1
|
Lv L, Li W, Guo D, Shi B, Li Y. Early Sacral Neuromodulation Prevented Detrusor Overactivity in Rats With Spinal Cord Injury. Neuromodulation 2024:S1094-7159(24)00629-9. [PMID: 39046393 DOI: 10.1016/j.neurom.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/24/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Sacral neuromodulation (SNM) has been shown to alleviate bladder dysfunction in patients with overactive bladder and nonobstructive urinary retention. However, the therapeutic effect and mechanism of SNM in neurogenic bladder dysfunction are still not fully understood. Using a rat model of spinal cord injury (SCI), this study aims to investigate the therapeutic effect of early SNM in the bladder-areflexia phase on neurogenic bladder dysfunction and evaluate its possible mechanism. MATERIALS AND METHODS Basic physiological parameters such as body/bladder weight, blood pressure, and electrocardiogram results were measured to evaluate the safety of SNM. Enzyme-linked immunosorbent assays and quantitative real-time polymerase chain reaction were used to examine the expression of proinflammatory factors. Hematoxylin and eosin and Masson's trichrome staining were used to observe morphological changes, and cystometry was used to evaluate urodynamic changes after SNM treatment. Western blotting and immunofluorescence staining were used to measure the levels of transient receptor potential vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP) in the L6-S1 dorsal root ganglia (DRGs) and bladder. Capsaicin desensitization was used to investigate whether inhibiting TRPV1 could prevent detrusor overactivity in SCI rats. RESULTS Early SNM did not affect the body/bladder weight, heart rate, blood pressure, or the expression of proinflammatory cytokines (PGE2, IL-1, IL-2, IL-6, TGF-β, or TNF-α) in the bladders of SCI rats. Morphologically, early SNM prevented urothelial edema (p = 0.0248) but did not influence collagen/smooth muscle in the bladder. Compared with untreated rats with SCI, the rats treated with SNM exhibited increased bladder capacity (p = 0.0132) and voiding efficiency (p = 0.0179), and decreased nonvoiding contraction (NVC) frequency (p = 0.0240). The maximum pressure, basal pressure, postvoid residual, and NVC amplitude did not change significantly. After the SNM treatment, the expression of TRPV1 in the bladder and CGRP in L6-S1 DRGs weredecreased (L6, p = 0.0160; S1, p = 0.0024) in SCI rats. In capsaicin-desensitized SCI rats, urodynamic results showed an increase in bladder capacity (p = 0.0116) and voiding efficiency (p = 0.0048), and diminished NVC frequency (p = 0.0116), while other parameters did not change significantly. CONCLUSIONS Early SNM prevented urothelial edema morphologically and detrusor overactivity in SCI rats. Inhibition of TRPV1 in the bladder and DRGs may be one of the potential mechanisms for preventing detrusor overactivity by SNM.
Collapse
Affiliation(s)
- Linchen Lv
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wenxian Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongyue Guo
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China.
| |
Collapse
|
2
|
Leninsky MA, Sobolev VE, Sokolova MO, Voitenko NG, Skvortsov NV. Quantification of 11 metabolites in rat urine after exposure to organophosphates. Lab Anim Res 2024; 40:23. [PMID: 38845041 PMCID: PMC11155157 DOI: 10.1186/s42826-024-00209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The aim of the study was to develop a technique for quantitative determination of rat urine metabolites by HPLC-MS/MS, which can be used to search for biomarkers of acute intoxication with organophosphates (OPs). RESULTS The content of metabolites in the urine of rats exposed to a single dose of paraoxon (POX1x); interval, twice daily administration of paraoxon (POX2x); exposure to 2-(o-cresyl)-4H-1, 3, 2-benzodioxaphosphorin-2-oxide and paraoxon (CBPOX) was investigated. New data were obtained on the content in the urine of intact rats as well as rats in 3 models of OP poisoning: 3-methylhistidine, threonine, creatine, creatinine, lactic acid, acetylcarnitine, inosine, hypoxanthine, adenine, 3-hydroxymethyl-butyrate and 2-hydroxymethyl-butyrate. CONCLUSIONS The proposed assay procedure is a simple and reliable tool for urine metabolomic studies. Within 1-3 days after OP exposure in all three models of acute intoxication, the concentration of metabolites in rat urine, with the exception of adenine, changes similarly and symmetrically, regardless of the method of poisoning modeling, in all three models of acute intoxication. Further studies are needed to determine the specificity and reliability of using urinary metabolite concentration changes as potential biomarkers of acute organophosphate intoxication.
Collapse
Affiliation(s)
- Michael A Leninsky
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg, 194223, Russia
| | - Vladislav E Sobolev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg, 194223, Russia.
| | - Margarita O Sokolova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg, 194223, Russia
| | - Natalya G Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg, 194223, Russia
| | - Nikita V Skvortsov
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12, Acad. Pavlov Street, St. Petersburg, 197022, Russia
| |
Collapse
|
3
|
Gheinani AH, Sack BS, Bigger-Allen A, Thaker H, Atta H, Lambrinos G, Costa K, Doyle C, Gharaee-Kermani M, Patalano S, Piper M, Cotellessa JF, Vitko D, Li H, Prabhakaran MK, Cristofaro V, Froehlich J, Lee RS, Yang W, Sullivan MP, Macoska JA, Adam RM. Integrated omics analysis unveils a DNA damage response to neurogenic injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.571015. [PMID: 38106029 PMCID: PMC10723451 DOI: 10.1101/2023.12.10.571015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Spinal cord injury (SCI) evokes profound bladder dysfunction. Current treatments are limited by a lack of molecular data to inform novel therapeutic avenues. Previously, we showed systemic inosine treatment improved bladder function following SCI in rats. Here, we applied multi-omics analysis to explore molecular alterations in the bladder and their sensitivity to inosine following SCI. Canonical pathways regulated by SCI included those associated with protein synthesis, neuroplasticity, wound healing, and neurotransmitter degradation. Upstream regulator analysis identified MYC as a key regulator, whereas causal network analysis predicted multiple regulators of DNA damage response signaling following injury, including PARP-1. Staining for both DNA damage (γH2AX) and PARP activity (poly-ADP-ribose) markers in the bladder was increased following SCI, and attenuated in inosine-treated tissues. Proteomics analysis suggested that SCI induced changes in protein synthesis-, neuroplasticity-, and oxidative stress-associated pathways, a subset of which were shown in transcriptomics data to be inosine-sensitive. These findings provide novel insights into the molecular landscape of the bladder following SCI, and highlight a potential role for PARP inhibition to treat neurogenic bladder dysfunction.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan S Sack
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
| | - Alex Bigger-Allen
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biological & Biomedical Sciences Graduate Program, Division of Medical Sciences, Harvard Medical School, Boston, MA
| | - Hatim Thaker
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Hussein Atta
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - George Lambrinos
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Kyle Costa
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
| | - Claire Doyle
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | | | | | - Mary Piper
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Justin F Cotellessa
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Dijana Vitko
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Haiying Li
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Manubhai Kadayil Prabhakaran
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Vivian Cristofaro
- Division of Urology, VA Boston Healthcare System, Boston, MA, USA
- University of Massachusetts, Boston, MA, USA
| | - John Froehlich
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Richard S Lee
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Maryrose P Sullivan
- Division of Urology, VA Boston Healthcare System, Boston, MA, USA
- University of Massachusetts, Boston, MA, USA
| | | | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
4
|
Abstract
Screening of compounds comprising 8-substituted guanine revealed that 8-aminoguanosine and 8-aminoguanine cause diuresis/natriuresis/glucosuria, yet decrease potassium excretion. Subsequent investigations demonstrated that 8-aminoguanosine's effects are mediated by its metabolite 8-aminoguanine. The mechanism by which 8-aminoguanine causes diuresis/natriuresis/glucosuria involves inhibition of PNPase (purine nucleoside phosphorylase), which increases renal interstitial inosine levels. Additional evidence suggests that inosine, via indirect or direct adenosine A2B receptor activation, increases renal medullary blood flow which enhances renal excretory function. Likely, 8-aminoguanine has pleiotropic actions that also alter renal excretory function. Indeed, the antikaliuretic effects of 8-aminoguanine are independent of PNPase inhibition. 8-Aminoguanine is an endogenous molecule; nitrosative stress leads to production of biomolecules containing 8-nitroguanine moieties. Degradation of these biomolecules releases 8-nitroguanosine and 8-nitro-2'-deoxyguanosine which are converted to 8-aminoguanine. Also, guanosine and guanine per se may contribute to 8-aminoguanine formation. 8-Aminoinosine, 8-aminohypoxanthine, and 8-aminoxanthine likewise induce diuresis/natriuresis/glucosuria, yet do not reduce potassium excretion. Thus, there are several pharmacologically active 8-aminopurines with nuanced effects on renal excretory function. Chronic treatment with 8-aminoguanine attenuates hypertension in deoxycorticosterone/salt rats, prevents strokes, and increases lifespan in Dahl salt-sensitive rats on a high salt diet and attenuates the metabolic syndrome in rats; 8-aminoguanosine retards progression of pulmonary hypertension in rats and anemia and organ damage in sickle cell mice. 8-Aminoguanine reverses age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines represent a new class of agents (and potentially endogenous factors) that have beneficial effects on the cardiovascular system and kidneys and may turn back the clock in age-associated diseases.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Stevan P. Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Yuanyuan Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Lori A. Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
5
|
Doelman AW, Streijger F, Majerus SJA, Damaser MS, Kwon BK. Assessing Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury: Animal Models in Preclinical Neuro-Urology Research. Biomedicines 2023; 11:1539. [PMID: 37371634 PMCID: PMC10294962 DOI: 10.3390/biomedicines11061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Neurogenic bladder dysfunction is a condition that affects both bladder storage and voiding function and remains one of the leading causes of morbidity after spinal cord injury (SCI). The vast majority of individuals with severe SCI develop neurogenic lower urinary tract dysfunction (NLUTD), with symptoms ranging from neurogenic detrusor overactivity, detrusor sphincter dyssynergia, or sphincter underactivity depending on the location and extent of the spinal lesion. Animal models are critical to our fundamental understanding of lower urinary tract function and its dysfunction after SCI, in addition to providing a platform for the assessment of potential therapies. Given the need to develop and evaluate novel assessment tools, as well as therapeutic approaches in animal models of SCI prior to human translation, urodynamics assessment techniques have been implemented to measure NLUTD function in a variety of animals, including rats, mice, cats, dogs and pigs. In this narrative review, we summarize the literature on the use of animal models for cystometry testing in the assessment of SCI-related NLUTD. We also discuss the advantages and disadvantages of various animal models, and opportunities for future research.
Collapse
Affiliation(s)
- Adam W. Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Steve J. A. Majerus
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | - Margot S. Damaser
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
- Department of Orthopaedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
6
|
Shimizu N, Saito T, Wada N, Hashimoto M, Shimizu T, Kwon J, Cho KJ, Saito M, Karnup S, de Groat WC, Yoshimura N. Molecular Mechanisms of Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury. Int J Mol Sci 2023; 24:7885. [PMID: 37175592 PMCID: PMC10177842 DOI: 10.3390/ijms24097885] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
This article provides a synopsis of current progress made in fundamental studies of lower urinary tract dysfunction (LUTD) after spinal cord injury (SCI) above the sacral level. Animal models of SCI allowed us to examine the effects of SCI on the micturition control and the underlying neurophysiological processes of SCI-induced LUTD. Urine storage and elimination are the two primary functions of the LUT, which are governed by complicated regulatory mechanisms in the central and peripheral nervous systems. These neural systems control the action of two functional units in the LUT: the urinary bladder and an outlet consisting of the bladder neck, urethral sphincters, and pelvic-floor striated muscles. During the storage phase, the outlet is closed, and the bladder is inactive to maintain a low intravenous pressure and continence. In contrast, during the voiding phase, the outlet relaxes, and the bladder contracts to facilitate adequate urine flow and bladder emptying. SCI disrupts the normal reflex circuits that regulate co-ordinated bladder and urethral sphincter function, leading to involuntary and inefficient voiding. Following SCI, a spinal micturition reflex pathway develops to induce an overactive bladder condition following the initial areflexic phase. In addition, without proper bladder-urethral-sphincter coordination after SCI, the bladder is not emptied as effectively as in the normal condition. Previous studies using animal models of SCI have shown that hyperexcitability of C-fiber bladder afferent pathways is a fundamental pathophysiological mechanism, inducing neurogenic LUTD, especially detrusor overactivity during the storage phase. SCI also induces neurogenic LUTD during the voiding phase, known as detrusor sphincter dyssynergia, likely due to hyperexcitability of Aδ-fiber bladder afferent pathways rather than C-fiber afferents. The molecular mechanisms underlying SCI-induced LUTD are multifactorial; previous studies have identified significant changes in the expression of various molecules in the peripheral organs and afferent nerves projecting to the spinal cord, including growth factors, ion channels, receptors and neurotransmitters. These findings in animal models of SCI and neurogenic LUTD should increase our understanding of pathophysiological mechanisms of LUTD after SCI for the future development of novel therapies for SCI patients with LUTD.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Ferreira A, Nascimento D, Cruz CD. Molecular Mechanism Operating in Animal Models of Neurogenic Detrusor Overactivity: A Systematic Review Focusing on Bladder Dysfunction of Neurogenic Origin. Int J Mol Sci 2023; 24:ijms24043273. [PMID: 36834694 PMCID: PMC9959149 DOI: 10.3390/ijms24043273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a severe lower urinary tract disorder, characterized by urinary urgency, retention, and incontinence, as a result of a neurologic lesion that results in damage in neuronal pathways controlling micturition. The purpose of this review is to provide a comprehensive framework of the currently used animal models for the investigation of this disorder, focusing on the molecular mechanisms of NDO. An electronic search was performed with PubMed and Scopus for literature describing animal models of NDO used in the last 10 years. The search retrieved 648 articles, of which reviews and non-original articles were excluded. After careful selection, 51 studies were included for analysis. Spinal cord injury (SCI) was the most frequently used model to study NDO, followed by animal models of neurodegenerative disorders, meningomyelocele, and stroke. Rats were the most commonly used animal, particularly females. Most studies evaluated bladder function through urodynamic methods, with awake cystometry being particularly preferred. Several molecular mechanisms have been identified, including changes in inflammatory processes, regulation of cell survival, and neuronal receptors. In the NDO bladder, inflammatory markers, apoptosis-related factors, and ischemia- and fibrosis-related molecules were found to be upregulated. Purinergic, cholinergic, and adrenergic receptors were downregulated, as most neuronal markers. In neuronal tissue, neurotrophic factors, apoptosis-related factors, and ischemia-associated molecules are increased, as well as markers of microglial and astrocytes at lesion sites. Animal models of NDO have been crucial for understanding the pathophysiology of lower urinary tract (LUT) dysfunction. Despite the heterogeneity of animal models for NDO onset, most studies rely on traumatic SCI models rather than other NDO-driven pathologies, which may result in some issues when translating pre-clinical observations to clinical settings other than SCI.
Collapse
Affiliation(s)
- Ana Ferreira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
| | - Diogo Nascimento
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426740; Fax: +351-225513655
| |
Collapse
|
8
|
Almeida F, Marques S, Santos A, Prins C, Cardoso F, Heringer L, Mendonça H, Martinez A. Molecular approaches for spinal cord injury treatment. Neural Regen Res 2023; 18:23-30. [PMID: 35799504 PMCID: PMC9241396 DOI: 10.4103/1673-5374.344830] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.
Collapse
|
9
|
Birder LA, Jackson EK. Purine nucleoside phosphorylase as a target to treat age-associated lower urinary tract dysfunction. Nat Rev Urol 2022; 19:681-687. [PMID: 36071153 PMCID: PMC9842101 DOI: 10.1038/s41585-022-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
The lower urinary tract (LUT), including the bladder, urethra and external striated muscle, becomes dysfunctional with age; consequently, many older individuals suffer from lower urinary tract disorders (LUTDs). By compromising urine storage and voiding, LUTDs degrade quality of life for millions of individuals worldwide. Treatments for LUTDs have been disappointing, frustrating both patients and their physicians; however, emerging evidence suggests that partial inhibition of the enzyme purine nucleoside phosphorylase (PNPase) with 8-aminoguanine (an endogenous PNPase inhibitor that moderately reduces PNPase activity) reverses age-associated defects in the LUT and restores the LUT to that of a younger state. Thus, 8-aminoguanine improves LUT biochemistry, structure and function by rebalancing the LUT purine metabolome, making 8-aminoguanine a novel potential treatment for LUTDs.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Vamour N, Dequirez PL, Seguier D, Vermersch P, De Wachter S, Biardeau X. Early interventions to prevent lower urinary tract dysfunction after spinal cord injury: a systematic review. Spinal Cord 2022; 60:382-394. [PMID: 35379959 DOI: 10.1038/s41393-022-00784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/09/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To synthetise the available scientific literature reporting early interventions to prevent neurogenic lower urinary tract dysfunction (NLUTD) after acute supra-sacral spinal cord injury (SCI). METHODS The present systematic review is reported according to the PRISMA guidelines and identified articles published through April 2021 in the PubMed, Embase, ScienceDirect and Scopus databases with terms for early interventions to prevent NLUTD after SCI. Abstract and full-text screenings were performed by three reviewers independently, while two reviewers performed data extraction independently. An article was considered relevant if it assessed: an in-vivo model of supra-sacral SCI, including a group undergoing an early intervention compared with at least one control group, and reporting clinical, urodynamic, biological and/or histological data. RESULTS Of the 30 studies included in the final synthesis, 9 focused on neurotransmission, 2 on the inflammatory response, 10 on neurotrophicity, 9 on electrical nerve modulation and 1 on multi-system neuroprosthetic training. Overall, 29/30 studies reported significant improvement in urodynamic parameters, for both the storage and the voiding phase. These findings were often associated with substantial modifications at the bladder and spinal cord level, including up/downregulation of neurotransmitters and receptors expression, neural proliferation or axonal sprouting and a reduction of inflammatory response and apoptosis. CONCLUSIONS The present review supports the concept of early interventions to prevent NLUTD after supra-sacral SCI, allowing for the emergence of a potential preventive approach in the coming decades.
Collapse
Affiliation(s)
| | | | | | - Patrick Vermersch
- Univ. Lille, Inserm UMR-S1172 LilNCog, Lille Neuroscience and Cognition, CHU Lille, FHU Precise, F-59000, Lille, France
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital, Edegem, Belgium.,Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, Wlrijk, Belgium
| | - Xavier Biardeau
- Univ. Lille, Inserm UMR-S1172 LilNCog, Lille Neuroscience and Cognition, CHU Lille, F-59000, Lille, France
| |
Collapse
|
11
|
Cakici OU, Kaya C, Sanci A, Gencler OS, Mammadkhanli O, Cindas A. Gabapentin add-on therapy for patients with spinal cord injury associated neurogenic overactive detrusors that are unresponsive to combined anticholinergic and beta-3 adrenergic therapy. Cent European J Urol 2022; 74:547-551. [PMID: 35083075 PMCID: PMC8771127 DOI: 10.5173/ceju.2021.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Spinal cord injury is a major cause of lifelong morbidity and functional micturition problems. Some patients are refractory to the available therapeutics, even when used in combination. In this paper we report our results of using gabapentin as an add-on treatment in refractory overactive detrusor cases secondary to spinal cord injury. Material and methods A total of 27 patients who had a spinal cord injury between the levels of the second thoracic and fourth lumbar vertebrae and had an overactive detrusor in urodynamic studies were included in this retrospective study. The patients were selected due to the fact that they also had not responded to a combination of an anticholinergic and mirabegron and had neuropathic pain. Gabapentin treatment was added to the previous therapy. Demographics, previous treatments, chronic conditions, urodynamic findings, clinical and urodynamic responses are reported in this paper. Results We observed a response to treatment in the urodynamic studies of 11 patients (40.17%), in terms of decreased detrusor contractions, maximal detrusor pressure, and the number of incontinence episodes. Sixteen patients did not respond to the gabapentin add-on therapy and were referred for Botulinum toxin injections to the bladder. Conclusions Gabapentin add-on therapy can be considered as a third or further option, before Botulinum toxin injection, for patients with neurogenic overactive detrusor who did not respond to the combination of anticholinergics and mirabegron. The approved usage of gabapentin for neurogenic pain justifies its usage in this area. In our selected patient group, who had not responded to the combination therapy, we observed a clinical benefit in one-third of the patients.
Collapse
Affiliation(s)
- Ozer Ural Cakici
- Department of Urology, Yuksek Ihtisas University affiliated Medical Park Ankara Hospital, Ankara, Turkey
| | - Coskun Kaya
- Department of Urology, Eskisehir State Hospital, Eskisehir, Turkey
| | - Adem Sanci
- Department of Urology, Ankara University, Ankara, Turkey
| | - Onur Serdar Gencler
- Department of Neurology, Yuksek Ihtisas University affiliated Medical Park Ankara Hospital, Ankara, Turkey
| | - Orkhan Mammadkhanli
- Department of Neurosurgery, Yuksek Ihtisas University affiliated Medical Park Ankara Hospital, Ankara, Turkey
| | - Abdullah Cindas
- Department of Physical Therapy and Rehabilitation, Yuksek Ihtisas University affiliated Medical Park Ankara Hospital, Ankara, Turkey
| |
Collapse
|
12
|
Abdelkader NF, Ibrahim SM, Moustafa PE, Elbaset MA. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed Pharmacother 2021; 145:112395. [PMID: 34775239 DOI: 10.1016/j.biopha.2021.112395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inosine is a dietary supplement that is widely used for managing numerous central neurological disorders. Interestingly, recent experimental investigation of inosine revealed its potential to promote peripheral neuroprotection after sciatic nerve injury. Such investigation has guided the focus of the current study to expose the potential of inosine in mitigating diabetic peripheral neuropathy (DPN) in rats and to study the possible underlying signaling pathways. Adult male Wistar rats were arbitrarily distributed into four groups. In the first group, animals received saline daily for 15 days whereas rats of the remaining groups received a single injection of both nicotinamide (50 mg/Kg/i.p.) and streptozotocin (52.5 mg/Kg/i.p.) for DPN induction. Afterward, inosine (10 mg/Kg/p.o.) was administered to two groups, either alone or in combination with caffeine (3.75 mg/Kg/p.o.), an adenosine receptor antagonist. As a result, inosine showed a hypoglycemic effect, restored the sciatic nerve histological structure, enhanced myelination, modulated conduction velocities and maintained behavioral responses. Furthermore, inosine increased GLO1, reduced AGE/RAGE axis and oxidative stress which in turn, downregulated NF-κB p65 and its phosphorylated form in the sciatic nerves. Inosine enhanced Nrf2 expression and its downstream molecule HO-1, resulting in increased CAT and SOD along with lowered MDA. Moreover, pain was relieved due to suppression of PKC and TRPV1 expression, which ultimately lead to reduced SP and TGF-β. The potential effects of inosine were nearly blocked by caffeine administration; this emphasizes the role of adenosine receptors in inosine-mediated neuroprotective effects. In conclusion, inosine alleviated hyperglycemia-induced DPN via modulating GLO1/AGE/RAGE/NF-κB p65/Nrf2 and TGF-β/PKC/TRPV1/SP pathways.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt.
| | - Sherehan M Ibrahim
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt
| | - Passant E Moustafa
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| | - Marawan A Elbaset
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| |
Collapse
|
13
|
Birder LA, Jackson EK. Dysregulated Purine Metabolism Contributes to Age-Associated Lower Urinary Tract Dysfunctions. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2021; 3:e210018. [PMID: 34676378 PMCID: PMC8527459 DOI: 10.20900/agmr20210018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lower urinary tract (LUT) dysfunction is common in the older adult. Aging is associated with a number of both storage and voiding problems which are classified into syndromes with overlapping symptoms. Despite the prevalence and consequences of these syndromes, LUT disorders continue to be undertreated as few therapeutic options exist. Here, we propose that dysregulated metabolism of purine nucleotides results in an accumulation of uro-damaging hypoxanthine (a source of reactive oxygen species or ROS), which provides a mechanism for defects in sensory signaling and contractility, culminating in abnormal urodynamic behavior.
Collapse
Affiliation(s)
- Lori A. Birder
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| |
Collapse
|
14
|
Nascimento FP, Macedo-Júnior SJ, Lapa-Costa FR, Cezar-Dos-Santos F, Santos ARS. Inosine as a Tool to Understand and Treat Central Nervous System Disorders: A Neglected Actor? Front Neurosci 2021; 15:703783. [PMID: 34504414 PMCID: PMC8421806 DOI: 10.3389/fnins.2021.703783] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Since the 1970s, when ATP was identified as a co-transmitter in sympathetic and parasympathetic nerves, it and its active metabolite adenosine have been considered relevant signaling molecules in biological and pathological processes in the central nervous system (CNS). Meanwhile, inosine, a naturally occurring purine nucleoside formed by adenosine breakdown, was considered an inert adenosine metabolite and remained a neglected actor on the purinergic signaling scene in the CNS. However, this scenario began to change in the 1980s. In the last four decades, an extensive group of shreds of evidence has supported the importance of mediated effects by inosine in the CNS. Also, inosine was identified as a natural trigger of adenosine receptors. This evidence has shed light on the therapeutic potential of inosine on disease processes involved in neurological and psychiatric disorders. Here, we highlight the clinical and preclinical studies investigating the involvement of inosine in chronic pain, schizophrenia, epilepsy, depression, anxiety, and in neural regeneration and neurodegenerative diseases, such as Parkinson and Alzheimer. Thus, we hope that this review will strengthen the knowledge and stimulate more studies about the effects promoted by inosine in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Francisney Pinto Nascimento
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Fernando Cezar-Dos-Santos
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Adair R S Santos
- Programa de Pós-Graduação em Neurociências, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
15
|
Birder LA, Wolf-Johnston A, Wein AJ, Cheng F, Grove-Sullivan M, Kanai AJ, Watson AM, Stoltz D, Watkins SC, Robertson AM, Newman D, Dmochowski RR, Jackson EK. Purine nucleoside phosphorylase inhibition ameliorates age-associated lower urinary tract dysfunctions. JCI Insight 2020; 5:140109. [PMID: 32910805 PMCID: PMC7605521 DOI: 10.1172/jci.insight.140109] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
In the aging population, lower urinary tract (LUT) dysfunction is common and often leads to storage and voiding difficulties classified into overlapping symptom syndromes. Despite prevalence and consequences of these syndromes, LUT disorders continue to be undertreated simply because there are few therapeutic options. LUT function and structure were assessed in aged (>25 months) male and female Fischer 344 rats randomized to oral treatment with a purine nucleoside phosphorylase (PNPase inhibitor) 8-aminoguanine (8-AG) or vehicle for 6 weeks. The bladders of aged rats exhibited multiple abnormalities: tactile insensitivity, vascular remodeling, reduced collagen-fiber tortuosity, increased bladder stiffness, abnormal smooth muscle morphology, swelling of mitochondria, and increases in urodamaging purine metabolites. Treatment of aged rats with 8-AG restored all evaluated histological, ultrastructural, and physiological abnormalities toward that of a younger state. 8-AG is an effective treatment that ameliorates key age-related structural and physiologic bladder abnormalities. Because PNPase inhibition blocks metabolism of inosine to hypoxanthine and guanosine to guanine, likely uroprotective effects of 8-AG are mediated by increased bladder levels of uroprotective inosine and guanosine and reductions in urodamaging hypoxanthine and xanthine. These findings demonstrate that 8-AG has translational potential for treating age-associated LUT dysfunctions and resultant syndromes in humans.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Alan J Wein
- Division of Urology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fangzhou Cheng
- Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mara Grove-Sullivan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J Kanai
- Department of Medicine, Renal-Electrolyte Division, and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alan M Watson
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna Stoltz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diane Newman
- Division of Urology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roger R Dmochowski
- Department of Urology, Vanderbilt Medical Center, Nashville, Tennessee, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Doyle C, Cristofaro V, Sullivan MP, Adam RM. Inosine - a Multifunctional Treatment for Complications of Neurologic Injury. Cell Physiol Biochem 2018; 49:2293-2303. [PMID: 30261493 DOI: 10.1159/000493831] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
Spinal cord injury (SCI) caused by trauma or disease leads to motor and sensory abnormalities that depend on the level, severity and duration of the lesion. The most obvious consequence of SCI is paralysis affecting lower and upper limbs. SCI also leads to loss of bladder and bowel control, both of which have a deleterious, life-long impact on the social, psychological, functional, medical and economic well being of affected individuals. Currently, there is neither a cure for SCI nor is there adequate management of its consequences. Although medications provide symptomatic relief for the complications of SCI including muscle spasms, lower urinary tract dysfunction and hyperreflexic bowel, strategies for repair of spinal injuries and recovery of normal limb and organ function are still to be realized. In this review, we discuss experimental evidence supporting the use of the naturally occurring purine nucleoside inosine to improve the devastating sequelae of SCI. Evidence suggests inosine is a safe, novel agent with multifunctional properties that is effective in treating complications of SCI and other neuropathies.
Collapse
Affiliation(s)
- Claire Doyle
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian Cristofaro
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Division of Urology, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Maryrose P Sullivan
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Division of Urology, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Faccendini A, Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Nanofiber Scaffolds as Drug Delivery Systems to Bridge Spinal Cord Injury. Pharmaceuticals (Basel) 2017; 10:ph10030063. [PMID: 28678209 PMCID: PMC5620607 DOI: 10.3390/ph10030063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/13/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022] Open
Abstract
The complex pathophysiology of spinal cord injury (SCI) may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. A primary mechanical injury in the spinal cord triggers a cascade of secondary events, which are involved in SCI instauration and progression. The aim of the present review is to provide an overview of the therapeutic neuro-protective and neuro-regenerative approaches, which involve the use of nanofibers as local drug delivery systems. Drugs released by nanofibers aim at preventing the cascade of secondary damage (neuro-protection), whereas nanofibrous structures are intended to re-establish neuronal connectivity through axonal sprouting (neuro-regeneration) promotion, in order to achieve a rapid functional recovery of spinal cord.
Collapse
Affiliation(s)
- Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | | | | | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| |
Collapse
|
18
|
Inosine attenuates spontaneous activity in the rat neurogenic bladder through an A 2B pathway. Sci Rep 2017; 7:44416. [PMID: 28294142 PMCID: PMC5353659 DOI: 10.1038/srep44416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is among the most challenging complications of spinal cord injury (SCI). A recent report by us demonstrated an improvement in NDO in SCI rats following chronic systemic treatment with the purine nucleoside inosine. The objective of this study was to investigate the mechanism of action of inosine underlying improvement of NDO. Male Sprague-Dawley rats underwent complete spinal cord transection at T8. Inosine (1 mM) delivered intravesically to SCI rats during conscious cystometry significantly decreased the frequency of spontaneous non-voiding contractions. In isolated tissue assays, inosine (1 mM) significantly decreased the amplitude of spontaneous activity (SA) in SCI bladder muscle strips. This effect was prevented by a pan-adenosine receptor antagonist CGS15943, but not by A1 or A3 receptor antagonists. The A2A antagonist ZM241385 and A2B antagonist PSB603 prevented the effect of inosine. The effect of inosine was mimicked by the adenosine receptor agonist NECA and the A2B receptor agonist BAY60-6583. The inhibition of SA by inosine was not observed in the presence of the BK antagonist, iberiotoxin, but persisted in the presence of KATP and SK antagonists. These findings demonstrate that inosine acts via an A2B receptor-mediated pathway that impinges on specific potassium channel effectors.
Collapse
|