1
|
Kumari R, Lindgren C, Kumar R, Forsgren N, Andersson CD, Ekström F, Linusson A. Enzyme Dynamics Determine the Potency and Selectivity of Inhibitors Targeting Disease-Transmitting Mosquitoes. ACS Infect Dis 2024; 10:3664-3680. [PMID: 39291389 PMCID: PMC11474975 DOI: 10.1021/acsinfecdis.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Vector control of mosquitoes with insecticides is an important tool for preventing the spread of mosquito-borne diseases including malaria, dengue, chikungunya, and Zika. Development of active ingredients for insecticides are urgently needed because existing agents exhibit off-target toxicity and are subject to increasing resistance. We therefore seek to develop noncovalent inhibitors of the validated insecticidal target acetylcholinesterase 1 (AChE1) from mosquitoes. Here we use molecular dynamics simulations to identify structural properties essential for the potency of reversible inhibitors targeting AChE1 from Anopheles gambiae (AgAChE1), the malaria-transmitting mosquito, and for selectivity relative to the vertebrate Mus musculus AChE (mAChE). We show that the collective motions of apo AgAChE1 and mAChE differ, with AgAChE1 exhibiting less dynamic movement. Opening and closing of the gorge, which regulates access to the catalytic triad, is enabled by different mechanisms in the two species, which could be linked to their differing amino acid sequences. Inhibitor binding reduced the overall magnitude of dynamics of AChE. In particular, more potent inhibitors reduced the flexibility of the Ω loop at the entrance of the gorge. The selectivity of inhibitors for AgAChE1 over mAChE derives from the positioning of the α-helix lining the binding gorge. Our findings emphasize the need to consider dynamics when developing inhibitors targeting this enzyme and highlight factors needed to create potent and selective AgAChE1 inhibitors that could serve as active ingredients to combat disease-transmitting mosquitoes.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department
of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Rajendra Kumar
- Department
of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | - Nina Forsgren
- CBRN
Defense and Security, Swedish Defense Research
Agency, Umeå SE-90621, Sweden
| | | | - Fredrik Ekström
- CBRN
Defense and Security, Swedish Defense Research
Agency, Umeå SE-90621, Sweden
| | - Anna Linusson
- Department
of Chemistry, Umeå University, Umeå SE-90187, Sweden
| |
Collapse
|
2
|
Ribeiro V, Bastos JK, Estep AS, Meepagala KM. Larvicidal Activity of Constituents from the Main Brazilian Propolis Types: Green, Red, and Brown against Aedes aegypti. ACS OMEGA 2024; 9:35560-35566. [PMID: 39184470 PMCID: PMC11339981 DOI: 10.1021/acsomega.4c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
In search of environmentally benign and mammalian-friendly mosquito-mitigating compounds, we conducted an investigation into the constituents isolated from Brazilian red, brown, and green propolis. Additionally, we synthetically modified active constituents to explore the role of lipophilicity in enhancing their larvicidal activity. Honeybees collect plant resins from their habitats, mix them with saliva, and utilize them to seal their beehives. The constituents present in propolis exhibit a unique composition specific to the geographical location and the fauna of the region. As part of the plant's natural defense mechanism, propolis compounds demonstrate antibacterial, insecticidal, and phytotoxic properties. Given that several insecticides target the enzyme acetylcholinesterase, we conducted in silico studies to examine the interactions between propolis compounds and acetylcholinesterase through molecular docking. In this study, we present the mosquito larvicidal activities of propolis constituents.
Collapse
Affiliation(s)
- Victor
P. Ribeiro
- Agricultural
Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Jairo K. Bastos
- School
of Pharmaceutical Sciences of Ribeirão Preto − University
of São Paulo, Av. do Café, Ribeirão Preto 14040-930, Brazil
| | - Alden S. Estep
- USDA-ARS,
Mosquito and Fly Research Unit, 1600 S.W. 23rd Drive, Gainesville, Florida 32608, United States
| | - Kumudini M. Meepagala
- Agricultural
Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| |
Collapse
|
3
|
Spadar A, Collins E, Messenger LA, Clark TG, Campino S. Uncovering the genetic diversity in Aedes aegypti insecticide resistance genes through global comparative genomics. Sci Rep 2024; 14:13447. [PMID: 38862628 PMCID: PMC11166649 DOI: 10.1038/s41598-024-64007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.
Collapse
Affiliation(s)
- Anton Spadar
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Emma Collins
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
- Parasitology and Vector Biology Laboratory (UNLV PARAVEC Lab), School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
4
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
5
|
Vidal-Albalat A, Kindahl T, Rajeshwari R, Lindgren C, Forsgren N, Kitur S, Tengo LS, Ekström F, Kamau L, Linusson A. Structure-Activity Relationships Reveal Beneficial Selectivity Profiles of Inhibitors Targeting Acetylcholinesterase of Disease-Transmitting Mosquitoes. J Med Chem 2023; 66:6333-6353. [PMID: 37094110 PMCID: PMC10184127 DOI: 10.1021/acs.jmedchem.3c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Insecticide resistance jeopardizes the prevention of infectious diseases such as malaria and dengue fever by vector control of disease-transmitting mosquitoes. Effective new insecticidal compounds with minimal adverse effects on humans and the environment are therefore urgently needed. Here, we explore noncovalent inhibitors of the well-validated insecticidal target acetylcholinesterase (AChE) based on a 4-thiazolidinone scaffold. The 4-thiazolidinones inhibit AChE1 from the mosquitoes Anopheles gambiae and Aedes aegypti at low micromolar concentrations. Their selectivity depends primarily on the substitution pattern of the phenyl ring; halogen substituents have complex effects. The compounds also feature a pendant aliphatic amine that was important for activity; little variation of this group is tolerated. Molecular docking studies suggested that the tight selectivity profiles of these compounds are due to competition between two binding sites. Three 4-thiazolidinones tested for in vivo insecticidal activity had similar effects on disease-transmitting mosquitoes despite a 10-fold difference in their in vitro activity.
Collapse
Affiliation(s)
| | - Tomas Kindahl
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | | | | | - Nina Forsgren
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | - Stanley Kitur
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Laura Sela Tengo
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Fredrik Ekström
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Anna Linusson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
6
|
Rants’o TA, van Greunen DG, van der Westhuizen CJ, Riley DL, Panayides JL, Koekemoer LL, van Zyl RL. The in silico and in vitro analysis of donepezil derivatives for Anopheles acetylcholinesterase inhibition. PLoS One 2022; 17:e0277363. [PMID: 36350894 PMCID: PMC9645637 DOI: 10.1371/journal.pone.0277363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Current studies on Anopheles anticholinesterase insecticides are focusing on identifying agents with high selectivity towards Anopheles over mammalian targets. Acetylcholinesterase (AChE) from electric eel is often used as the bioequivalent enzyme to study ligands designed for activity and inhibition in human. In this study, previously identified derivatives of a potent AChE, donepezil, that have exhibited low activity on electric eel AChE were assessed for potential AChE-based larvicidal effects on four African malaria vectors; An. funestus, An. arabiensis, An. gambiae and An. coluzzii. This led to the identification of four larvicidal agents with a lead molecule, 1-benzyl-N-(thiazol-2-yl) piperidine-4-carboxamide 2 showing selectivity for An. arabiensis as a larvicidal AChE agent. Differential activities of this molecule on An. arabiensis and electric eel AChE targets were studied through molecular modelling. Homology modelling was used to generate a three-dimensional structure of the An. arabiensis AChE for this binding assay. The conformation of this molecule and corresponding interactions with the AChE catalytic site was markedly different between the two targets. Assessment of the differences between the AChE binding sites from electric eel, human and Anopheles revealed that the electric eel and human AChE proteins were very similar. In contrast, Anopheles AChE had a smaller cysteine residue in place of bulky phenylalanine group at the entrance to the catalytic site, and a smaller aspartic acid residue at the base of the active site gorge, in place of the bulky tyrosine residues. Results from this study suggest that this difference affects the ligand orientation and corresponding interactions at the catalytic site. The lead molecule 2 also formed more favourable interactions with An. arabiensis AChE model than other Anopheles AChE targets, possibly explaining the observed selectivity among other assessed Anopheles species. This study suggests that 1-benzyl-N-(thiazol-2-yl) piperidine-4-carboxamide 2 may be a lead compound for designing novel insecticides against Anopheles vectors with reduced toxic potential on humans.
Collapse
Affiliation(s)
- Thankhoe A. Rants’o
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Divan G. van Greunen
- Department of Chemistry, Natural and Agricultural Sciences, University of Pretoria, Tshwane, South Africa
| | - C. Johan van der Westhuizen
- Department of Chemistry, Natural and Agricultural Sciences, University of Pretoria, Tshwane, South Africa
- Pharmaceutical Technologies, CSIR Future Production: Chemicals, Tshwane, South Africa
| | - Darren L. Riley
- Department of Chemistry, Natural and Agricultural Sciences, University of Pretoria, Tshwane, South Africa
| | - Jenny-Lee Panayides
- Pharmaceutical Technologies, CSIR Future Production: Chemicals, Tshwane, South Africa
| | - Lizette L. Koekemoer
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Robyn L. van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Hepnarova V, Hrabinova M, Muckova L, Kucera T, Schmidt M, Dolezal R, Gorecki L, Hrabcova V, Korabecny J, Mezeiova E, Jun D, Pejchal J. Non-covalent acetylcholinesterase inhibitors: In vitro screening and molecular modeling for novel selective insecticides. Toxicol In Vitro 2022; 85:105463. [PMID: 36041654 DOI: 10.1016/j.tiv.2022.105463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Insecticides represent the most crucial element in the integrated management approach to malaria and other vector-borne diseases. The evolution of insect resistance to long-used substances and the toxicity of organophosphates (OPs) and carbamates are the main factors contributing to the development of new, environmentally safe pesticides. In our work, fourteen compounds of 7-methoxytacrine-tacrine heterodimers were tested for their insecticidal effect. Compounds were evaluated in vitro on insect acetylcholinesterase from Anopheles gambiae (AgAChE) and Musca domestica (MdAChE). The evaluation was executed in parallel with testing on human erythrocyte acetylcholinesterase (HssAChE) and human butyrylcholinesterase (HssBChE) using a modified Ellman's method. Compound efficacy was determined as IC50 values for the respective enzymes and selectivity indexes were expressed to compare the interspecies selectivity. Docking studies were performed to predict the binding modes of selected compounds. K1328 and K1329 provided high HssAChE/AgAChE selectivity outperforming standard pesticides (carbofuran and bendiocarb), and thus can be considered as suitable lead structure for novel anticholinesterase insecticides.
Collapse
Affiliation(s)
- Vendula Hepnarova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Lubica Muckova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- University of Defence, Faculty of Military Health Sciences, Department of Military Medical Service Organization and Management, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Monika Schmidt
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Veronika Hrabcova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Daniel Jun
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Bezerra França S, Carine Barros de Lima L, Rychard da Silva Cunha C, Santos Anunciação D, Ferreira da Silva-Júnior E, Ester de Sá Barreto Barros M, José da Paz Lima D. Larvicidal activity and in silico studies of cinnamic acid derivatives against Aedes aegypti (Diptera: Culicidae). Bioorg Med Chem 2021; 44:116299. [PMID: 34225166 DOI: 10.1016/j.bmc.2021.116299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
Cinnamic acid derivatives (CAD's) represent a great alternative in the search for insecticides against Aedes aegypti mosquitoes since they have antimicrobial and insecticide properties. Ae. aegypti is responsible for transmitting Dengue, Chikungunya, and Zika viruses, among other arboviruses associated with morbimortality, especially in developing countries. In view of this, in vitro analyses of n-substituted cinnamic acids and esters were performed upon 4th instar larvae (L4) of Ae. aegypti, as well as, molecular docking studies to propose a potential biological target towards this mosquitoes species. The larvicide assays proved that n-substituted ethyl cinnamates showed a more pronounced activity than their corresponding acids, in which p-chlorocinnamate (3j) presented a LC50 value of 8.3 µg/mL. Thusly, external morphologic alterations (rigid and elongated body, curved bowel, and translucent or darkened anal papillae) of mosquitoes' group exposed to compound 3j, were observed by microscopy. In addition, an analytical method was developed for the quantification of the most promising analog by using high-performance liquid chromatography with UV detection (HPLC-UV). Molecular docking studies suggested that the larvicide action is associated with inhibition of acetylcholinesterase (AChE) enzyme. Therefore, expanding the larvicidal study with the cinnamic acid derivatives against the vector Ae. aegypti is important for finding search for more effective larvicides and with lower toxicity, since they have already shown good larvicidal properties against Ae. aegypti.
Collapse
Affiliation(s)
- Saraliny Bezerra França
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Luana Carine Barros de Lima
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Cristhyan Rychard da Silva Cunha
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Daniela Santos Anunciação
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Maria Ester de Sá Barreto Barros
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Dimas José da Paz Lima
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil.
| |
Collapse
|
9
|
Kalsi M, Walter A, Lee B, DeLaat A, Trigueros RR, Happel K, Sepesy R, Nguyen B, Manwill PK, Rakotondraibe LH, Piermarini PM. Stop the crop: Insights into the insecticidal mode of action of cinnamodial against mosquitoes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104743. [PMID: 33357565 PMCID: PMC7770332 DOI: 10.1016/j.pestbp.2020.104743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Cinnamodial (CDIAL) is a drimane sesquiterpene dialdehyde found in the bark of Malagasy medicinal plants (Cinnamosma species; family Canellaceae). We previously demonstrated that CDIAL was insecticidal, antifeedant, and repellent against Aedes aegypti mosquitoes. The goal of the present study was to generate insights into the insecticidal mode of action for CDIAL, which is presently unknown. We evaluated the effects of CDIAL on the contractility of the ventral diverticulum (crop) isolated from adult female Ae. aegypti. The crop is a food storage organ surrounded by visceral muscle that spontaneously contracts in vitro. We found that CDIAL completely inhibited spontaneous contractions of the crop as well as those stimulated by the agonist 5-hydroxytryptamine. Several derivatives of CDIAL with known insecticidal activity also inhibited crop contractions. Morphometric analyses of crops suggested that CDIAL induced a tetanic paralysis that was dependent on extracellular Ca2+ and inhibited by Gd3+, a non-specific blocker of plasma membrane Ca2+ channels. Screening of numerous pharmacological agents revealed that a Ca2+ ionophore (A23187) was the only compound other than CDIAL to completely inhibit crop contractions via a tetanic paralysis. Taken together, our results suggest that CDIAL induces a tetanic paralysis of the crop by elevating intracellular Ca2+ through the activation of plasma membrane Ca2+ channels, which may explain the insecticidal effects of CDIAL against mosquitoes. Our pharmacological screening experiments also revealed the presence of two regulatory pathways in mosquito crop contractility not previously described: an inhibitory glutamatergic pathway and a stimulatory octopaminergic pathway. The latter pathway was also completely inhibited by CDIAL.
Collapse
Affiliation(s)
- Megha Kalsi
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Anton Walter
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Beenhwa Lee
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Andrew DeLaat
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Renata Rusconi Trigueros
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Katharina Happel
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Rose Sepesy
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Bao Nguyen
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Preston K Manwill
- Departments of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Liva Harinantenaina Rakotondraibe
- Departments of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Gorecki L, Andrys R, Schmidt M, Kucera T, Psotka M, Svobodova B, Hrabcova V, Hepnarova V, Bzonek P, Jun D, Kuca K, Korabecny J, Musilek K. Cysteine-Targeted Insecticides against A. gambiae Acetylcholinesterase Are Neither Selective nor Reversible Inhibitors. ACS Med Chem Lett 2020; 11:65-71. [PMID: 31938465 DOI: 10.1021/acsmedchemlett.9b00477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 11/28/2022] Open
Abstract
Acetylcholinesterase cysteine-targeted insecticides against malaria vector Anopheles gambia and other mosquitos have already been introduced. We have applied the olefin metathesis for the preparation of cysteine-targeted insecticides in high yields. The prepared compounds with either a succinimide or maleimide moiety were evaluated on Anopheles gambiae and human acetylcholinesterase with relatively high irreversible inhibition of both enzymes but poor selectivity. The concept of cysteine binding was not proved by several methods, and poor stability was observed of the chosen most potent/selective compounds in a water/buffer environment. Thus, our findings do not support the proposed concept of cysteine-targeted selective insecticides for the prepared series of succinimide or maleimide compounds.
Collapse
Affiliation(s)
- Lukas Gorecki
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- University of Defence, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Monika Schmidt
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- University of Defence, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Barbora Svobodova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- University of Defence, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Veronika Hrabcova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- University of Defence, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- University of Defence, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Petr Bzonek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- University of Defence, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Daniel Jun
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- University of Defence, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- University of Defence, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- Florida International University, Herbert Wertheim College of Medicine, Department of Cellular Biology & Pharmacology, 11200 SW Eighth Street GL 495-G Miami, Florida 33199, United States
| |
Collapse
|
12
|
Ramos RS, Macêdo WJC, Costa JS, da Silva CHTDP, Rosa JMC, da Cruz JN, de Oliveira MS, de Aguiar Andrade EH, E Silva RBL, Souto RNP, Santos CBR. Potential inhibitors of the enzyme acetylcholinesterase and juvenile hormone with insecticidal activity: study of the binding mode via docking and molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:4687-4709. [PMID: 31674282 DOI: 10.1080/07391102.2019.1688192] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Models validation in QSAR, pharmacophore, docking and others can ensure the accuracy and reliability of future predictions in design and selection of molecules with biological activity. In this study, pyriproxyfen was used as a pivot/template to search the database of the Maybridge Database for potential inhibitors of the enzymes acetylcholinesterase and juvenile hormone as well. The initial virtual screening based on the 3D shape resulted in 2000 molecules with Tanimoto index ranging from 0.58 to 0.88. A new reclassification was performed on the overlapping of positive and negative charges, which resulted in 100 molecules with Tanimoto's electrostatic score ranging from 0.627 to 0.87. Using parameters related to absorption, distribution, metabolism and excretion and the pivot molecule, the molecules selected in the previous stage were evaluated regarding these criteria, and 21 were then selected. The pharmacokinetic and toxicological properties were considered and for 12 molecules, the DEREK software not fired any alert of toxicity, which were thus considered satisfactory for prediction of biological activity using the Web server PASS. In the molecular docking with insect acetylcholinesterase, the Maybridge3_002654 molecule had binding affinity of -11.1 kcal/mol, whereas in human acetylcholinesterase, the Maybridge4_001571molecule show in silico affinity of -10.2 kcal/mol, and in the juvenile hormone, the molecule MCULE-8839595892 show in silico affinity value of -11.6 kcal/mol. Subsequent long-trajectory molecular dynamics studies indicated considerable stability of the novel molecules compared to the controls.AbbreviationsQSARquantitative structure-activity relationshipsPASSprediction of activity spectra for substancesCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ryan S Ramos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Brazil.,Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Capanema, Brazil
| | - Williams J C Macêdo
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Brazil.,Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Capanema, Brazil
| | - Josivan S Costa
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Brazil.,Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Capanema, Brazil
| | - Carlos H T de P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil
| | - Joaquín M C Rosa
- Department of Pharmaceutical Organic Chemistry, University of Granada, Granada, Spain
| | | | - Mozaniel S de Oliveira
- Program of Post-Graduation in Food Science and Technology, Federal University of Pará, Belém, Brazil
| | - Eloisa H de Aguiar Andrade
- Adolpho Ducke Laboratory, Emílio Goeldi Paraense Museum, Belém, Brazil.,Program of Post-Graduation in Biodiversity and Biotechnology (BIONORTE), Federal University of Pará, Belém, Brazil
| | - Raullyan B L E Silva
- Center of Biodiversity, Institute for Scientific and Technological Research of Amapá (IEPA), Brazil
| | | | - Cleydson B R Santos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Brazil
| |
Collapse
|
13
|
Ramos RDS, Costa JDS, Silva RC, da Costa GV, Rodrigues ABL, Rabelo ÉDM, Souto RNP, Taft CA, Silva CHTDPD, Rosa JMC, Santos CBRD, Macêdo WJDC. Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening. Pharmaceuticals (Basel) 2019; 12:E20. [PMID: 30691028 PMCID: PMC6469432 DOI: 10.3390/ph12010020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/15/2023] Open
Abstract
Aedes aegypti is the main vector of dengue fever transmission, yellow fever, Zika, and chikungunya in tropical and subtropical regions and it is considered to cause health risks to millions of people in the world. In this study, we search to obtain new molecules with insecticidal potential against Ae. aegypti via virtual screening. Pyriproxyfen was chosen as a template compound to search molecules in the database Zinc_Natural_Stock (ZNSt) with structural similarity using ROCS (rapid overlay of chemical structures) and EON (electrostatic similarity) software, and in the final search, the top 100 were selected. Subsequently, in silico pharmacokinetic and toxicological properties were determined resulting in a total of 14 molecules, and these were submitted to the PASS online server for the prediction of biological insecticide and acetylcholinesterase activities, and only two selected molecules followed for the molecular docking study to evaluate the binding free energy and interaction mode. After these procedures were performed, toxicity risk assessment such as LD50 values in mg/kg and toxicity class using the PROTOX online server, were undertaken. Molecule ZINC00001624 presented potential for inhibition for the acetylcholinesterase enzyme (insect and human) with a binding affinity value of -10.5 and -10.3 kcal/mol, respectively. The interaction with the juvenile hormone was -11.4 kcal/mol for the molecule ZINC00001021. Molecules ZINC00001021 and ZINC00001624 had excellent predictions in all the steps of the study and may be indicated as the most promising molecules resulting from the virtual screening of new insecticidal agents.
Collapse
Affiliation(s)
- Ryan da Silva Ramos
- Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Amapá 68903-419, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.
- Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Capanema, Pará 68700-030, Brazil.
| | - Josivan da Silva Costa
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.
- Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Capanema, Pará 68700-030, Brazil.
| | - Rai Campos Silva
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.
- Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo 14040-903, Brazil;.
| | - Glauber Vilhena da Costa
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.
| | - Alex Bruno Lobato Rodrigues
- Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Amapá 68903-419, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.
| | - Érica de Menezes Rabelo
- Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Amapá 68903-419, Brazil.
| | | | | | - Carlos Henrique Tomich de Paula da Silva
- Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Capanema, Pará 68700-030, Brazil.
- Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo 14040-903, Brazil;.
| | | | - Cleydson Breno Rodrigues Dos Santos
- Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Amapá 68903-419, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.
- Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo 14040-903, Brazil;.
| | - Williams Jorge da Cruz Macêdo
- Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Amapá 68903-419, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.
- Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Capanema, Pará 68700-030, Brazil.
| |
Collapse
|
14
|
Knutsson S, Engdahl C, Kumari R, Forsgren N, Lindgren C, Kindahl T, Kitur S, Wachira L, Kamau L, Ekström F, Linusson A. Noncovalent Inhibitors of Mosquito Acetylcholinesterase 1 with Resistance-Breaking Potency. J Med Chem 2018; 61:10545-10557. [PMID: 30339371 DOI: 10.1021/acs.jmedchem.8b01060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistance development in insects significantly threatens the important benefits obtained by insecticide usage in vector control of disease-transmitting insects. Discovery of new chemical entities with insecticidal activity is highly desired in order to develop new insecticide candidates. Here, we present the design, synthesis, and biological evaluation of phenoxyacetamide-based inhibitors of the essential enzyme acetylcholinesterase 1 (AChE1). AChE1 is a validated insecticide target to control mosquito vectors of, e.g., malaria, dengue, and Zika virus infections. The inhibitors combine a mosquito versus human AChE selectivity with a high potency also for the resistance-conferring mutation G122S; two properties that have proven challenging to combine in a single compound. Structure-activity relationship analyses and molecular dynamics simulations of inhibitor-protein complexes have provided insights that elucidate the molecular basis for these properties. We also show that the inhibitors demonstrate in vivo insecticidal activity on disease-transmitting mosquitoes. Our findings support the concept of noncovalent, selective, and resistance-breaking inhibitors of AChE1 as a promising approach for future insecticide development.
Collapse
Affiliation(s)
- Sofie Knutsson
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Cecilia Engdahl
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Rashmi Kumari
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Nina Forsgren
- Swedish Defence Research Agency , CBRN Defence and Security , SE-906 21 Umeå , Sweden
| | - Cecilia Lindgren
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Tomas Kindahl
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Stanley Kitur
- Centre for Biotechnology Research and Development , Kenya Medical Research Institute , Nairobi , Kenya
| | - Lucy Wachira
- Centre for Biotechnology Research and Development , Kenya Medical Research Institute , Nairobi , Kenya
| | - Luna Kamau
- Centre for Biotechnology Research and Development , Kenya Medical Research Institute , Nairobi , Kenya
| | - Fredrik Ekström
- Swedish Defence Research Agency , CBRN Defence and Security , SE-906 21 Umeå , Sweden
| | - Anna Linusson
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| |
Collapse
|
15
|
Han Q, Wong DM, Robinson H, Ding H, Lam PCH, Totrov MM, Carlier PR, Li J. Crystal structure of acetylcholinesterase catalytic subunits of the malaria vector Anopheles gambiae. INSECT SCIENCE 2018; 25:721-724. [PMID: 28247978 PMCID: PMC5581290 DOI: 10.1111/1744-7917.12450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 05/10/2023]
Affiliation(s)
- Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, and Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou 570228, China
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Dawn M. Wong
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Haizhen Ding
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Polo C. H. Lam
- Molsoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Maxim M. Totrov
- Molsoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Paul R. Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
16
|
Carlier PR, Bloomquist JR, Totrov M, Li J. Discovery of Species-selective and Resistance-breaking Anticholinesterase Insecticides for the Malaria Mosquito. Curr Med Chem 2017; 24:2946-2958. [PMID: 28176636 DOI: 10.2174/0929867324666170206130024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Great reductions in malaria mortality have been accomplished in the last 15 years, in part due to the widespread roll-out of insecticide-treated bednets across sub-Saharan Africa. To date, these nets only employ pyrethroids, insecticides that target the voltage-gated sodium ion channel of the malaria vector, Anopheles gambiae. Due to the growing emergence of An. gambiae strains that are resistant to pyrethroids, there is an urgent need to develop new public health insecticides that engage a different target and possess low mammalian toxicity. In this review, we will describe efforts to develop highly species-specific and resistance-breaking inhibitors of An. gambiae acetylcholinesterase (AgAChE). These efforts have been greatly aided by advances in knowledge of the structure of the enzyme, and two major inhibitor design strategies have been explored. Since AgAChE possesses an unpaired Cys residue not present in mammalian AChE, a logical strategy to achieve selective inhibition involves design of compounds that could ligate that Cys. A second strategy involves the design of new molecules to target the catalytic serine of the enzyme. Here the challenge is not only to achieve high inhibition selectivity vs human AChE, but also to demonstrate toxicity to An. gambiae that carry the G119S resistance mutation of AgAChE. The advances made and challenges remaining will be presented. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity".
Collapse
Affiliation(s)
- Paul R Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061. United States
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology and Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610-00009. United States
| | - Max Totrov
- Molsoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121. United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061. United States
| |
Collapse
|
17
|
Knutsson S, Kindahl T, Engdahl C, Nikjoo D, Forsgren N, Kitur S, Ekström F, Kamau L, Linusson A. N-Aryl-N'-ethyleneaminothioureas effectively inhibit acetylcholinesterase 1 from disease-transmitting mosquitoes. Eur J Med Chem 2017; 134:415-427. [PMID: 28433681 DOI: 10.1016/j.ejmech.2017.03.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/13/2023]
Abstract
Vector control of disease-transmitting mosquitoes by insecticides has a central role in reducing the number of parasitic- and viral infection cases. The currently used insecticides are efficient, but safety concerns and the development of insecticide-resistant mosquito strains warrant the search for alternative compound classes for vector control. Here, we have designed and synthesized thiourea-based compounds as non-covalent inhibitors of acetylcholinesterase 1 (AChE1) from the mosquitoes Anopheles gambiae (An. gambiae) and Aedes aegypti (Ae. aegypti), as well as a naturally occurring resistant-conferring mutant. The N-aryl-N'-ethyleneaminothioureas proved to be inhibitors of AChE1; the most efficient one showed submicromolar potency. Importantly, the inhibitors exhibited selectivity over the human AChE (hAChE), which is desirable for new insecticides. The structure-activity relationship (SAR) analysis of the thioureas revealed that small changes in the chemical structure had a large effect on inhibition capacity. The thioureas showed to have different SAR when inhibiting AChE1 and hAChE, respectively, enabling an investigation of structure-selectivity relationships. Furthermore, insecticidal activity was demonstrated using adult and larvae An. gambiae and Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Sofie Knutsson
- Department of Chemistry, Umeå University, SE-901 82, Umeå, Sweden
| | - Tomas Kindahl
- Department of Chemistry, Umeå University, SE-901 82, Umeå, Sweden
| | - Cecilia Engdahl
- Department of Chemistry, Umeå University, SE-901 82, Umeå, Sweden
| | - Dariush Nikjoo
- Department of Chemistry, Umeå University, SE-901 82, Umeå, Sweden
| | - Nina Forsgren
- CBRN Defence and Security, Swedish Defence Research Agency, SE-906 21, Umeå, Sweden
| | - Stanley Kitur
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Fredrik Ekström
- CBRN Defence and Security, Swedish Defence Research Agency, SE-906 21, Umeå, Sweden
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Anna Linusson
- Department of Chemistry, Umeå University, SE-901 82, Umeå, Sweden.
| |
Collapse
|
18
|
Engdahl C, Knutsson S, Ekström F, Linusson A. Discovery of Selective Inhibitors Targeting Acetylcholinesterase 1 from Disease-Transmitting Mosquitoes. J Med Chem 2016; 59:9409-9421. [DOI: 10.1021/acs.jmedchem.6b00967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cecilia Engdahl
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sofie Knutsson
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Fredrik Ekström
- Swedish Defense Research Agency, CBRN Defense and
Security, SE-906 21 Umeå, Sweden
| | - Anna Linusson
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|