1
|
Alibardi L. Activation of Marck-like Genes and Proteins During Initial Phases of Regeneration in the Amputated Tail and Limb of the Lizard Podarcis muralis. J Dev Biol 2025; 13:12. [PMID: 40265370 PMCID: PMC12015775 DOI: 10.3390/jdb13020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/28/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Molecules involved in the activation of regeneration in reptiles are almost unknown. MARCK-like proteins are indicated to activate regeneration in some amphibians and fish, and it would be important to know whether this is a general process also present in other vertebrates. To address this problem, the present study reports the immunolocalization of a MARCK-like protein in injured tissues of a lizard. Bioinformatics and immunofluorescence after 5BrdU administration, and detection of MARCK-like proteins, have been performed on regenerating tail and limb of the lizard Podarcis muralis. Transcriptome data indicate up-regulation of MARCKS and MARCK-like1 expression in the initial regenerating tail and limb blastemas, supporting their involvement in the activation of regeneration in both appendages. Immunofluorescence for 5BrdU shows numerous proliferating cells in the blastemas of both appendages. Immunolocalization of a MARCK-like protein, using an antibody generated against a homologous protein from the axolotl, shows that the wound epidermis, nerves, and myotubes accumulate most of the protein in the limb and tail. MARCK-like immunolabeling is also detected in the regenerating spinal cord of the tail. The study indicates that, although the limb later turns into a scar, the MARCK-like protein is also up-regulated in this appendage, like in the regenerating tail. These results indicate that the initial reaction to an injury in lizards, an amniote representative, includes some triggering processes observed in amphibians and fish (anamniotes), with the activation of MARCK-like genes and proteins. This suggests that a MARCK-like-dependant mechanism for tissue repair is likely activated during the initial phases of vertebrate wound healing.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- PAM, Comparative Histolab Padova, 35100 Padova, Italy;
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
2
|
Conley HE, Brown CF, Westerman TL, Elfenbein JR, Sheats MK. MARCKS Inhibition Alters Bovine Neutrophil Responses to Salmonella Typhimurium. Biomedicines 2024; 12:442. [PMID: 38398044 PMCID: PMC10886653 DOI: 10.3390/biomedicines12020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Neutrophils are innate immune cells that respond quickly to sites of bacterial infection and play an essential role in host defense. Interestingly, some bacterial pathogens benefit from exuberant neutrophil inflammation. Salmonella is one such pathogen that can utilize the toxic mediators released by neutrophils to colonize the intestine and cause enterocolitis. Because neutrophils can aid gut colonization during Salmonella infection, neutrophils represent a potential host-directed therapeutic target. Myristoylated alanine-rich C-kinase substrate (MARCKS) is an actin-binding protein that plays an essential role in many neutrophil effector responses. We hypothesized that inhibition of MARCKS protein would alter bovine neutrophil responses to Salmonella Typhimurium (STm) ex vivo. We used a MARCKS inhibitor peptide to investigate the role of MARCKS in neutrophil responses to STm. This study demonstrates that MARCKS inhibition attenuated STm-induced neutrophil adhesion and chemotaxis. Interestingly, MARCKS inhibition also enhanced neutrophil phagocytosis and respiratory burst in response to STm. This is the first report describing the role of MARCKS protein in neutrophil antibacterial responses.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Chalise F Brown
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Trina L Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Johanna R Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
3
|
Torres HM, Fang F, May DG, Bosshardt P, Hinojosa L, Roux KJ, Tao J. Comprehensive analysis of the proximity-dependent nuclear interactome for the oncoprotein NOTCH1 in live cells. J Biol Chem 2024; 300:105522. [PMID: 38043798 PMCID: PMC10788534 DOI: 10.1016/j.jbc.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
Notch signaling plays a critical role in cell fate decisions in all cell types. Furthermore, gain-of-function mutations in NOTCH1 have been uncovered in many human cancers. Disruption of Notch signaling has recently emerged as an attractive disease treatment strategy. However, the nuclear interaction landscape of the oncoprotein NOTCH1 remains largely unexplored. We therefore employed here a proximity-dependent biotin identification approach to identify in vivo protein associations with the nuclear Notch1 intracellular domain in live cells. We identified a large set of previously reported and unreported proteins that associate with NOTCH1, including general transcription and elongation factors, DNA repair and replication factors, coactivators, corepressors, and components of the NuRD and SWI/SNF chromatin remodeling complexes. We also found that Notch1 intracellular domain associates with protein modifiers and components of other signaling pathways that may influence Notch signal transduction and protein stability such as USP7. We further validated the interaction of NOTCH1 with histone deacetylase 1 or GATAD2B using protein network analysis, proximity-based ligation, in vivo cross-linking and coimmunoprecipitation assays in several Notch-addicted cancer cell lines. Through data mining, we also revealed potential drug targets for the inhibition of Notch signaling. Collectively, these results provide a valuable resource to uncover the mechanisms that fine-tune Notch signaling in tumorigenesis and inform therapeutic targets for Notch-addicted tumors.
Collapse
Affiliation(s)
- Haydee M Torres
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| | - Fang Fang
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Paige Bosshardt
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Leetoria Hinojosa
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA.
| |
Collapse
|
4
|
Krishnarjuna B, Marte J, Ravula T, Ramamoorthy A. Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions. J Colloid Interface Sci 2023; 634:887-896. [PMID: 36566634 PMCID: PMC10838601 DOI: 10.1016/j.jcis.2022.12.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The nanodisc technology is increasingly used for structural studies on membrane proteins and drug delivery. The development of synthetic polymer nanodiscs and the recent discovery of non-ionic inulin-based polymers have significantly broadened the scope of nanodiscs. While the lipid exchange and size flexibility properties of the self-assembled polymer-based nanodiscs are valuable for various applications, the non-ionic polymer nanodiscs are remarkably unique in that they enable the reconstitution of any protein, protein-protein complexes, or drugs irrespective of their charge. However, the non-ionic nature of the belt could influence the stability and size homogeneity of inulin-based polymer nanodiscs. In this study, we investigate the size stability and homogeneity of nanodiscs formed by non-ionic lipid-solubilizing polymers using different biophysical methods. Polymer nanodiscs containing zwitterionic DMPC and different ratios of DMPC:DMPG lipids were made using anionic SMA-EA or non-ionic pentyl-inulin polymers. Non-ionic polymer nanodiscs made using zwitterionic DMPC lipids produced a very broad elution profile on SEC due to their instability in the column, thus affecting sample monodispersity which was confirmed by DLS experiments that showed multiple peaks. However, the inclusion of anionic DMPG lipids improved the stability as observed from SEC and DLS profiles, which was further confirmed by TEM images. Whereas, anionic SMA-EA-based DMPC-nanodiscs showed excellent stability and size homogeneity when solubilizing zwitterionic lipids. The stability of DMPC:DMPG non-ionic polymer nanodiscs is attributed to the inter-nanodisc repulsion by the anionic-DMPG that prevents the uncontrolled collision and fusion of nanodiscs. Thus, the reported results demonstrate the use of electrostatic interactions to tune the solubility, stability, and size homogeneity of non-ionic polymer nanodiscs which are important features for enabling functional and atomic-resolution structural studies of membrane proteins, other lipid-binding molecules, and water-soluble biomolecules including cytosolic proteins, nucleic acids and metabolites.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
5
|
Yadav V, Sharma AK, Parashar G, Parashar NC, Ramniwas S, Jena MK, Tuli HS, Yadav K. Patent landscape highlighting therapeutic implications of peptides targeting myristoylated alanine-rich protein kinase-C substrate (MARCKS). Expert Opin Ther Pat 2023; 33:445-454. [PMID: 37526024 DOI: 10.1080/13543776.2023.2240020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION MARCKS protein, a protein kinase C (PKC) substrate, is known to be at the intersection of several intracellular signaling pathways and plays a pivotal role in cellular physiology. Unlike PKC inhibitors, MARCKS-targeting drug (BIO-11006) has shown early success in clinical trials involving lung diseases. Recent research investigations have identified two MARCKS-targeting peptides which possess multifaceted implications against asthma, cancer, inflammation, and lung diseases. AREAS COVERED This review article provides the patent landscape and recent developments on peptides targeting MARCKS for therapeutic purposes. Online free open-access databases were used to fetch out the patent information, and research articles were fetched using PubMed. EXPERT OPINION Research studies highlighting the intriguing role of MARCKS in human disease and physiology have dramatically increased in recent years. A similar increasing trend in the number of patents has also been observed related to the MARCKS-targeting peptides. Thus, there is a need to amalgamate and translate such a trend into therapeutic intervention. Our review article provides an overview of such recent advances, and we believe that our compilation will fetch the interest of researchers around the globe to develop MARCKS-targeting peptides in future for human diseases.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skane University Hospital, Malmö, Sweden
| | - Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Parashar
- Division of Biomedical & Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Nidarshana Chaturvedi Parashar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Haryana, India
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Haryana, India
| | - Kiran Yadav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, Punjab, India
| |
Collapse
|
6
|
Chen L, Zhao ZW, Zeng PH, Zhou YJ, Yin WJ. Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle 2022; 21:1121-1139. [PMID: 35192423 PMCID: PMC9103275 DOI: 10.1080/15384101.2022.2042777] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maintenance of cellular cholesterol homeostasis is essential for normal cell function and viability. Excessive cholesterol accumulation is detrimental to cells and serves as the molecular basis of many diseases, such as atherosclerosis, Alzheimer's disease, and diabetes mellitus. The peripheral cells do not have the ability to degrade cholesterol. Cholesterol efflux is therefore the only pathway to eliminate excessive cholesterol from these cells. This process is predominantly mediated by ATP-binding cassette transporter A1 (ABCA1), an integral membrane protein. ABCA1 is known to transfer intracellular free cholesterol and phospholipids to apolipoprotein A-I (apoA-I) for generating nascent high-density lipoprotein (nHDL) particles. nHDL can accept more free cholesterol from peripheral cells. Free cholesterol is then converted to cholesteryl ester by lecithin:cholesterol acyltransferase to form mature HDL. HDL-bound cholesterol enters the liver for biliary secretion and fecal excretion. Although how cholesterol is transported by ABCA1 to apoA-I remains incompletely understood, nine models have been proposed to explain this effect. In this review, we focus on the current view of the mechanisms underlying ABCA1-mediated cholesterol efflux to provide an important framework for future investigation and lipid-lowering therapy.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying-Jie Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,CONTACT Wen-Jun Yin Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| |
Collapse
|
7
|
Phosphorylation-dependent proteome of Marcks in ependyma during aging and behavioral homeostasis in the mouse forebrain. GeroScience 2022; 44:2077-2094. [DOI: 10.1007/s11357-022-00517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
|
8
|
Chen Z, Zhang W, Selmi C, Ridgway WM, Leung PS, Zhang F, Gershwin ME. The myristoylated alanine-rich C-kinase substrates (MARCKS): A membrane-anchored mediator of the cell function. Autoimmun Rev 2021; 20:102942. [PMID: 34509657 PMCID: PMC9746065 DOI: 10.1016/j.autrev.2021.102942] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/26/2021] [Indexed: 12/15/2022]
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) and the MARCKS-related protein (MARCKSL1) are ubiquitous, highly conserved membrane-associated proteins involved in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis. MARCKS includes an N-terminal myristoylated domain for membrane binding, a highly conserved MARCKS Homology 2 (MH2) domain, and an effector domain (which is the phosphorylation site). MARCKS can sequester phosphatidylinositol-4, 5-diphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C (PKC), ultimately modulating the immune function. Being expressed mostly in innate immune cells, MARCKS promotes the inflammation-driven migration and adhesion of cells and the secretion of cytokines such as tumor necrosis factor (TNF). From a clinical point of view, MARCKS is overexpressed in patients with schizophrenia and bipolar disorders, while the brain level of MARCKS phosphorylation is associated with Alzheimer's disease. Furthermore, MARCKS is associated with the development and progression of numerous types of cancers. Data in autoimmune diseases are limited to rheumatoid arthritis models in which a connection between MARCKS and the JAK-STAT pathway is mediated by miRNAs. We provide a comprehensive overview of the structure of MARCKS, its molecular characteristics and functions from a biological and pathogenetic standpoint, and will discuss the clinical implications of this pathway.
Collapse
Affiliation(s)
- Zhilei Chen
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States,Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States,Corresponding authors. (W. Zhang), (F. Zhang)
| | - Carlo Selmi
- Humanitas Research Hospital - IRCCS, Rozzano, Milan, Italy
| | - William M. Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China,Corresponding authors. (W. Zhang), (F. Zhang)
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
9
|
Eustace NJ, Anderson JC, Warram JM, Widden HN, Pedersen RT, Alrefai H, Patel Z, Hicks PH, Placzek WJ, Gillespie GY, Hjelmeland AB, Willey CD. A cell-penetrating MARCKS mimetic selectively triggers cytolytic death in glioblastoma. Oncogene 2020; 39:6961-6974. [PMID: 33077834 PMCID: PMC7885995 DOI: 10.1038/s41388-020-01511-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignancy with limited effectiveness of standard of care therapies including surgery, radiation, and temozolomide chemotherapy necessitating novel therapeutics. Unfortunately, GBMs also harbor several signaling alterations that protect them from traditional therapies that rely on apoptotic programmed cell death. Because almost all GBM tumors have dysregulated phosphoinositide signaling as part of that process, we hypothesized that peptide mimetics derived from the phospholipid binding domain of Myristoylated alanine-rich C-kinase substrate (MARCKS) could serve as a novel GBM therapeutic. Using molecularly classified patient-derived xenograft (PDX) lines, cultured in stem-cell conditions, we demonstrate that cell permeable MARCKS effector domain (ED) peptides potently target all GBM molecular classes while sparing normal human astrocytes. Cell death mechanistic testing revealed that these peptides produce rapid cytotoxicity in GBM that overcomes caspase inhibition. Moreover, we identify a GBM-selective cytolytic death mechanism involving plasma membrane targeting and intracellular calcium accumulation. Despite limited relative partitioning to the brain, tail-vein peptide injection revealed tumor targeting in intracranially implanted GBM PDX. These results indicate that MARCKS ED peptide therapeutics may overcome traditional GBM resistance mechanisms, supporting further development of similar agents.
Collapse
Affiliation(s)
- Nicholas J Eustace
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason M Warram
- Department of Otolaryngology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayley N Widden
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Hasan Alrefai
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zeel Patel
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patricia H Hicks
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher D Willey
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Sheats MK, Yin Q, Fang S, Park J, Crews AL, Parikh I, Dickson B, Adler KB. MARCKS and Lung Disease. Am J Respir Cell Mol Biol 2019; 60:16-27. [PMID: 30339463 DOI: 10.1165/rcmb.2018-0285tr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MARCKS (myristoylated alanine-rich C kinase substrate) is a prominent PKC substrate expressed in all eukaryotic cells. It is known to bind to and cross-link actin filaments, to serve as a bridge between Ca2+/calmodulin and PKC signaling, and to sequester the signaling molecule phosphatidylinositol 4,5-bisphosphate in the plasma membrane. Since the mid-1980s, this evolutionarily conserved and ubiquitously expressed protein has been associated with regulating cellular events that require dynamic actin reorganization, including cellular adhesion, migration, and exocytosis. More recently, translational studies have implicated MARCKS in the pathophysiology of a number of airway diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and acute lung injury/acute respiratory distress syndrome. This article summarizes the structure and cellular function of MARCKS (also including MARCKS family proteins and MARCKSL1 [MARCKS-like protein 1]). Evidence for MARCKS's role in several lung diseases is discussed, as are the technological innovations that took MARCKS-targeting strategies from theoretical to therapeutic. Descriptions and updates derived from ongoing clinical trials that are investigating inhalation of a MARCKS-targeting peptide as therapy for patients with chronic bronchitis, lung cancer, and ARDS are provided.
Collapse
Affiliation(s)
| | - Qi Yin
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Shijing Fang
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Joungjoa Park
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Anne L Crews
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Indu Parikh
- 3 BioMarck Pharmaceuticals, Durham, North Carolina
| | | | - Kenneth B Adler
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| |
Collapse
|
11
|
Du L, Yu X, Hou L, Zhang D, Zhang Y, Qiao X, Hou J, Chen J, Zheng Q. Identification of mechanisms conferring an enhanced immune response in mice induced by CVC1302-adjuvanted killed serotype O foot-and-mouth virus vaccine. Vaccine 2019; 37:6362-6370. [PMID: 31526618 DOI: 10.1016/j.vaccine.2019.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
The adjuvant CVC1302 was previously shown to efficiently enhance the immunogenicity of killed foot-and-mouth disease virus (FMDV) in mice and piglets. However, the underlining mechanism of action of CVC1302 remains unclear, especially at local injection sites and draining lymph nodes. Since the FMDV vaccine is administrated intramuscularly in field settings, we studied local immune responses to FMDV following intramuscular injection in mice, and found that CVC1302-adjuvanted killed FMDV (KV-CVC1302) induced secretion of several chemokines in murine muscle tissues, including MCP-1, MIP-1α, and MIP-1β. The number of monocytes recruited to the site of injection was significantly higher in mice immunized with KV-CVC1302 compared with mice immunized with killed FMDV alone (KV). iTAQ-based quantitative proteomic assays were additionally employed to explore the molecular mechanisms of CVC1302 action in the draining lymph nodes. A total of 35 proteins were identified as being differentially expressed among the control group, KV-immunized group and KV-CVC1302-immunized group at 10 days post immunization (dpi). Proteins exhibiting differential expression were mainly involved in signal transduction, apoptosis, endocytosis and innate immune responses. Pathway analysis demonstrated that AMPK, phospholipase D, cAMP, Rap1, and MAPK signaling pathways were potentially induced by the immunopotentiator CVC1302. Understanding the local mechanism of CVC1302 action at injection sites and draining lymph nodes will provide new insights into the development of FMDV vaccines.
Collapse
Affiliation(s)
- Luping Du
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Xiaoming Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Liting Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Dong Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, Shandong 250022, China
| | - Yuanpeng Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China.
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China.
| |
Collapse
|
12
|
Nuclear Phosphoinositides: Their Regulation and Roles in Nuclear Functions. Int J Mol Sci 2019; 20:ijms20122991. [PMID: 31248120 PMCID: PMC6627530 DOI: 10.3390/ijms20122991] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Polyphosphoinositides (PPIns) are a family of seven lipid messengers that regulate a vast array of signalling pathways to control cell proliferation, migration, survival and differentiation. PPIns are differentially present in various sub-cellular compartments and, through the recruitment and regulation of specific proteins, are key regulators of compartment identity and function. Phosphoinositides and the enzymes that synthesise and degrade them are also present in the nuclear membrane and in nuclear membraneless compartments such as nuclear speckles. Here we discuss how PPIns in the nucleus are modulated in response to external cues and how they function to control downstream signalling. Finally we suggest a role for nuclear PPIns in liquid phase separations that are involved in the formation of membraneless compartments within the nucleus.
Collapse
|
13
|
Hartl M, Schneider R. A Unique Family of Neuronal Signaling Proteins Implicated in Oncogenesis and Tumor Suppression. Front Oncol 2019; 9:289. [PMID: 31058089 PMCID: PMC6478813 DOI: 10.3389/fonc.2019.00289] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
The neuronal proteins GAP43 (neuromodulin), MARCKS, and BASP1 are highly expressed in the growth cones of nerve cells where they are involved in signal transmission and cytoskeleton organization. Although their primary structures are unrelated, these signaling proteins share several structural properties like fatty acid modification, and the presence of cationic effector domains. GAP43, MARCKS, and BASP1 bind to cell membrane phospholipids, a process reversibly regulated by protein kinase C-phosphorylation or by binding to the calcium sensor calmodulin (CaM). GAP43, MARCKS, and BASP1 are also expressed in non-neuronal cells, where they may have important functions to manage cytoskeleton architecture, and in case of MARCKS and BASP1 to act as cofactors in transcriptional regulation. During neoplastic cell transformation, the proteins reveal differential expression in normal vs. tumor cells, and display intrinsic tumor promoting or tumor suppressive activities. Whereas GAP43 and MARCKS are oncogenic, tumor suppressive functions have been ascribed to BASP1 and in part to MARCKS depending on the cell type. Like MARCKS, the myristoylated BASP1 protein is localized both in the cytoplasm and in the cell nucleus. Nuclear BASP1 participates in gene regulation converting the Wilms tumor transcription factor WT1 from an oncoprotein into a tumor suppressor. The BASP1 gene is downregulated in many human tumor cell lines particularly in those derived from leukemias, which display elevated levels of WT1 and of the major cancer driver MYC. BASP1 specifically inhibits MYC-induced cell transformation in cultured cells. The tumor suppressive functions of BASP1 and MARCKS could be exploited to expand the spectrum of future innovative therapeutic approaches to inhibit growth and viability of susceptible human tumors.
Collapse
Affiliation(s)
- Markus Hartl
- Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Rainer Schneider
- Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Viita T, Kyheröinen S, Prajapati B, Virtanen J, Frilander MJ, Varjosalo M, Vartiainen MK. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J Cell Sci 2019; 132:jcs226852. [PMID: 30890647 PMCID: PMC6503952 DOI: 10.1242/jcs.226852] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
In addition to its essential functions within the cytoskeleton, actin also localizes to the cell nucleus, where it is linked to many important nuclear processes from gene expression to maintenance of genomic integrity. However, the molecular mechanisms by which actin operates in the nucleus remain poorly understood. Here, we have used two complementary mass spectrometry (MS) techniques, AP-MS and BioID, to identify binding partners for nuclear actin. Common high-confidence interactions highlight the role of actin in chromatin-remodeling complexes and identify the histone-modifying complex human Ada-Two-A-containing (hATAC) as a novel actin-containing nuclear complex. Actin binds directly to the hATAC subunit KAT14, and modulates its histone acetyl transferase activity in vitro and in cells. Transient interactions detected through BioID link actin to several steps of transcription as well as to RNA processing. Alterations in nuclear actin levels disturb alternative splicing in minigene assays, likely by affecting the transcription elongation rate. This interactome analysis thus identifies both novel direct binding partners and functional roles for nuclear actin, as well as forms a platform for further mechanistic studies on how actin operates during essential nuclear processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tiina Viita
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Bina Prajapati
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Jori Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Proteomics Unit, University of Helsinki, Helsinki 00014, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
15
|
Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv Biol Regul 2019; 72:7-21. [PMID: 31003946 DOI: 10.1016/j.jbior.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Biomolecular interactions between proteins and polyphosphoinositides (PPIn) are essential in the regulation of the vast majority of cellular processes. Consequently, alteration of these interactions is implicated in the development of many diseases. PPIn are phosphorylated derivatives of phosphatidylinositol and consist of seven species with different phosphate combinations. PPIn signal by recruiting proteins via canonical domains or short polybasic motifs. Although their actions are predominantly documented on cytoplasmic membranes, six of the seven PPIn are present within the nucleus together with the PPIn kinases, phosphatases and phospholipases that regulate their turnover. Importantly, the contribution of nuclear PPIn in the regulation of nuclear processes has led to an increased recognition of their importance compared to their more accepted cytoplasmic roles. This review summarises our knowledge on the identification and functional characterisation of nuclear PPIn-effector proteins as well as their mode of interactions, which tend to favour polybasic motifs.
Collapse
|
16
|
Eustace NJ, Anderson JC, Langford CP, Trummell HQ, Hicks PH, Jarboe JS, Mobley JA, Hjelmeland AB, Hackney JR, Pedersen RT, Cosby K, Gillespie GY, Bonner JA, Willey CD. Myristoylated alanine-rich C-kinase substrate effector domain phosphorylation regulates the growth and radiation sensitization of glioblastoma. Int J Oncol 2019; 54:2039-2053. [PMID: 30942445 PMCID: PMC6521926 DOI: 10.3892/ijo.2019.4766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma harbors frequent alterations in receptor tyrosine kinases, phosphatidylinositol-3 kinase (PI3K) and phosphatase and tensin homolog (PTEN) that dysregulate phospholipid signaling driven tumor proliferation and therapeutic resistance. Myristoylated alanine-rich C-kinase substrate (MARCKS) is a 32 kDa intrinsically unstructured protein containing a polybasic (+13) effector domain (ED), which regulates its electrostatic sequestration of phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP2), and its binding to phosphatidylserine, calcium/calmodulin, filamentous actin, while also serving as a nuclear localization sequence. MARCKS ED is phosphorylated by protein kinase C (PKC) and Rho-associated protein kinase (ROCK) kinases; however, the impact of MARCKS on glioblastoma growth and radiation sensitivity remains undetermined. In the present study, using a tetracycline-inducible system in PTEN-null U87 cells, we demonstrate that MARCKS overexpression suppresses growth and enhances radiation sensitivity in vivo. A new image cytometer, Xcyto10, was utilized to quantify differences in MARCKS ED phosphorylation on localization and its association with filamentous actin. The overexpression of the non-phosphorylatable ED mutant exerted growth-suppressive and radiation-sensitizing effects, while the pseudo-phosphorylated ED mutant exhibited an enhanced colony formation and clonogenic survival ability. The identification of MARCKS protein-protein interactions using co-immunoprecipitation coupled with tandem mass spectrometry revealed novel MARCKS-associated proteins, including importin-β and ku70. On the whole, the findings of this study suggest that the determination of the MARCKS ED phosphorylation status is essential to understanding the impact of MARCKS on cancer progression.
Collapse
Affiliation(s)
- Nicholas J Eustace
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Catherine P Langford
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hoa Q Trummell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patricia H Hicks
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John S Jarboe
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B Hjelmeland
- Department of Cell molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James R Hackney
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Kadia Cosby
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James A Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
MARCKS regulates neuritogenesis and interacts with a CDC42 signaling network. Sci Rep 2018; 8:13278. [PMID: 30185885 PMCID: PMC6125478 DOI: 10.1038/s41598-018-31578-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/21/2018] [Indexed: 01/24/2023] Open
Abstract
Through the process of neuronal differentiation, newly born neurons change from simple, spherical cells to complex, sprawling cells with many highly branched processes. One of the first stages in this process is neurite initiation, wherein cytoskeletal modifications facilitate membrane protrusion and extension from the cell body. Hundreds of actin modulators and microtubule-binding proteins are known to be involved in this process, but relatively little is known about how upstream regulators bring these complex networks together at discrete locations to produce neurites. Here, we show that Myristoylated alanine-rich C kinase substrate (MARCKS) participates in this process. Marcks−/− cortical neurons extend fewer neurites and have less complex neurite arborization patterns. We use an in vitro proteomics screen to identify MARCKS interactors in developing neurites and characterize an interaction between MARCKS and a CDC42-centered network. While the presence of MARCKS does not affect whole brain levels of activated or total CDC42, we propose that MARCKS is uniquely positioned to regulate CDC42 localization and interactions within specialized cellular compartments, such as nascent neurites.
Collapse
|
18
|
Dussaq AM, Kennell T, Eustace NJ, Anderson JC, Almeida JS, Willey CD. Kinomics toolbox-A web platform for analysis and viewing of kinomic peptide array data. PLoS One 2018; 13:e0202139. [PMID: 30130366 PMCID: PMC6103510 DOI: 10.1371/journal.pone.0202139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Kinomics is an emerging field of science that involves the study of global kinase activity. As kinases are essential players in virtually all cellular activities, kinomic testing can directly examine protein function, distinguishing kinomics from more remote, upstream components of the central dogma, such as genomics and transcriptomics. While there exist several different approaches for kinomic research, peptide microarrays are the most widely used and involve kinase activity assessment through measurement of phosphorylation of peptide substrates on the array. Unfortunately, bioinformatic tools for analyzing kinomic data are quite limited necessitating the development of accessible open access software in order to facilitate standardization and dissemination of kinomic data for scientific use. Here, we examine and present tools for data analysis for the popular PamChip® (PamGene International) kinomic peptide microarray. As a result, we propose (1) a procedural optimization of kinetic curve data capture, (2) new methods for background normalization, (3) guidelines for the detection of outliers during parameterization, and (4) a standardized data model to store array data at various analytical points. In order to utilize the new data model, we developed a series of tools to implement the new methods and to visualize the various data models. In the interest of accessibility, we developed this new toolbox as a series of JavaScript procedures that can be utilized as either server side resources (easily packaged as web services) or as client side scripts (web applications running in the browser). The aggregation of these tools within a Kinomics Toolbox provides an extensible web based analytic platform that researchers can engage directly and web programmers can extend. As a proof of concept, we developed three analytical tools, a technical reproducibility visualizer, an ANOVA based detector of differentially phosphorylated peptides, and a heatmap display with hierarchical clustering.
Collapse
Affiliation(s)
- Alex M. Dussaq
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy Kennell
- Informatics Institute, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nicholas J. Eustace
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joshua C. Anderson
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jonas S. Almeida
- Department of Biomedical Informatics, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Christopher D. Willey
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
19
|
El Amri M, Fitzgerald U, Schlosser G. MARCKS and MARCKS-like proteins in development and regeneration. J Biomed Sci 2018; 25:43. [PMID: 29788979 PMCID: PMC5964646 DOI: 10.1186/s12929-018-0445-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSL1) have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the inflammatory response. Recently, both proteins have also been identified as important players in regeneration. Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1 translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of cell migration, secretion, proliferation and differentiation in many different tissues. MAIN BODY Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making them promising targets for regenerative medicine. CONCLUSION This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSL1 proteins and outlines their vital roles in development and regeneration.
Collapse
Affiliation(s)
- Mohamed El Amri
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, Biomedical Sciences Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | - Gerhard Schlosser
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland. .,School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland.
| |
Collapse
|
20
|
Fu X, Liang C, Li F, Wang L, Wu X, Lu A, Xiao G, Zhang G. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins. Int J Mol Sci 2018; 19:ijms19051445. [PMID: 29757215 PMCID: PMC5983729 DOI: 10.3390/ijms19051445] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.
Collapse
Affiliation(s)
- Xuekun Fu
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Guozhi Xiao
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| |
Collapse
|
21
|
Mendes M, Peláez-García A, López-Lucendo M, Bartolomé RA, Calviño E, Barderas R, Casal JI. Mapping the Spatial Proteome of Metastatic Cells in Colorectal Cancer. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/28/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Marta Mendes
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Alberto Peláez-García
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - María López-Lucendo
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Rubén A. Bartolomé
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Eva Calviño
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Rodrigo Barderas
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
- Instituto de Salud Carlos III.; Majadahonda Spain
| | - J. Ignacio Casal
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| |
Collapse
|
22
|
Chen CH, Fong LWR, Yu E, Wu R, Trott JF, Weiss RH. Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target. Oncogene 2017; 36:3588-3598. [PMID: 28166200 PMCID: PMC5926797 DOI: 10.1038/onc.2016.510] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
Targeted therapeutics, such as those abrogating hypoxia inducible factor (HIF)/vascular endothelial growth factor signaling, are initially effective against kidney cancer (or renal cell carcinoma, RCC); however, drug resistance frequently occurs via subsequent activation of alternative pathways. Through genome-scale integrated analysis of the HIF-α network, we identified the major protein kinase C substrate MARCKS (myristoylated alanine-rich C kinase substrate) as a potential target molecule for kidney cancer. In a screen of nephrectomy samples from 56 patients with RCC, we found that MARCKS expression and its phosphorylation are increased and positively correlate with tumor grade. Genetic and pharmacologic suppression of MARCKS in high-grade RCC cell lines in vitro led to a decrease in cell proliferation and migration. We further demonstrated that higher MARCKS expression promotes growth and angiogenesis in vivo in an RCC xenograft tumor. MARCKS acted upstream of the AKT/mTOR pathway, activating HIF-target genes, notably vascular endothelial growth factor-A. Following knockdown of MARCKS in RCC cells, the IC50 of the multikinase inhibitor regorafenib was reduced. Surprisingly, attenuation of MARCKS using the MPS (MARCKS phosphorylation site domain) peptide synergistically interacted with regorafenib treatment and decreased survival of kidney cancer cells through inactivation of AKT and mTOR. Our data suggest a major contribution of MARCKS to kidney cancer growth and provide an alternative therapeutic strategy of improving the efficacy of multikinase inhibitors.
Collapse
Affiliation(s)
- C-H Chen
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA
- Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - LWR Fong
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Yu
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA
- Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - R Wu
- Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - JF Trott
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - RH Weiss
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA
- Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- Medical Service, Department of Veterans’ Affairs Northern California Health Care System Center, Sacramento, CA, USA
| |
Collapse
|
23
|
Matjasic A, Popovic M, Matos B, Glavac D. Expression of LOC285758, a Potential Long Non-coding Biomarker, is Methylation-dependent and Correlates with Glioma Malignancy Grade. Radiol Oncol 2017; 51:331-341. [PMID: 28959170 PMCID: PMC5611998 DOI: 10.1515/raon-2017-0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Identifying the early genetic drivers can help diagnose glioma tumours in their early stages, before becoming malignant. However, there is emerging evidence that disturbance of epigenetic mechanisms also contributes to cell's malignant transformation and cancer progression. Long non-coding RNAs are one of key epigenetic modulators of signalling pathways, since gene expression regulation is one of their canonical mechanisms. The aim of our study was to search new gliomagenesis-specific candidate lncRNAs involved in epigenetic regulation. PATIENTS AND METHODS We used a microarray approach to detect expression profiles of epigenetically involved lncRNAs on a set of 12 glioma samples, and selected LOC285758 for further qPCR expression validation on 157 glioma samples of different subtypes. To establish if change in expression is a consequence of epigenetic alterations we determined methylation status of lncRNA's promoter using MS-HRM. Additionally, we used the MLPA analysis for determining the status of known glioma biomarkers and used them for association analyses. RESULTS In all glioma subtypes levels of LOC285758 were significantly higher in comparison to normal brain reference RNA, and expression was inversely associated with promoter methylation. Expression substantially differs between astrocytoma and oligodendroglioma, and is elevated in higher WHO grades, which also showed loss of methylation. CONCLUSIONS Our study revealed that lncRNA LOC285758 changed expression in glioma is methylation-dependent and methylation correlates with WHO malignancy grade. Methylation is also distinctive between astrocytoma I-III and other glioma subtypes and may thus serve as an additional biomarker in glioma diagnosis.
Collapse
Affiliation(s)
- Alenka Matjasic
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mara Popovic
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bostjan Matos
- Department of Neurosurgery, University Medical Center, Ljubljana, Slovenia
| | - Damjan Glavac
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Vargova J, Vargova K, Dusilkova N, Kulvait V, Pospisil V, Zavadil J, Trneny M, Klener P, Stopka T. Differential expression, localization and activity of MARCKS between mantle cell lymphoma and chronic lymphocytic leukemia. Blood Cancer J 2016; 6:e475. [PMID: 27662204 PMCID: PMC5056972 DOI: 10.1038/bcj.2016.80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- J Vargova
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - K Vargova
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - N Dusilkova
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - V Kulvait
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - V Pospisil
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - J Zavadil
- Group of Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, Lyon, France
| | - M Trneny
- Department of Hematology, General Faculty Hospital, Prague, Czech Republic
| | - P Klener
- Department of Hematology, General Faculty Hospital, Prague, Czech Republic
| | - T Stopka
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Department of Hematology, General Faculty Hospital, Prague, Czech Republic
| |
Collapse
|