1
|
Carcauzon V, Cordonin C, Sebbane F, Soarimalala V, Goodman SM, Tortosa P. Malagasy flea microbiota results from a combination of vertically transmitted and environmentally acquired microbes. Sci Rep 2025; 15:8461. [PMID: 40069226 PMCID: PMC11897314 DOI: 10.1038/s41598-025-90670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Fleas (Insecta, Siphonaptera) are the known vectors of serious bacterial pathogens, such as Yersinia pestis and Rickettsia typhi. The microbiota of fleas has been poorly investigated although it has a known influence on vector competence. Here, we report and analyse the microbiota of 577 flea specimens from Madagascar, a hotspot of plague transmission. Importantly, endemic Malagasy fleas show low host specificity, allowing addressing the importance of vertebrate host species in microbiota composition, as well as that of abiotic variables. We describe through Illumina sequencing of 2 hypervariable regions of 16 S rDNA the bacterial composition of 577 flea specimens of Madagascar. We address the importance of biotic (mammalian host and flea species) and abiotic (season and sampling site) variables on bacterial community composition. Bacterial composition appears driven by flea species and season, but interestingly not by the flea's vertebrate hosts. These results suggest that the flea microbiota is at least in part acquired before they become adult, possibly in the immature off-host stages. Taken together, our results suggest that the microbiota of sampled fleas are composed of bacterial taxa with vertical transmission, such as Wolbachia which are prevalent in the present dataset, together with several bacterial taxa for which the occurrence is driven by environment factors, especially season and habitat. Given the importance of the microbiota in vector competence, we discuss the epidemiological consequences of environmentally-driven acquisition of microbiota in fleas on plague transmission in Madagascar.
Collapse
Affiliation(s)
- Victoria Carcauzon
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249, Plateforme Technologique CYROI, Sainte Clotilde, La Réunion, France.
| | - Colette Cordonin
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249, Plateforme Technologique CYROI, Sainte Clotilde, La Réunion, France
| | - Florent Sebbane
- Université de Lille, INSERM 1019, CNRS 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), 59000, Lille, France
| | | | - Steven M Goodman
- Association Vahatra, BP 3972, 101, Antananarivo, Madagascar
- Field Museum of Natural History, Chicago, IL, 60605-2496, USA
| | - Pablo Tortosa
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249, Plateforme Technologique CYROI, Sainte Clotilde, La Réunion, France
| |
Collapse
|
2
|
Zhao W, Li S, Sun Y, Liu J, Ma Y, Qi R. Different characteristics of the soil in marmot habitats might be one of the factors that influcting Yersinia pestis prevalent in which than pikas. Front Microbiol 2024; 15:1489125. [PMID: 39493844 PMCID: PMC11528156 DOI: 10.3389/fmicb.2024.1489125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Marmots are recognized as host animals for plague caused by Yersinia pestis infection. It is unclear that why plague prevalent in marmot rather than other rodents like pikas in the same habitats. This study aims to analyze the differences of the soil characteristics around marmots and pikas burrows to explore the soils factors impacting on different epidemic intensities of Yersinia pestis in these two rodents. Methods Soil samples were collected from within and around marmot and pika burrows, as well as from the nearby areas not inhabited by them and Chinese baseline soil properties as control groups, in the Qilian Mountains of Gansu Province, China. The physicochemical properties and the bacterial 16S rRNA were measured to analyze the characteristics of soils from different groups. Subsequently, the data were analyzed using R studio. Results The analysis revealed that marmot habitats exhibited distinct soil characteristics, including lower organic matter and alkaline hydrolyzed nitrogen, but higher electrical conductivity and total soluble salts. And soil in marmot areas tended to have higher concentrations of nickel, chromium, and iron, also lower levels of zinc and selenium. Additionally, the alpha diversity of soil microorganisms in marmot habitats was significantly low. Simultaneously, redundancy analysis was conducted, which showed that the low alpha diversity of marmot-soil was influenced by its physicochemical properties. The alpha diversity of the soil was positively correlated with EC, TSS, Na, and Cr, etc., while it was negatively correlated with AHN, OM, Se, Zn, and Fe, etc. Conclusion These characteristics in marmot habitats, including low levels of organic matter, alkaline hydrolyzed nitrogen, zinc, selenium, and bacterial alpha diversity, as well as high levels of electrical conductivity, total soluble salts, iron, and nickel, played a crucial role in the spread of plague. It was discovered that the unique characteristics of marmot-soils provided essential elements necessary for the survival of Yersinia pestis, including high levels of Fe and Ca, or facilitated the spread of plague. Thus, the transmission of the plague was facilitated.
Collapse
Affiliation(s)
- Wenlong Zhao
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China
| | - Shixiong Li
- Jiayuguan Centers for Diseases Control and Prevention, Jiayuguan, Gansu Province, China
| | - Yuechen Sun
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jingpeng Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yixin Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China
| | - Rui Qi
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
3
|
Guo W, Zhu W, Jia L, Tao Y. Unique microbial communities of parasitic fleas on wild animals from the Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40916-40924. [PMID: 38834927 DOI: 10.1007/s11356-024-33885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Fleas, one of the most significant ectoparasites, play a crucial role as vectors in spreading zoonotic diseases globally. The Qinghai Province, as part of the Qinghai-Tibet Plateau, is one of the provinces in China with the largest number of flea species. In this study, we characterized the microbial communities of eighty-five adult fleas, belonging to nineteen species within four families (Ceratophyllidae, Ctenophthalmidae, Leptopsyllidae, and Pulicidae). We identified a total of 1162 unique operational taxonomic units at the genus level, with flea-borne pathogens such as Wolbachia, Bartonella, Rickettsia being the members of top abundant taxa. Except for comparison between Ctenophthalmidae and Leptopsyllidae families, the analyses of both alpha- and beta- diversity indicators suggested that bacterial diversity varied among flea families. This could be attributed to flea phylogeny, which also influenced by their geographical sites and animal hosts. Results of Linear discriminant analysis effect size (LEfSe) indicated that 29 genera in Ceratophylloidea, 11 genera in Ctenophthalmidae, 15 genera in Leptopsyllidae, and 22 genera in Pulicidae were significantly responsible for explaining the differences among the four flea families (linear discriminant analysis score > 2, P < 0.05). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analyses showed that the functional pathways varied significantly across flea families, which was supported by the significant correlation between the functional pathways and the microbial communities.
Collapse
Affiliation(s)
- Wentao Guo
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China
| | - Wentao Zhu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Luo Jia
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China
| | - Yuanqing Tao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China.
| |
Collapse
|
4
|
Babyesiza WS, Mpagi J, Ssuuna J, Akoth S, Katakweba A. Ectoparasite Fauna of Rodents and Shrews with Their Spatial, Temporal, and Dispersal along a Degradation Gradient in Mabira Central Forest Reserve. J Parasitol Res 2023; 2023:7074041. [PMID: 37928436 PMCID: PMC10625493 DOI: 10.1155/2023/7074041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Ectoparasites like fleas, mites, and ticks that are key carriers of harmful pathogens such as viruses, bacteria, cestodes, and nematodes live on rodents and shrews. It should be noted that rodents' ecological adaptability makes them suitable as parasite hosts. The main objective of the study was to determine the ectoparasite assemblages in rodents and shrews along a degradation gradient, while comparing infestation levels in different habitats with varying levels of degradation. The study was conducted in Mabira Central Forest Reserve. Ectoparasites were collected following rodent and shrew removal trapping which was done using Sherman's traps set along transects of 200 meters in three habitat strata that included adjacent forest habitats, degraded forest edge, and regenerating forest interior. Data was collected intermittently with a break every two months for one year from November 2018 to December 2019. A total of 1411 rodents and shrews were collected, yielding a total of 5692 ectoparasites from 22 host species (17 rodents and 5 shrews). The most prevalent group of ectoparasites was mites followed by fleas, lice, ticks, and earwig. Ectoparasite prevalence significantly differed depending on hosts species (P = 0.001) and host age (P = 0.022), but not host sex (P = 0.78), while mean infestation significantly varied basing on host species (P = 0.001), host sex (P = 0.001), season (P = 0.001), and habitat (P = 0.001). Prevalence (P = 0.001) and mean infestation (P = 0.001) significantly varied across studied habitats. The study has emphasized the significance of Praomys jacksoni and Hylomyscus stella as significant hosts for mites and S. congicus as a significant host for fleas. Additionally, environment and host characteristics have a bearing on prevalence and infestation of ectoparasites with habitat degradation playing a significant role in the occurrence of ectoparasites, thereby emphasizing its contribution to zoonotic outbreaks.
Collapse
Affiliation(s)
- Waswa Sadic Babyesiza
- Africa Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development (ACE IRPM&BTD), Uganda
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Zoology, Entomology and Fisheries Science, Makerere University, Uganda
| | - Joseph Mpagi
- Department of Microbiology and Immunology, Busitema University, Uganda
| | - James Ssuuna
- Africa Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development (ACE IRPM&BTD), Uganda
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Sisiria Akoth
- Africa Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development (ACE IRPM&BTD), Uganda
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Zoology, Entomology and Fisheries Science, Makerere University, Uganda
| | - Abdul Katakweba
- Africa Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development (ACE IRPM&BTD), Uganda
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
5
|
Beliavskaia A, Tan KK, Sinha A, Husin NA, Lim FS, Loong SK, Bell-Sakyi L, Carlow CKS, AbuBakar S, Darby AC, Makepeace BL, Khoo JJ. Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas. Microb Genom 2023; 9:mgen001045. [PMID: 37399133 PMCID: PMC10438800 DOI: 10.1099/mgen.0.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
While fleas are often perceived simply as a biting nuisance and a cause of allergic dermatitis, they represent important disease vectors worldwide, especially for bacterial zoonoses such as plague (transmitted by rodent fleas) and some of the rickettsioses and bartonelloses. The cosmopolitan cat (Ctenocephalides felis ) and dog (Ctenocephalides canis ) fleas, as well as Ctenocephalides orientis (restricted to tropical and subtropical Asia), breed in human dwellings and are vectors of cat-scratch fever (caused by Bartonella spp.) and Rickettsia spp., including Rickettsia felis (agent of flea-borne spotted fever) and Rickettsia asembonensis , a suspected pathogen. These Rickettsia spp. are members of a phylogenetic clade known as the ‘transitional group’, which includes both human pathogens and arthropod-specific endosymbionts. The relatively depauperate flea microbiome can also contain other endosymbionts, including a diverse range of Wolbachia strains. Here, we present circularized genome assemblies for two C. orientis -derived pathogens (Bartonella clarridgeiae and R. asembonensis ) from Malaysia, a novel Wolbachia strain (w Cori), and the C. orientis mitochondrion; all were obtained by direct metagenomic sequencing of flea tissues. Moreover, we isolated two Wolbachia strains from Malaysian C. felis into tick cell culture and recovered circularized genome assemblies for both, one of which (w CfeF) is newly sequenced. We demonstrate that the three Wolbachia strains are representatives of different major clades (‘supergroups’), two of which appear to be flea-specific. These Wolbachia genomes exhibit unique combinations of features associated with reproductive parasitism or mutualism, including prophage WO, cytoplasmic incompatibility factors and the biotin operon of obligate intracellular microbes. The first circularized assembly for R. asembonensis includes a plasmid with a markedly different structure and gene content compared to the published plasmid; moreover, this novel plasmid was also detected in cat flea metagenomes from the USA. Analysis of loci under positive selection in the transitional group revealed genes involved in host–pathogen interactions that may facilitate host switching. Finally, the first B. clarridgeiae genome from Asia exhibited large-scale genome stability compared to isolates from other continents, except for SNPs in regions predicted to mediate interactions with the vertebrate host. These findings highlight the paucity of data on the genomic diversity of Ctenocephalides -associated bacteria and raise questions regarding how interactions between members of the flea microbiome might influence vector competence.
Collapse
Affiliation(s)
- Alexandra Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, 01938, USA
| | - Nurul Aini Husin
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fang Shiang Lim
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | | | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Jing Jing Khoo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| |
Collapse
|
6
|
Sridhar R, Dittmar K, Williams HM. USING SURFACE WASHING TO REMOVE THE ENVIRONMENTAL COMPONENT FROM FLEA MICROBIOME ANALYSIS. J Parasitol 2022; 108:245-253. [PMID: 35687318 DOI: 10.1645/21-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microbial metabarcoding is a common method to study the biology of blood-feeding arthropods and identify patterns of potential pathogen transmission. Before DNA extraction, specimens are often surface washed to remove environmental contaminants. While surface washing is common, its effects on microbial diversity remain unclear. We characterized the microbiome of the flea species Ceratophyllus idius, an avian ectoparasite, and a potential vector of pathogens, using high-throughput 16S rRNA sequencing. Half of the nests from which fleas were collected were subjected to an environmental manipulation in which nesting materials were periodically replaced. In a crossed study design we surface washed half of the flea samples from each environmental condition to produce 4 experimental conditions. Environmental manipulations resulted in significant differences in the diversity and structure of the flea microbiome, but these differences were unapparent when specimens were surface washed. Furthermore, differential abundance testing of the experimental groups revealed that surface washing predominantly affected the abundance of bacterial groups that are characterized as environmental contaminants. These findings suggest that environmental changes primarily affect the surface microbiome of arthropods and that surface washing is a useful tool to reduce the footprint of the external microbiome on analysis.
Collapse
Affiliation(s)
- Ramya Sridhar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260.,College of Medicine, Upstate Medical University, State University of New York, Syracuse, New York 13210
| | - Katharina Dittmar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Heather M Williams
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260.,Department of Environment and Sustainability, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
7
|
Manoj RRS, Latrofa MS, Bezerra-Santos MA, Sgroi G, Samarelli R, Mendoza-Roldan JA, Otranto D. Molecular detection and characterization of the endosymbiont Wolbachia in the European hedgehog flea, Archaeopsylla erinacei. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105161. [PMID: 34843992 DOI: 10.1016/j.meegid.2021.105161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Wolbachia, the endosymbiont of arthropods and onchocercid nematodes is present in many medically important insect species, being also considered for the indirect control of parasitic ones. Archaeopsylla erinacei is a flea species infesting hedgehogs acting as vector of Rickettsia felis, Bartonella henselae, and Rickettsia helvetica, thus having public health relevance. The Wolbachia surface protein (wsp) and 16S rRNA genes were used to determine the presence, prevalence and molecular typing of Wolbachia in this flea species collected in two regions of southern Italy. Of the 45 fleas tested (n = 16 males, 35.6%; n = 29 females, 64.4%), 43 (95.6%; 95% CI: 84.8-99.2) scored positive for Wolbachia, of which 15 (33.3%) and 28 (62.2%) were males and females, respectively. The sex-wise prevalence of this endosymbiont was almost equal in both sexes (males 93.8%; 95% CI: 69.5-99.7; females 96.7%; 95% CI: 83.1-99.8). Single locus sequence analysis (SLST) of Wolbachia revealed two sequence types for 16S rRNA gene, named as wAr_15227 and wAr_15234, which came from two different areas, equally distributed in male and female fleas, whilst only one sequence type was identified for wsp gene. The phylogenetic analysis placed the two 16S rRNA sequence types in paraphyletic clades belonging to the supergroup A and B, respectively. Whilst, the tree of wsp gene clustered the corresponding sequence in the same clade including those of Wolbachia supergroup A. In MLST analyses, both Wolbachia sequence types clustered in a monophyletic clade with Drosophila nikananu (wNik) and Drosophila sturtevanti (wStv) from supergroup A. ClonalFrame analysis revealed a recombination event in the wAr_15234 strain which came from Apulia region. Scientific knowledge of the presence/prevalence of Wolbachia among medically important fleas, may contribute to develop an alternative biological method for the vector control.
Collapse
Affiliation(s)
| | | | | | - Giovanni Sgroi
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy; Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
8
|
Manoj RRS, Latrofa MS, Epis S, Otranto D. Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasit Vectors 2021; 14:245. [PMID: 33962669 PMCID: PMC8105934 DOI: 10.1186/s13071-021-04742-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract ![]()
Collapse
Affiliation(s)
| | | | - Sara Epis
- Department of Biosciences and Pediatric CRC 'Romeo Ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
9
|
Madhav M, Baker D, Morgan JAT, Asgari S, James P. Wolbachia: A tool for livestock ectoparasite control. Vet Parasitol 2020; 288:109297. [PMID: 33248417 DOI: 10.1016/j.vetpar.2020.109297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Ectoparasites and livestock-associated insects are a major concern throughout the world because of their economic and welfare impacts. Effective control is challenging and relies mainly on the use of chemical insecticides and acaricides. Wolbachia, an arthropod and nematode-infecting, maternally-transmitted endosymbiont is currently of widespread interest for use in novel strategies for the control of a range of arthropod-vectored human diseases and plant pests but to date has received only limited consideration for use in the control of diseases of veterinary concern. Here, we review the currently available information on Wolbachia in veterinary ectoparasites and disease vectors, consider the feasibility for use of Wolbachia in the control of livestock pests and diseases and highlight critical issues which need further investigation.
Collapse
Affiliation(s)
- Mukund Madhav
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalton Baker
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jess A T Morgan
- Department of Agriculture and Fisheries, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Yin X, Zhao S, Yan B, Tian Y, Ba T, Zhang J, Wang Y. Bartonella rochalimae, B. grahamii, B. elizabethae, and Wolbachia spp. in Fleas from Wild Rodents near the China-Kazakhstan Border. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:553-559. [PMID: 31715700 PMCID: PMC6851259 DOI: 10.3347/kjp.2019.57.5.553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/17/2019] [Indexed: 11/23/2022]
Abstract
The Alataw Pass, near the Ebinur Lake Wetland (northwest of China) and Taldykorgan (east of Kazakhstan), is a natural habitat for wild rodents. To date, little has been done on the surveillance of Bartonella spp. and Wolbachia spp. from fleas in the region. Here we molecularly detected Bartonella spp. and Wolbachia spp. in wild rodent fleas during January and October of 2016 along the Alataw Pass-Kazakhstan border. A total of 1,706 fleas belonging to 10 species were collected from 6 rodent species. Among the 10 flea species, 4 were found to be positive for Wolbachia, and 5 flea species were positive for Bartonella. Molecular analysis indicated that i) B. rochalimae was firstly identified in Xenopsylla gerbilli minax and X. conforms conforms, ii) B. grahamii was firstly identified in X. gerbilli minax, and iii) B. elizabethae was firstly detected in Coptopsylla lamellifer ardua, Paradoxopsyllus repandus, and Nosopsyllus laeviceps laeviceps. Additionally, 3 Wolbachia endosymbionts were firstly found in X. gerbilli minax, X. conforms conforms, P. repandus, and N. laeviceps laeviceps. BLASTn analysis indicated 3 Bartonella species showed genotypic variation. Phylogenetic analysis revealed 3 Wolbachia endosymbionts were clustered into the non-Siphonaptera Wolbachia group. These findings extend our knowledge of the geographical distribution and carriers of B. rochalimae, B. grahamii, B. elizabethae, and Wolbachia spp. In the future, there is a need for China-Kazakhstan cooperation to strengthen the surveillance of flea-borne pathogens in wildlife.
Collapse
Affiliation(s)
- Xiaoping Yin
- Alataw Customs, Alashankou, Xinjiang Uygur Autonomous Region 833418, China.,School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832002, China
| | - Shanshan Zhao
- School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832002, China
| | - Bin Yan
- Clinical Laboratory Center, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, China
| | - Yanhe Tian
- Alataw Customs, Alashankou, Xinjiang Uygur Autonomous Region 833418, China
| | - Teer Ba
- Alataw Customs, Alashankou, Xinjiang Uygur Autonomous Region 833418, China
| | - Jiangguo Zhang
- Alataw Customs, Alashankou, Xinjiang Uygur Autonomous Region 833418, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832002, China
| |
Collapse
|
11
|
Vasconcelos EJR, Billeter SA, Jett LA, Meinersmann RJ, Barr MC, Diniz PPVP, Oakley BB. Assessing Cat Flea Microbiomes in Northern and Southern California by 16S rRNA Next-Generation Sequencing. Vector Borne Zoonotic Dis 2018; 18:491-499. [PMID: 29893631 DOI: 10.1089/vbz.2018.2282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Flea-borne diseases (FBDs) impact both human and animal health worldwide. Because adult fleas are obligately hematophagous and can harbor potential pathogens, fleas act as ectoparasites of vertebrates, as well as zoonotic disease vectors. Cat fleas (Ctenocephalides felis) are important vectors of two zoonotic bacterial genera listed as priority pathogens by the National Institute of Allergy and Infectious Diseases (NIAID-USA): Bartonella spp. and Rickettsia spp., causative agents of bartonelloses and rickettsioses, respectively. In this study, we introduce the first microbiome analysis of C. felis samples from California, determining the presence and abundance of relevant pathogenic genera by characterizing the cat flea microbiome through 16S rRNA next-generation sequencing (16S-NGS). Samples from both northern (NoCal) and southern (SoCal) California were assessed to expand current knowledge regarding FBDs in the state. We identified Rickettsia and Bartonella, as well as the endosymbiont Wolbachia, as the most abundant genera, followed by less abundant taxa. In comparison to our previous study screening Californian cat fleas for rickettsiae using PCR/digestion/sequencing of the ompB gene, the 16S-NGS approach applied herein showed a 95% level of agreement in detecting Rickettsia spp. There was no overall difference in microbiome diversity between NoCal and SoCal samples. Bacterial taxa identified by 16S-NGS in this study may help to improve epidemiological investigations, pathogen surveillance efforts, and clinical diagnostics of FBDs in California and elsewhere.
Collapse
Affiliation(s)
- Elton J R Vasconcelos
- 1 College of Veterinary Medicine, Western University of Health Sciences , Pomona, California
| | - Sarah A Billeter
- 2 Vector-Borne Disease Section, California Department of Public Health , Ontario, California
| | - Lindsey A Jett
- 1 College of Veterinary Medicine, Western University of Health Sciences , Pomona, California
| | - Richard J Meinersmann
- 3 USDA Agricultural Research Service, U.S. National Poultry Research Center , Athens, Georgia
| | - Margaret C Barr
- 1 College of Veterinary Medicine, Western University of Health Sciences , Pomona, California
| | - Pedro P V P Diniz
- 1 College of Veterinary Medicine, Western University of Health Sciences , Pomona, California
| | - Brian B Oakley
- 1 College of Veterinary Medicine, Western University of Health Sciences , Pomona, California
| |
Collapse
|
12
|
Comparison of Zoonotic Bacterial Agents in Fleas Collected from Small Mammals or Host-Seeking Fleas from a Ugandan Region Where Plague Is Endemic. mSphere 2017; 2:mSphere00402-17. [PMID: 29276773 PMCID: PMC5737051 DOI: 10.1128/msphere.00402-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022] Open
Abstract
Fleas play critical roles in transmitting some infections among animals and from animals to humans. Detection of pathogens in fleas is important to determine human risks for flea-borne diseases and can help guide diagnosis and treatment. Our findings of high prevalence rates of B. elizabethae and R. felis in fleas in the Arua and Zombo districts of Uganda implicate these agents as potential causative agents of undiagnosed febrile illnesses in this area. Fleas (n = 407) were collected from small mammals trapped inside huts and surroundings of homesteads in five villages within the Arua and Zombo districts of Uganda. The most common flea species were Dinopsyllus lypusus (26%) and Xenopsylla cheopis (50%). Off-host fleas (n = 225) were collected inside huts by using Kilonzo flea traps. The majority of the off-host fleas were Ctenocephalides felis (80%). All fleas were examined for the presence of Bartonella spp., Rickettsia spp., and Yersinia spp. Bartonella DNA was detected in 91 fleas, with an overall prevalence of 14%. Bartonella prevalence was significantly higher in rodent or shrew fleas than in off-host fleas (22% versus 1%). The majority of Bartonella-positive fleas were of the species D. lypusus (61%), X. cheopis (20%), and Ctenophthalmus calceatus (14%). Sequencing analysis identified 12 Bartonella genetic variants, 9 of which belonged to the zoonotic pathogen B. elizabethae species complex. Rickettsia DNA was detected in 143 fleas, giving an overall prevalence of 23%, with a significantly higher prevalence in off-host fleas than in rodent or shrew fleas (56% versus 4%). The majority (88%) of Rickettsia-positive fleas were C. felis and were collected from Kilonzo traps, while a small portion (10%) were X. cheopis collected from rodents. Sequencing analysis identified six Rickettsia genogroups that belonged either to zoonotic R. felis or to the closely related “Candidatus Ricksettia asemboensis” and “Candidatus Ricksettia sengalensis.” Yersinia DNA was not detected in the fleas tested. These observations suggested that fleas in northwestern Uganda commonly carry the zoonotic agents B. elizabethae and R. felis and potentially play an important role in transmitting these infections to humans. IMPORTANCE Fleas play critical roles in transmitting some infections among animals and from animals to humans. Detection of pathogens in fleas is important to determine human risks for flea-borne diseases and can help guide diagnosis and treatment. Our findings of high prevalence rates of B. elizabethae and R. felis in fleas in the Arua and Zombo districts of Uganda implicate these agents as potential causative agents of undiagnosed febrile illnesses in this area.
Collapse
|
13
|
VAN DER Mescht L, Matthee S. Host range and distribution of small mammal fleas in South Africa, with a focus on species of medical and veterinary importance. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:402-413. [PMID: 28692183 DOI: 10.1111/mve.12239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/11/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
The host range and distribution of flea species on rodents and insectivores across multiple vegetation types in South Africa were investigated. Habitat suitability for flea species considered as important vectors of disease in humans and domestic animals was modelled. Data originated from fleas that were recovered from small mammals captured at 29 localities during 2009-2013 and published literature searched for flea records. Climate-based predictor variables, widely used in arthropod vector distribution, were selected and habitat suitability modelled for 10 flea vector species. A total of 2469 flea individuals representing 33 species and subspecies were collected from 1185 small mammals. Ten of each of the flea and rodent species are plague vectors and reservoirs, respectively. Multiple novel flea-host associations and locality records were noted. Three vector species were recorded from insectivores. Geographic distributions of flea species ranged from broad, across-biome distributions to narrower distributions within one or two biomes. Habitat suitability models performed excellently for the majority of flea vectors and identified regions of summer and all-year rainfall as representing suitable habitats for most vector species. Current knowledge of vector and disease ecology can benefit from similar sampling approaches that will be important not only for South Africa, but also for the sub-region.
Collapse
Affiliation(s)
- L VAN DER Mescht
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
| | - S Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
14
|
Mechanism study on a plague outbreak driven by the construction of a large reservoir in southwest china (surveillance from 2000-2015). PLoS Negl Trop Dis 2017; 11:e0005425. [PMID: 28257423 PMCID: PMC5352140 DOI: 10.1371/journal.pntd.0005425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/15/2017] [Accepted: 02/21/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Plague, a Yersinia pestis infection, is a fatal disease with tremendous transmission capacity. However, the mechanism of how the pathogen stays in a reservoir, circulates and then re-emerges is an enigma. METHODOLOGY/PRINCIPAL FINDINGS We studied a plague outbreak caused by the construction of a large reservoir in southwest China followed 16-years' surveillance. CONCLUSIONS/SIGNIFICANCE The results show the prevalence of plague within the natural plague focus is closely related to the stability of local ecology. Before and during the decade of construction the reservoir on the Nanpan River, no confirmed plague has ever emerged. With the impoundment of reservoir and destruction of drowned farmland and vegetation, the infected rodent population previously dispersed was concentrated together in a flood-free area and turned a rest focus alive. Human plague broke out after the enzootic plague via the flea bite. With the construction completed and ecology gradually of human residential environment, animal population and type of vegetation settling down to a new balance, the natural plague foci returned to a rest period. With the rodent density decreased as some of them died, the flea density increased as the rodents lived near or in local farm houses where had more domestic animals, and human has a more concentrated population. In contrast, in the Himalayan marmot foci of the Qinghai-Tibet Plateau in the Qilian Mountains. There are few human inhabitants and the local ecology is relatively stable; plague is prevalence, showing no rest period. Thus the plague can be significantly affected by ecological shifts.
Collapse
|
15
|
Chu K, Hu J, Meng F, Li J, Luo L, Xu J, Yuan Z, Li Z, Chen W, Jiao L, Chang Y, Wang B, Hu Y. Immunogenicity and safety of subunit plague vaccine: A randomized phase 2a clinical trial. Hum Vaccin Immunother 2016; 12:2334-40. [PMID: 27159397 DOI: 10.1080/21645515.2016.1175261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although the killed whole-cell and live attenuated plague vaccine have been licensed, they are rarely used today because of toxicities, limited evidence of efficacy against plague, poor immune persistence required booster immunization every year, and limited commercial availability. This study was a randomized phase 2a clinical trial aimed to evaluating the immunogenicity and safety of a novel subunit plague vaccine. METHODS 240 healthy adults aged 18-55 y were enrolled and randomly assigned at a ratio of 1:1 to receive 2 doses of 15 or 30 mcg vaccine at a 28-day interval between doses. Blood samples were collected at day 0, 28 and 56. Adverse events were collected during the first 28 d after each vaccination. Serious Adverse Event was observed throughout the study period. RESULTS 239 participants received the first dose at day 0 and 238 received the second dose at day 28. Antibodies to envelope antigen faction 1 (F1) and recombinant virulence antigen (rV) were increased at day 28, and boosted significantly at day 56. For anti-F1 antibodies, geometric mean titer (GMT) and geometric mean fold increase (GMFI) were significantly higher in 30 mcg group than in the 15 mcg group(each P1< 0.05 at day 28 and each P1< 0.001 at day 56), with similar seroconversion rate of antibodies between 15 and 30 mcg group at both of the 2 time points. For anti-rV antibodies, seroconversion rate at day 28 in 30 mcg group was higher than that in 15 mcg group. However, GMT and GMFI of anti-rV antibodies were increased to approximately the same levels in the 2 groups. Similar booster immune response was also noticed in both groups at day 56. The injections were well tolerated, with mainly mild or moderate local and systemic adverse reactions (lower than grad 3). The proportion of pain at injection site was higher in 30 mcg group. None of SAEs were reported during 56 d. CONCLUSION The plague vaccine comprised of F1 and rV antigens showed good safety and immunogenicity in adults aged 18-55 y old. The data show that the 30 mcg formulation is generally more immunogenic than the 15 mcg formulation, and represents the preferred formulation for further clinical development. It will be important to evaluate the long-term efficacy for appropriate formulations of the plague subunit vaccine.
Collapse
Affiliation(s)
- Kai Chu
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Jialei Hu
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Fanyue Meng
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Jingxin Li
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Li Luo
- b Department of Public Health , Southeast University , Nanjing , China
| | - Jianjun Xu
- c Yandu Center for Disease Control and Prevention , Yancheng , China
| | - Zhonghang Yuan
- c Yandu Center for Disease Control and Prevention , Yancheng , China
| | - Zhiyong Li
- c Yandu Center for Disease Control and Prevention , Yancheng , China
| | - Wangeng Chen
- c Yandu Center for Disease Control and Prevention , Yancheng , China
| | - Lei Jiao
- d Lanzhou Institute of Biological Products Co.,Ltd. , Lanzhou , China
| | - Yali Chang
- d Lanzhou Institute of Biological Products Co.,Ltd. , Lanzhou , China
| | - Bingxiang Wang
- d Lanzhou Institute of Biological Products Co.,Ltd. , Lanzhou , China
| | - Yuemei Hu
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| |
Collapse
|
16
|
Bland DM, Hinnebusch BJ. Feeding Behavior Modulates Biofilm-Mediated Transmission of Yersinia pestis by the Cat Flea, Ctenocephalides felis. PLoS Negl Trop Dis 2016; 10:e0004413. [PMID: 26829486 PMCID: PMC4734780 DOI: 10.1371/journal.pntd.0004413] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/08/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The cat flea, Ctenocephalides felis, is prevalent worldwide, will parasitize animal reservoirs of plague, and is associated with human habitations in known plague foci. Despite its pervasiveness, limited information is available about the cat flea's competence as a vector for Yersinia pestis. It is generally considered to be a poor vector, based on studies examining early-phase transmission during the first week after infection, but transmission potential by the biofilm-dependent proventricular-blocking mechanism has never been systematically evaluated. In this study, we assessed the vector competence of cat fleas by both mechanisms. Because the feeding behavior of cat fleas differs markedly from important rat flea vectors, we also examined the influence of feeding behavior on transmission dynamics. METHODOLOGY/PRINCIPAL FINDINGS Groups of cat fleas were infected with Y. pestis and subsequently provided access to sterile blood meals twice-weekly, 5 times per week, or daily for 4 weeks and monitored for infection, the development of proventricular biofilm and blockage, mortality, and the ability to transmit. In cat fleas allowed prolonged, daily access to blood meals, mimicking their natural feeding behavior, Y. pestis did not efficiently colonize the digestive tract and could only be transmitted during the first week after infection. In contrast, cat fleas that were fed intermittently, mimicking the feeding behavior of the efficient vector Xenopsylla cheopis, could become blocked and regularly transmitted Y. pestis for 3-4 weeks by the biofilm-mediated mechanism, but early-phase transmission was not detected. CONCLUSIONS The normal feeding behavior of C. felis, more than an intrinsic resistance to infection or blockage by Y. pestis, limits its vector competence. Rapid turnover of midgut contents results in bacterial clearance and disruption of biofilm accumulation in the proventriculus. Anatomical features of the cat flea foregut may also restrict transmission by both early-phase and proventricular biofilm-dependent mechanisms.
Collapse
Affiliation(s)
- David M. Bland
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - B. Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|