical models of cancer, providing a non-invasive method for the evaluation of tumor progression in a relatively simple and fast way. Intestinal tumors, in particular colorectal cancer (CRC), represent a major cause of cancer-related death in Western countries: despite the presence of a number of preclinical models of intestinal carcinogenesis, there is a paucity of information about the possibility to detect intestinal tumors using fluorescent probes and optical in vivo imaging. Herein, we identify the detection of integrin αvβ3 by FMT and optical imaging as an effective approach to assess the occurrence and progression of intestinal carcinogenesis in genetic and chemically-induced mouse models. For this purpose, a commercially available probe (IntegriSense), recognizing integrin αvβ3, was injected in APC+/min mice bearing small intestinal adenomas or CRC: FMT analysis allowed a specific tumor detection, further confirmed by subsequent ex vivo imaging or conventional histology. In addition, IntegriSense detection by FMT allowed the longitudinal monitoring of tumor growth. Taken together, our data indicate the possibility to use integrin αvβ3 for the visualization of intestinal tumors in preclinical models.
Collapse
Affiliation(s)
- Giulia Marelli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Current address: Center for Molecular Oncology, Bart Cancer Institute, Queen Mary University of London, London, UK
| | - Roberta Avigni
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paola Allavena
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrea Doni
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Erreni
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
7
|
Smyth E, Khan K, Valeri N. Translational research and application of basic biology to clinical trial development in GI cancers. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:164. [PMID: 29911112 PMCID: PMC5985276 DOI: 10.21037/atm.2018.05.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
Cancers of the gastrointestinal tract have limited available treatments and are often associated with a poor prognosis. Clinical trials and translational work associated with these trials provide the opportunity to increase understanding of the mechanisms of sensitivity and resistance to cytotoxic chemotherapy and targeted therapy in these diseases. In this review we discuss the rationale for intensive translational work within the context of academic clinical trials and the successes and challenges which have been associated with translational work at our institution over the past number of years. We reflect on tissue, plasma and radiological biomarker work including a novel patient derived organoid programme and discuss the iterative application of previous results to next generation trial design.
Collapse
Affiliation(s)
- Elizabeth Smyth
- Department of Gastrointestinal Cancer and Lymphoma, Royal Marsden, UK
| | - Khurum Khan
- Department of Gastrointestinal Cancer and Lymphoma, Royal Marsden, UK
| | - Nicola Valeri
- Department of Gastrointestinal Cancer and Lymphoma, Royal Marsden, UK
- Gastrointestinal Cancer Biology and Genomics Team, Institute of Cancer Research, Royal Marsden, UK
| |
Collapse
|
8
|
Sun CB, Zhao AY, Ji S, Han XQ, Sun ZC, Wang MC, Zheng FC. Expression of annexin A5 in serum and tumor tissue of patients with colon cancer and its clinical significance. World J Gastroenterol 2017; 23:7168-7173. [PMID: 29093625 PMCID: PMC5656464 DOI: 10.3748/wjg.v23.i39.7168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the expression of annexin A5 in serum and tumor tissue of patients with colon cancer and to analyze its clinical significance.
METHODS Ninety-three patients with colon cancer treated at our hospital between February 2013 and March 2016 were included in an observation group, and 40 healthy individuals were included in a control group. Enzyme-linked immunosorbent assay was performed to determine the serum level of annexin A5, while immunohistochemistry was performed to determine the expression of annexin A5 in cancer tissues.
RESULTS The serum level of annexin A5 was 0.184 ± 0.043 ng/mL in the observation group, which was significantly higher than that in the control group (P < 0.05). Annexin A5 expression was detected in 79.31% of the patients with lymph node metastasis, which was significantly higher than that in patients without lymph node metastasis (P < 0.05). Moreover, annexin A5 expression was detected in 86.96% of the patients with stage III to IV disease, which was significantly higher than that in patients with stage I to II disease (P < 0.05). The serum level of annexin A5 was 0.215 ± 0.044 ng/mL in patients whose tumors were positive for annexin A5 expression, which was significantly higher than that in patients whose tumors were negative for annexin A5 expression (P < 0.05). The serum level of annexin A5 was correlated with annexin A5 expression in colon cancer tissues (r = 0.312, P < 0.05). When a cutoff value of > 0.148 ng/mL for serum level of annexin A5 was used in the diagnosis of colon cancer, the sensitivity was 83.90%, and the specificity was 57.50%.
CONCLUSION For patients with colon cancer, annexin A5 expression in cancer tissues is related to lymph node metastasis and tumor grade. Serum level of annexin A5 is related to annexin A5 expression in cancer tissues and is of diagnostic relevance.
Collapse
Affiliation(s)
- Chong-Bing Sun
- Department of General Surgery, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| | - Ai-Yan Zhao
- Department of General Surgery, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| | - Shuai Ji
- Department of Anorectal Surgery, Linqu People’s Hospital, Weifang 261000, Shandong Province, China
| | - Xiao-Qing Han
- Department of General Surgery, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| | - Zuo-Cheng Sun
- Department of General Surgery, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| | - Meng-Chun Wang
- Department of General Surgery, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| | - Fu-Chang Zheng
- Department of General Surgery, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| |
Collapse
|
9
|
Oborski MJ, Laymon CM, Lieberman FS, Qian Y, Drappatz J, Mountz JM. [ 18F]ML-10 PET: Initial Experience in Glioblastoma Multiforme Therapy Response Assessment. ACTA ACUST UNITED AC 2016; 2:317-324. [PMID: 30042965 PMCID: PMC6037921 DOI: 10.18383/j.tom.2016.00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to assess tumor apoptotic response to therapy could provide a direct and prompt measure of therapeutic efficacy. 18F-labeled 2-(5-fluoro-pentyl)-2-methyl-malonic acid ([18F]ML-10) is proposed as a positron emission tomography (PET) apoptosis imaging radiotracer. This manuscript presents initial experience using [18F]ML-10 PET to predict therapeutic response in 4 patients with human glioblastoma multiforme. Each patient underwent [18F]ML-10 PET and contrast-enhanced magnetic resonance imaging (MRI) before (baseline) and at ∼2–3 weeks after therapy (early-therapy assessment). All PET and MRI data were acquired using a Siemens BioGraph mMR integrated PET/MRI scanner. PET acquisitions commenced 120 minutes after injection with 10 mCi of [18F]ML-10. Changes in [18F]ML-10 standard uptake values were assessed in conjunction with MRI changes. Time-to-progression was used as the outcome measure. One patient, ML-10 #4, underwent additional sodium-23 (23Na) MRI at baseline and early-therapy assessment. Siemens 3 T Magnetom Tim Trio scanner with a dual-tuned (1H-23Na) head coil was used for 23Na-MRI, acquiring two three-dimensional single-quantum sodium images at two echo times (TE). Volume-fraction-weighted bound sodium concentration was quantified through pixel-by-pixel subtraction of the two single-quantum sodium images. In the cases presented, [18F]ML-10 uptake changes were not clearly related to time-to-progression. We suggest that this may be because the tumors are undergoing varying rates of cell death and growth. Acquisition of complementary measures of tumor cell proliferation or viability may aid in the interpretation of PET apoptosis imaging.
Collapse
Affiliation(s)
- Matthew J Oborski
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Charles M Laymon
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,PET Center, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frank S Lieberman
- Department of Neurology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Yongxian Qian
- MR Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jan Drappatz
- Department of Neurology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - James M Mountz
- PET Center, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
The interaction of sorafenib and regorafenib with membranes is modulated by their lipid composition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2871-2881. [PMID: 27581086 DOI: 10.1016/j.bbamem.2016.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/29/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022]
Abstract
Sorafenib and regorafenib are small-molecule kinase inhibitors approved for the treatment of locally recurrent or metastatic, progressive, differentiated thyroid carcinoma, renal cell carcinoma, and hepatocellular carcinoma (sorafenib) and of colorectal cancer (regorafenib). As of now, the mechanisms, which are responsible for their antitumor activities, are not completely understood. Given the lipophilic nature of the molecules, it can be hypothesized that the pharmacological impact is mediated by the interaction with cellular membranes as it is true for many pharmacologically active molecules. However, an interaction of sorafenib or regorafenib with lipid membranes has not yet been investigated in detail. Here, we characterized the interaction of both drugs with lipid membranes by applying a variety of biophysical approaches including nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that sorafenib and regorafenib bind to lipid membranes by inserting into the lipid-water interface of the bilayer. This membrane embedding causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. One approach shows that the extent of the effects depends on the membrane lipid composition underlining a particular role of phosphatidylcholine and cholesterol. Our data for the first time characterize the impact of sorafenib and regorafenib on the lipid membrane structure and dynamics, which may contribute to a better understanding of their effectiveness in the treatment of malignancies as well as of their side effects.
Collapse
|