1
|
Campoccia D, Bottau G, De Donno A, Bua G, Ravaioli S, Capponi E, Sotgiu G, Bellotti C, Costantini S, Arciola CR. Assessing Cytotoxicity, Proteolytic Stability, and Selectivity of Antimicrobial Peptides: Implications for Orthopedic Applications. Int J Mol Sci 2024; 25:13241. [PMID: 39769006 PMCID: PMC11678430 DOI: 10.3390/ijms252413241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
In orthopedics, the use of anti-infective biomaterials is considered the most promising strategy to contrast the bacterial contamination of implant surfaces and reduce the infection rate. KSL, KSL-W, and Dadapin-1 are three antimicrobial peptides (AMPs) that possess significant antibacterial properties, making them promising candidates for producing anti-infective biomaterials not based on antibiotics. To fully assess their true potential, this study explores in detail their cytocompatibility on human osteoblast-like MG63 cells, murine fibroblastoid L929 cells, and hMSCs. To this end, the cytotoxicity of the AMPs in terms of IC50 was tested over a range of concentrations of 450-0.22 µg/mL using the ATP bioluminescence assay. The tests were performed both in the presence and absence of bovine serum to assess the effects of serum components on peptide stability. IC50 values obtained under the most stringent conditions were used to extrapolate the selectivity index (S.I.) toward salient bacterial species. In medium containing serum, all AMPs exhibited minimal to no cytotoxicity, with IC50 values exceeding 100 µg/mL. Dadapin-1 was the peptide that exhibited the lowest cytotoxicity, KSL-W exhibited the highest stability, and KSL exhibited the highest selectivity. Overall, these findings highlight the potential of these AMPs for the future production of anti-infective materials.
Collapse
Affiliation(s)
- Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (G.B.); (A.D.D.); (G.B.); (S.R.); (E.C.)
| | - Giulia Bottau
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (G.B.); (A.D.D.); (G.B.); (S.R.); (E.C.)
| | - Andrea De Donno
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (G.B.); (A.D.D.); (G.B.); (S.R.); (E.C.)
| | - Gloria Bua
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (G.B.); (A.D.D.); (G.B.); (S.R.); (E.C.)
| | - Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (G.B.); (A.D.D.); (G.B.); (S.R.); (E.C.)
| | - Eleonora Capponi
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (G.B.); (A.D.D.); (G.B.); (S.R.); (E.C.)
| | - Giovanna Sotgiu
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council, Via Gobetti 101, 40129 Bologna, Italy;
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Silvia Costantini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy;
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Carla Renata Arciola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy;
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
2
|
Tymińska A, Karska N, Skoniecka A, Zawrzykraj M, Banach-Kopeć A, Mania S, Zieliński J, Kondej K, Gurzawska-Comis K, Skowron PM, Tylingo R, Rodziewicz-Motowidło S, Pikuła M. A novel chitosan-peptide system for cartilage tissue engineering with adipose-derived stromal cells. Biomed Pharmacother 2024; 181:117683. [PMID: 39561590 DOI: 10.1016/j.biopha.2024.117683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The natural healing process of cartilage injuries often fails to fully restore the tissue's biological and mechanical functions. Cartilage grafts are costly and require surgical intervention, often associated with complications such as intraoperative infection and rejection by the recipient due to ischemia. Novel tissue engineering technologies aim to ideally fill the cartilage defect to prevent disease progression or regenerate damaged tissue. Despite many studies on designing biocompatible composites to stimulate chondrogenesis, only few focus on peptides and carriers that promote stem cell proliferation or differentiation to promote healing. Our research aimed to design a carbohydrate chitosan-based biomaterial to stimulate stem cells into the chondrogenesis pathway. Our strategy was to combine chitosan with a novel peptide (UG28) that sequence was based on the copin protein. The construct stimulated human adipose-derived stem cells (AD-SCs) cells to undergo chondrogenic differentiation. Chitosan 75/500 allows AD-SCs to grow and has no harmful effects on the cells. The combination of UG28 peptide with the chitosan composite offers promising properties for cell differentiation, indicating its potential for clinical applications in cartilage regeneration.
Collapse
Affiliation(s)
- Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Department of Anatomy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk 80-211, Poland.
| | - Natalia Karska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Department of Anatomy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk 80-211, Poland
| | - Małgorzata Zawrzykraj
- Division of Clinical Anatomy, Department of Anatomy, Medical University of Gdańsk, 80-211, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biotechnology of Food Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Szymon Mania
- Department of Chemistry, Technology and Biotechnology of Food Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Jacek Zieliński
- Department of Oncologic Surgery, Medical University of Gdańsk, Gdańsk 80-214, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdańsk, Gdańsk 80-214, Poland
| | - Katarzyna Gurzawska-Comis
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, Aarhus C DK-8000, Denmark
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Robert Tylingo
- Department of Chemistry, Technology and Biotechnology of Food Gdańsk University of Technology, Gdańsk 80-233, Poland
| | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Department of Anatomy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk 80-211, Poland.
| |
Collapse
|
3
|
Golda A, Kosikowska-Adamus P, Wadowska M, Dobosz E, Potempa J, Koziel J. Antiviral activity of temporin-1CEb analogues against gingival infection with herpes simplex virus type 1. FRONTIERS IN ORAL HEALTH 2024; 5:1430077. [PMID: 38953010 PMCID: PMC11215077 DOI: 10.3389/froh.2024.1430077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Oral herpes infections caused by herpes simplex virus type 1 (HSV-1) are one of the most common in the human population. Recently, they have been classified as an increasing problem in immunocompromised patients and those suffering from chronic inflammation of the oral mucosa and gums. Treatment mainly involves nucleoside analogues, such as acyclovir and its derivatives, which reduce virus replication and shedding. As drug-resistant strains of herpes emerge rapidly, there is a need for the development of novel anti-herpes agents. The aim of the study was to design an antiviral peptide, based on natural compounds, non-toxic to the host, and efficient against drug-resistant HSV-1. Here, we designed a lysine-rich derivative of amphibian temporin-1CEb conjugated to peptides penetrating the host cell membrane and examined their activity against HSV-1 infection of oral mucosa. Methods We assessed the antiviral efficiency of the tested compound in simple 2D cell models (VeroE6 and TIGKs cells) and a 3D organotypic model of human gingiva (OTG) using titration assay, qPCR, and confocal imaging. To identify the molecular mechanism of antiviral activity, we applied the Azure A metachromatic test, and attachment assays techniques. Toxicity of the conjugates was examined using XTT and LDH assays. Results Our results showed that temporin-1CEb analogues significantly reduce viral replication in oral mucosa. The mechanism of peptide analogues is based on the interaction with heparan sulfate, leading to the reduce attachment of HSV-1 to the cell membrane. Moreover, temporin-1CEb conjugates effectively penetrate the gingival tissue being effective against acyclovir-resistant strains. Collectively, we showed that temporin-1CEb can be regarded as a novel, naturally derived antiviral compound for HSV-1 treatment.
Collapse
Affiliation(s)
- Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Kosikowska-Adamus P, Golda A, Ryl J, Pilarczyk-Zurek M, Bereta G, Ossowski T, Lesner A, Koziel J, Prahl A, Niedziałkowski P. Electrochemical detection of bacterial endotoxin lipopolysaccharide (LPS) on gold electrode modified with DAL-PEG-DK5-PEG-OH - Antimicrobial peptide conjugate. Talanta 2024; 273:125881. [PMID: 38492283 DOI: 10.1016/j.talanta.2024.125881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
This work describes fabrication of gold electrodes modified with peptide conjugate DAL-PEG-DK5-PEG-OH that enables ultra-sensitive detection of lipopolysaccharide (LPS) isolated from the reference strain of Escherichia coli O26:B6. The initial step of the established procedure implies immobilization of the fully protected DAL-PEG-DK5-PEG-OH peptide on the surface of the gold electrode previously modified by cysteamine. Then side chain- and Fmoc-deprotection was performed in situ on the electrode surface, followed by its incubation in 1 % of BSA solution to block non-specific bindings sites before LPS detection. The efficiency of the modification was confirmed by X-ray Photoelectron Spectroscopy (XPS) measurements. Additionally, the cyclic voltammetry (CV) and electrochemical impendance spectroscopy (EIS) were employed to monitor the effectiveness of each step of the modification. The obtained results confirmed that the presence of the surface-attached covalently bound peptide DAL-PEG-DK5-PEG-OH enables LPS detection by means of CV technique within the range from 5 × 10-13 to 5 × 10-4 g/mL in PBS solution. The established limit of detection (LOD) for EIS measurements was 4.93 × 10-21 g/mL with wide linear detection range from 5 × 10-21 to 5 × 10-14 g/mL in PBS solution. Furthermore, we confirmed the ability of the electrode to detect LPS in a complex biological samples, like mouse urine and human serum. The effectiveness of the electrodes in identifying LPS in both urine and serum matrices was confirmed for samples containing LPS at both 2.5 × 10-15 g/mL and 2.5 × 10-9 g/mL.
Collapse
Affiliation(s)
- Paulina Kosikowska-Adamus
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jacek Ryl
- Institute of Nanotechnology and Materials Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Magdalena Pilarczyk-Zurek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Grzegorz Bereta
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
5
|
Mazurkiewicz-Pisarek A, Baran J, Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int J Mol Sci 2023; 24:ijms24109031. [PMID: 37240379 DOI: 10.3390/ijms24109031] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.
Collapse
Affiliation(s)
- Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
6
|
Temporins: Multifunctional Peptides from Frog Skin. Int J Mol Sci 2023; 24:ijms24065426. [PMID: 36982501 PMCID: PMC10049141 DOI: 10.3390/ijms24065426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Temporins are short peptides secreted by frogs from all over the world. They exert antimicrobial activity, mainly against Gram-positive bacteria, including resistant pathogens; recent studies highlight other possible applications of these peptides as anticancer or antiviral agents. This review is meant to describe the main features of temporins produced by different ranid genera. Due to the abundance of published papers, we focus on the most widely investigated peptides. We report studies on their mechanism of action and three-dimensional structure in model systems mimicking bacterial membranes or in the presence of cells. The design and the antimicrobial activity of peptide analogues is also described, with the aim of highlighting elements that are crucial to improve the bioactivity of peptides while reducing their toxicity. Finally, a short section is dedicated to the studies aimed at applying these peptides as drugs, to produce new antimicrobial materials or in other technological uses.
Collapse
|
7
|
Łubkowska B, Jeżewska-Frąckowiak J, Sroczyński M, Dzitkowska-Zabielska M, Bojarczuk A, Skowron PM, Cięszczyk P. Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms 2023; 11:488. [PMID: 36838453 PMCID: PMC9962517 DOI: 10.3390/microorganisms11020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
So far, Bacillus species bacteria are being used as bacteria concentrates, supplementing cleaning preparations in order to reduce odor and expel pathogenic bacteria. Here, we discuss the potential of Bacillus species as 'natural' probiotics and evaluate their microbiological characteristics. An industrially used microbiological concentrates and their components of mixed Bacillus species cultures were tested, which may be a promising bacteria source for food probiotic preparation for supplementary diet. In this study, antagonistic activities and probiotic potential of Bacillus species, derived from an industrial microbiological concentrate, were demonstrated. The cell free supernatants (CFS) from Bacillus licheniformis mostly inhibited the growth of foodborne pathogenic bacteria, such as Escherichia coli O157:H7 ATCC 35150, Salmonella Enteritidis KCCM 12021, and Staphylococcus aureus KCCM 11335, while some of Bacillus strains showed synergistic effect with foodborne pathogenic bacteria. Moreover, Bacillus strains identified by the MALDI TOF-MS method were found sensitive to chloramphenicol, kanamycin, and rifampicin. B. licheniformis and B. cereus displayed the least sensitivity to the other tested antibiotics, such as ampicillin, ampicillin and sulfbactam, streptomycin, and oxacillin and bacitracin. Furthermore, some of the bacterial species detected extended their growth range from the mesophilic to moderately thermophilic range, up to 54 °C. Thus, their potential sensitivity to thermophilic TP-84 bacteriophage, infecting thermophilic Bacilli, was tested for the purpose of isolation a new bacterial host for engineered bionanoparticles construction. We reason that the natural environmental microflora of non-pathogenic Bacillus species, especially B. licheniformis, can become a present probiotic remedy for many contemporary issues related to gastrointestinal tract health, especially for individuals under metabolic strain or for the increasingly growing group of lactose-intolerant people.
Collapse
Affiliation(s)
- Beata Łubkowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| | - Joanna Jeżewska-Frąckowiak
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (M.S.); (P.M.S.)
| | - Michał Sroczyński
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (M.S.); (P.M.S.)
| | - Magdalena Dzitkowska-Zabielska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| | - Aleksandra Bojarczuk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| | - Piotr M. Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (M.S.); (P.M.S.)
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| |
Collapse
|
8
|
Makowska M, Kosikowska-Adamus P, Zdrowowicz M, Wyrzykowski D, Prahl A, Sikorska E. Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design. Int J Mol Sci 2023; 24:ijms24043951. [PMID: 36835362 PMCID: PMC9959048 DOI: 10.3390/ijms24043951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In this paper, we describe the chemical synthesis, preliminary evaluation of antimicrobial properties and mechanisms of action of a novel group of lipidated derivatives of three naturally occurring α-helical antimicrobial peptides, LL-I (VNWKKVLGKIIKVAK-NH2), LK6 (IKKILSKILLKKL-NH2), ATRA-1 (KRFKKFFKKLK-NH2). The obtained results showed that biological properties of the final compounds were defined both by the length of the fatty acid and by the structural and physico-chemical properties of the initial peptide. We consider C8-C12 length of the hydrocarbon chain as the optimal for antimicrobial activity improvement. However, the most active analogues exerted relatively high cytotoxicity toward keratinocytes, with the exception of the ATRA-1 derivatives, which had a higher selectivity for microbial cells. The ATRA-1 derivatives had relatively low cytotoxicity against healthy human keratinocytes but high cytotoxicity against human breast cancer cells. Taking into account that ATRA-1 analogues carry the highest positive net charge, it can be assumed that this feature contributes to cell selectivity. As expected, the studied lipopeptides showed a strong tendency to self-assembly into fibrils and/or elongated and spherical micelles, with the least cytotoxic ATRA-1 derivatives forming apparently smaller assemblies. The results of the study also confirmed that the bacterial cell membrane is the target for the studied compounds.
Collapse
Affiliation(s)
- Marta Makowska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Correspondence: (M.M.); (E.S.)
| | - Paulina Kosikowska-Adamus
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Zdrowowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Correspondence: (M.M.); (E.S.)
| |
Collapse
|
9
|
Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Appl Environ Microbiol 2022; 88:e0057422. [PMID: 35638842 PMCID: PMC9238401 DOI: 10.1128/aem.00574-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thirty peptide conjugates were designed by combining an antimicrobial peptide (BP16, BP100, BP143, KSL-W, BP387, or BP475) at the N- or C-terminus of a plant defense elicitor peptide (flg15, BP13, Pep13, or PIP1). These conjugates were highly active in vitro against six plant-pathogenic bacteria, especially against Xanthomonas arboricola pv. pruni, Xanthomonas fragariae and Xanthomonas axonopodis pv. vesicatoria. The most active peptides were those incorporating Pep13. The order of the conjugation influenced the antibacterial activity and the hemolysis. Regarding the former, peptide conjugates incorporating the elicitor peptide flg15 or Pep13 at the C-terminus were, in general, more active against Pseudomonas syringae pv. actinidiae and P. syringae pv. syringae, whereas those bearing these elicitor peptides at the N-terminus displayed higher activity against Erwinia. amylovora and the Xanthomonas species. The best peptide conjugates displayed MIC values between 0.8 and 12.5 μM against all the bacteria tested and also had low levels of hemolysis and low phytotoxicity. Analysis of the structural and physicochemical parameters revealed that a positive charge ranging from +5 to +7 and a moderate hydrophobic moment/amphipathic character is required for an optimal biological profile. Interestingly, flg15-BP475 exhibited a dual activity, causing the upregulation of the same genes as flg15 and reducing the severity of bacterial spot in tomato plants with a similar or even higher efficacy than copper oxychloride. Characterization by nuclear magnetic resonance (NMR) of the secondary structure of flg15-BP475 showed that residues 10 to 25 fold into an α-helix. This study establishes trends to design new bifunctional peptides useful against plant diseases caused by plant-pathogenic bacteria. IMPORTANCE The consequences of plant pathogens on crop production together with the lack of effective and environmentally friendly pesticides evidence the need of new agents to control plant diseases. Antimicrobial and plant defense elicitor peptides have emerged as good candidates to tackle this problem. This study focused on combining these two types of peptides into a single conjugate with the aim to potentiate the activity of the individual fragments. Differences in the biological activity of the resulting peptide conjugates were obtained depending on their charge, amphipathicity, and hydrophobicity, as well as on the order of the conjugation of the monomers. This work provided bifunctional peptide conjugates able to inhibit several plant-pathogenic bacteria, to stimulate plant defense responses, and to reduce the severity of bacterial spot in tomato plants. Thus, this study could serve as the basis for the development of new antibacterial/plant defense elicitor peptides to control bacterial plant pathogens.
Collapse
|
10
|
Kosikowska-Adamus P, Sikorska E, Wyrzykowski D, Walewska A, Golda A, Deptuła M, Obuchowski M, Prahl A, Pikuła M, Lesner A. Lipidation of Temporin-1CEb Derivatives as a Tool for Activity Improvement, Pros and Cons of the Approach. Int J Mol Sci 2021; 22:ijms22136679. [PMID: 34206444 PMCID: PMC8269107 DOI: 10.3390/ijms22136679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The alarming raise of multi-drug resistance among human microbial pathogens makes the development of novel therapeutics a priority task. In contrast to conventional antibiotics, antimicrobial peptides (AMPs), besides evoking a broad spectrum of activity against microorganisms, could offer additional benefits, such as the ability to neutralize toxins, modulate inflammatory response, eradicate bacterial and fungal biofilms or prevent their development. The latter properties are of special interest, as most antibiotics available on the market have limited ability to diffuse through rigid structures of biofilms. Lipidation of AMPs is considered as an effective approach for enhancement of their antimicrobial potential and in vivo stability; however, it could also have undesired impact on selectivity, solubility or the aggregation state of the modified peptides. In the present work, we describe the results of structural modifications of compounds designed based on cationic antimicrobial peptides DK5 and CAR-PEG-DK5, derivatized at their N-terminal part with fatty acids with different lengths of carbon chain. The proposed modifications substantially improved antimicrobial properties of the final compounds and their effectiveness in inhibition of biofilm development as well as eradication of pre-formed 24 h old biofilms of Candida albicans and Staphylococcus aureus. The most active compounds (C5-DK5, C12-DK5 and C12-CAR-PEG-DK5) were also potent against multi-drug resistant Staphylococcus aureus USA300 strain and clinical isolates of Pseudomonas aeruginosa. Both experimental and in silico methods revealed strong correlation between the length of fatty acid attached to the peptides and their final membranolytic properties, tendency to self-assemble and cytotoxicity.
Collapse
Affiliation(s)
- Paulina Kosikowska-Adamus
- Faculty of Chemistry, University of Gdansk, 80-309 Gdańsk, Poland; (E.S.); (D.W.); (A.W.); (A.P.); (A.L.)
- Correspondence:
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdansk, 80-309 Gdańsk, Poland; (E.S.); (D.W.); (A.W.); (A.P.); (A.L.)
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdansk, 80-309 Gdańsk, Poland; (E.S.); (D.W.); (A.W.); (A.P.); (A.L.)
| | - Aleksandra Walewska
- Faculty of Chemistry, University of Gdansk, 80-309 Gdańsk, Poland; (E.S.); (D.W.); (A.W.); (A.P.); (A.L.)
| | - Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-210 Gdańsk, Poland; (M.D.); (M.P.)
| | - Michał Obuchowski
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | - Adam Prahl
- Faculty of Chemistry, University of Gdansk, 80-309 Gdańsk, Poland; (E.S.); (D.W.); (A.W.); (A.P.); (A.L.)
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-210 Gdańsk, Poland; (M.D.); (M.P.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-309 Gdańsk, Poland; (E.S.); (D.W.); (A.W.); (A.P.); (A.L.)
| |
Collapse
|
11
|
Nanoparticles Based on Quaternary Ammonium Chitosan-methyl-β-cyclodextrin Conjugate for the Neuropeptide Dalargin Delivery to the Central Nervous System: An In Vitro Study. Pharmaceutics 2020; 13:pharmaceutics13010005. [PMID: 33374997 PMCID: PMC7822029 DOI: 10.3390/pharmaceutics13010005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Peptide oral administration is a hard goal to reach, especially if the brain is the target site. The purpose of the present study was to set up a vehicle apt to promote oral absorption of the neuropeptide dalargin (DAL), allowing it to cross the intestinal mucosal barrier, resist enzymatic degradation, and transport drugs to the brain after crossing the blood–brain barrier. Therefore, a chitosan quaternary ammonium derivative was synthesized and conjugated with methyl-β-cyclodextrin to prepare DAL-medicated nanoparticles (DAL-NP). DAL-NP particle size was 227.7 nm, zeta potential +8.60 mV, encapsulation efficiency 89%. DAL-NP protected DAL from degradation by chymotrypsin or pancreatin and tripled DAL degradation time compared to non-encapsulated DAL. Use of DAL-NP was safe for either Caco-2 or bEnd.3 cells, with the latter selected as a blood–brain barrier model. DAL-NP could also cross either the Caco-2 or bEnd.3 monolayer by the transepithelial route. The results suggest a potential DAL-NP ability to transport to the brain a DAL dose fraction administered orally, although in vivo experiments will be needed to confirm the present data obtained in vitro.
Collapse
|
12
|
Deptuła M, Karpowicz P, Wardowska A, Sass P, Sosnowski P, Mieczkowska A, Filipowicz N, Dzierżyńska M, Sawicka J, Nowicka E, Langa P, Schumacher A, Cichorek M, Zieliński J, Kondej K, Kasprzykowski F, Czupryn A, Janus Ł, Mucha P, Skowron P, Piotrowski A, Sachadyn P, Rodziewicz-Motowidło S, Pikuła M. Development of a Peptide Derived from Platelet-Derived Growth Factor (PDGF-BB) into a Potential Drug Candidate for the Treatment of Wounds. Adv Wound Care (New Rochelle) 2020; 9:657-675. [PMID: 33124966 PMCID: PMC7698658 DOI: 10.1089/wound.2019.1051] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: This study evaluated the use of novel peptides derived from platelet-derived growth factor (PDGF-BB) as potential wound healing stimulants. One of the compounds (named PDGF2) was subjected for further research after cytotoxicity and proliferation assays on human skin cells. Further investigation included evaluation of: migration and chemotaxis of skin cells, immunological and allergic safety, the transcriptional analyses of adipose-derived stem cells (ASCs) and dermal fibroblasts stimulated with PDGF2, and the use of dorsal skin wound injury model to evaluate the effect of wound healing in mice. Approach: Colorimetric lactate dehydrogenase and tetrazolium assays were used to evaluate the cytotoxicity and the effect on proliferation. PDGF2 effect on migration and chemotaxis was also checked. Immunological safety and allergic potential were evaluated with a lymphocyte activation and basophil activation test. Transcriptional profiles of ASCs and primary fibroblasts were assessed after stimulation with PDGF2. Eight-week-old BALB/c female mice were used for dorsal skin wound injury model. Results: PDGF2 showed low cytotoxicity, pro-proliferative effects on human skin cells, high immunological safety, and accelerated wound healing in mouse model. Furthermore, transcriptomic analysis of ASCs and fibroblasts revealed the activation of processes involved in wound healing and indicated its safety. Innovation: A novel peptide derived from PDGF-BB was proved to be safe drug candidate in wound healing. We also present a multifaceted in vitro model for the initial screening of new compounds that may be potentially useful in wound healing stimulation. Conclusion: The results show that peptide derived from PDGF-BB is a promising drug candidate for wound treatment.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| | - Przemysław Karpowicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Gdansk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Gdansk, Poland
| | | | | | - Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Ewa Nowicka
- Department of Clinical Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Paulina Langa
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Jacek Zieliński
- Department of Surgical Oncology, and Medical University of Gdansk, Gdansk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, Gdansk, Poland
| | | | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | - Piotr Mucha
- Department of Biochemistry, and Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Gdansk, Poland
| | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
13
|
Golda A, Kosikowska-Adamus P, Kret A, Babyak O, Wójcik K, Dobosz E, Potempa J, Lesner A, Koziel J. The Bactericidal Activity of Temporin Analogues Against Methicillin Resistant Staphylococcus aureus. Int J Mol Sci 2019; 20:ijms20194761. [PMID: 31557917 PMCID: PMC6801822 DOI: 10.3390/ijms20194761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a major infectious agent responsible for a plethora of superficial skin infections and systemic diseases, including endocarditis and septic arthritis. Recent epidemiological data revealed the emergence of resistance to commonly used antibiotics, including increased numbers of both hospital- and community-acquired methicillin-resistant S. aureus (MRSA). Due to their potent antimicrobial functions, low potential to develop resistance, and immunogenicity, antimicrobial peptides (AMPs) are a promising alternative treatment for multidrug-resistant strains. Here, we examined the activity of a lysine-rich derivative of amphibian temporin-1CEb (DK5) conjugated to peptides that exert pro-proliferative and/or cytoprotective activity. Analysis of a library of synthetic peptides to identify those with antibacterial potential revealed that the most potent agent against multidrug-resistant S. aureus was a conjugate of a temporin analogue with the synthetic Leu-enkephalin analogue dalargin (DAL). DAL-PEG-DK5 exerted direct bactericidal effects via bacterial membrane disruption, leading to eradication of both planktonic and biofilm-associated staphylococci. Finally, we showed that accumulation of the peptide in the cytoplasm of human keratinocytes led to a marked clearance of intracellular MRSA, resulting in cytoprotection against invading bacteria. Collectively, the data showed that DAL-PEG-DK5 might be a potent antimicrobial agent for treatment of staphylococcal skin infections.
Collapse
Affiliation(s)
- Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | | - Aleksandra Kret
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Olena Babyak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, KY 40202, USA.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland.
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
14
|
Golda A, Kosikowska-Adamus P, Babyak O, Lech M, Wysocka M, Lesner A, Potempa J, Koziel J. Conjugate of Enkephalin and Temporin Peptides as a Novel Therapeutic Agent for Sepsis. Bioconjug Chem 2018; 29:4127-4139. [PMID: 30525485 DOI: 10.1021/acs.bioconjchem.8b00763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial peptides (AMPs) exhibit a wide spectrum of actions, ranging from a direct bactericidal effect to multifunctional activities as immune effector molecules. The aim of this study was to examine the anti-inflammatory properties of a DAL-PEG-DK5 conjugate composed of a lysine-rich derivative of amphibian temporin-1CEb (DK5) and dalargin (DAL), the synthetic Leu-enkephalin analogue. Detailed study of the endotoxin-neutralizing activity of the peptide revealed that DAL-PEG-DK5 interacts with LPS and the LPS binding protein (LBP). Moreover, DAL-PEG-DK5 prevented dimerization of TLR4 at the macrophage surface upon LPS stimulation. This inhibited activation of the NF-κB signaling pathway and markedly reduced pro-inflammatory cytokine production. Finally, we showed that aggregation of DAL-PEG-DK5 into amyloid-like structures induced by LPS neutralized the endotoxin proinflammatory activity. Consequently, DAL-PEG-DK5 reduced morbidity and mortality in vivo, in a mouse model of endotoxin-induced septic shock. Collectively, the data suggest that DAL-PEG-DK5 is a promising therapeutic compound for sepsis.
Collapse
Affiliation(s)
- A Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , 30-387 Krakow , Poland
| | | | - O Babyak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , 30-387 Krakow , Poland
| | - M Lech
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , 30-387 Krakow , Poland.,Department of Nephrology, Medizinische Klinik und Poliklinik IV , Klinikum der Ludwig-Maximilians-Universität München , 80366 Munich , Germany
| | - M Wysocka
- Faculty of Chemistry , University of Gdansk , 80-309 Gdansk , Poland
| | - A Lesner
- Faculty of Chemistry , University of Gdansk , 80-309 Gdansk , Poland
| | - J Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , 30-387 Krakow , Poland.,Center of Oral Health and Systemic Disease, University of Louisville School of Dentistry , University of Louisville , Louisville , Kentucky 40202 , United States
| | - J Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , 30-387 Krakow , Poland
| |
Collapse
|
15
|
Alencar-Silva T, Braga MC, Santana GOS, Saldanha-Araujo F, Pogue R, Dias SC, Franco OL, Carvalho JL. Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol Adv 2018; 36:2019-2031. [PMID: 30118811 DOI: 10.1016/j.biotechadv.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides (AMPs) are mostly endogenous, cationic, amphipathic polypeptides, produced by many natural sources. Recently, many biological functions beyond antimicrobial activity have been attributed to AMPs, and some of these have attracted the attention of the cosmetics industry. AMPs have revealed antioxidant, self-renewal and pro-collagen effects, which are desirable in anti-aging cosmetics. Additionally, AMPs may also be customized to act on specific cellular targets. Here, we review the recent literature that highlights the many possibilities presented by AMPs, focusing on the relevance and impact that this potentially novel class of active cosmetic ingredients might have in the near future, creating new market outlooks for the cosmetic industry with these molecules as a viable alternative to conventional cosmetics.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Mariana Carolina Braga
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gustavo Oliveira Silva Santana
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Robert Pogue
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Simoni Campos Dias
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Universidade de Brasília, Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Brasília/DF, 70910-900, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
16
|
Antibacterial Peptides in Dermatology-Strategies for Evaluation of Allergic Potential. Molecules 2018; 23:molecules23020414. [PMID: 29443886 PMCID: PMC6016997 DOI: 10.3390/molecules23020414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
During recent decades, the market for peptide-based drugs, including antimicrobial peptides, has vastly extended and evolved. These drugs can be useful in treatment of various types of disorders, e.g., cancer, autoimmune diseases, infections, and non-healing wounds. Although peptides are less immunogenic than other biologic therapeutics, they can still induce immune responses and cause allergies. It is important to evaluate the immunogenic and allergic potential of peptides before they are forwarded to the expensive stages of clinical trials. The process of the evaluation of immunogenicity and cytotoxicity is complicated, as in vitro models and bioinformatics tools cannot fully simulate situations in the clinic. Nevertheless, several potentially promising tests for the preclinical evaluation of peptide drugs have been implemented (e.g., cytotoxicity assays, the basophil activation test, and lymphocyte activation assays). In this review, we focus on strategies for evaluation of the allergic potential of peptide-based therapeutics.
Collapse
|
17
|
Langa P, Wardowska A, Zieliński J, Podolak-Popinigis J, Sass P, Sosnowski P, Kondej K, Renkielska A, Sachadyn P, Trzonkowski P, Pikuła M. Transcriptional profile of in vitro expanded human epidermal progenitor cells for the treatment of non-healing wounds. J Dermatol Sci 2017; 89:272-281. [PMID: 29287803 DOI: 10.1016/j.jdermsci.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Epidermal progenitor cells (EPCs) have been under extensive investigation due to their increasing potential of application in medicine and biotechnology. Cultured human EPCs are used in the treatment of chronic wounds and have recently became a target for gene therapy and toxicological studies. One of the challenges in EPCs culture is to provide a high number of undifferentiated, progenitor cells displaying high viability and significant biological activity. OBJECTIVES The goal of this study was to characterize the in vitro cultured progenitor cells and to assess whether the cells with the progenitor phenotype are able to enhance wound healing. Additionally, we aimed to establish the complete procedure of the culture, analysis and clinical application of epidermal progenitor cells. METHODS In this study we present a method of cell isolation and culture followed by a technique of transplantation of the cultured cells onto the wound bed. The applied isolation technique involves two enzymatic steps (dispase, trypsin) and it is characterized by a high yield of cells. The obtained cells were cultured in vitro up to the second passage in serum-free and xeno-free keratinocytes-dedicated medium. Key stem cell markers were determined with means of flow cytometry and quantitative real-time PCR. RESULTS The in vitro expanded cells displayed high proliferative activity without features of neither apoptosis nor necrosis. The flow cytometry and transcriptomic analyses showed enhanced expression of stem cell markers (i.e. proteins: ΔNp63, CD29, CD49f and BNC1, CDKN1A transcripts) in the expanded cells. In the presented compassionate use study, cultured autologous cells from an oncological patient were suspended in fibrin sealant and transplanted directly to a non-healing wound, resulting in wound closure within 2 months. CONCLUSION The cells cultured in serum-free media display epidermal stem cells features and a potential to stimulate wound healing. This promising procedure of isolation, culture and application warrants further clinical trials in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland
| | - Anna Wardowska
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland
| | - Jacek Zieliński
- Department of Surgical Oncology, Medical University of Gdansk, Poland
| | - Justyna Podolak-Popinigis
- Department of Molecular Biotechnology & Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Sass
- Department of Molecular Biotechnology & Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Paweł Sosnowski
- Department of Molecular Biotechnology & Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, Poland
| | | | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland
| | - Michał Pikuła
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland.
| |
Collapse
|
18
|
Park HJ, Salem M, Semlali A, Leung KP, Rouabhia M. Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro. Peptides 2017; 93:33-43. [PMID: 28499840 DOI: 10.1016/j.peptides.2017.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022]
Abstract
We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing.
Collapse
Affiliation(s)
- Hyun-Jin Park
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada
| | - Mabrouka Salem
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada
| | - Abdelhabib Semlali
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kai P Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, US Army Institute of Surgical Research, Joint Base Fort Sam Houston, TX 78234-6315, USA
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.
| |
Collapse
|