1
|
Marra A, Morganti S, Pareja F, Campanella G, Bibeau F, Fuchs T, Loda M, Parwani A, Scarpa A, Reis-Filho JS, Curigliano G, Marchiò C, Kather JN. Artificial intelligence entering the pathology arena in oncology: current applications and future perspectives. Ann Oncol 2025:S0923-7534(25)00112-7. [PMID: 40307127 DOI: 10.1016/j.annonc.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) is rapidly transforming the fields of pathology and oncology, offering novel opportunities for advancing diagnosis, prognosis, and treatment of cancer. METHODS Through a systematic review-based approach, the representatives from the European Society for Medical Oncology (ESMO) Precision Oncology Working Group (POWG) and international experts identified studies in pathology and oncology that applied AI-based algorithms for tumour diagnosis, molecular biomarker detection, and cancer prognosis assessment. These findings were synthesised to provide a comprehensive overview of current AI applications and future directions in cancer pathology. RESULTS The integration of AI tools in digital pathology is markedly improving the accuracy and efficiency of image analysis, allowing for automated tumour detection and classification, identification of prognostic molecular biomarkers, and prediction of treatment response and patient outcomes. Several barriers for the adoption of AI in clinical workflows, such as data availability, explainability, and regulatory considerations, still persist. There are currently no prognostic or predictive AI-based biomarkers supported by level IA or IB evidence. The ongoing advancements in AI algorithms, particularly foundation models, generalist models and transformer-based deep learning, offer immense promise for the future of cancer research and care. AI is also facilitating the integration of multi-omics data, leading to more precise patient stratification and personalised treatment strategies. CONCLUSIONS The application of AI in pathology is poised to not only enhance the accuracy and efficiency of cancer diagnosis and prognosis but also facilitate the development of personalised treatment strategies. Although barriers to implementation remain, ongoing research and development in this field coupled with addressing ethical and regulatory considerations will likely lead to a future where AI plays an integral role in cancer management and precision medicine. The continued evolution and adoption of AI in pathology and oncology are anticipated to reshape the landscape of cancer care, heralding a new era of precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- A Marra
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - S Morganti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA; Department of Medicine, Harvard Medical School, Boston, USA; Gerstner Center for Cancer Diagnostics, Broad Institute of MIT and Harvard, Boston, USA
| | - F Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - G Campanella
- Hasso Plattner Institute for Digital Health, Mount Sinai Medical School, New York, USA; Department of AI and Human Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - F Bibeau
- Department of Pathology, University Hospital of Besançon, Besancon, France
| | - T Fuchs
- Hasso Plattner Institute for Digital Health, Mount Sinai Medical School, New York, USA; Department of AI and Human Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - M Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - A Parwani
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, USA
| | - A Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Center, University of Verona, Verona, Italy
| | - J S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - G Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - C Marchiò
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - J N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany; Department of Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Basso MN, Barua M, John R, Khademi A. Explainable Biomarkers for Automated Glomerular and Patient-Level Disease Classification. KIDNEY360 2021; 3:534-545. [PMID: 35582169 PMCID: PMC9034815 DOI: 10.34067/kid.0005102021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/08/2021] [Indexed: 01/12/2023]
Abstract
Pathologists use multiple microscopy modalities to assess renal biopsy specimens. Besides usual diagnostic features, some changes are too subtle to be properly defined. Computational approaches have the potential to systematically quantitate subvisual clues, provide pathogenetic insight, and link to clinical outcomes. To this end, a proof-of-principle study is presented demonstrating that explainable biomarkers through machine learning can distinguish between glomerular disorders at the light-microscopy level. The proposed system used image analysis techniques and extracted 233 explainable biomarkers related to color, morphology, and microstructural texture. Traditional machine learning was then used to classify minimal change disease (MCD), membranous nephropathy (MN), and thin basement membrane nephropathy (TBMN) diseases on a glomerular and patient-level basis. The final model combined the Gini feature importance set and linear discriminant analysis classifier. Six morphologic (nuclei-to-glomerular tuft area, nuclei-to-glomerular area, glomerular tuft thickness greater than ten, glomerular tuft thickness greater than three, total glomerular tuft thickness, and glomerular circularity) and four microstructural texture features (luminal contrast using wavelets, nuclei energy using wavelets, nuclei variance using color vector LBP, and glomerular correlation using GLCM) were, together, the best performing biomarkers. Accuracies of 77% and 87% were obtained for glomerular and patient-level classification, respectively. Computational methods, using explainable glomerular biomarkers, have diagnostic value and are compatible with our existing knowledge of disease pathogenesis. Furthermore, this algorithm can be applied to clinical datasets for novel prognostic and mechanistic biomarker discovery.
Collapse
Affiliation(s)
- Matthew Nicholas Basso
- Image Analysis in Medicine Lab (IAMLAB), Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, Canada
| | - Moumita Barua
- Division of Nephrology, University Health Network, Toronto, Canada,Toronto General Hospital Research Institute, Toronto General Hospital, Toronto, Canada,Department of Medicine, University of Toronto, Toronto, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Rohan John
- Department of Pathology, University Health Network, Toronto, Canada
| | - April Khademi
- Image Analysis in Medicine Lab (IAMLAB), Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, Canada,Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Network, Toronto, Canada,Institute for Biomedical Engineering, Science, and Technology (iBEST), a partnership between St. Michael’s Hospital and Ryerson University, Toronto, Canada
| |
Collapse
|
3
|
Roszkowiak L, Korzynska A, Siemion K, Zak J, Pijanowska D, Bosch R, Lejeune M, Lopez C. System for quantitative evaluation of DAB&H-stained breast cancer biopsy digital images (CHISEL). Sci Rep 2021; 11:9291. [PMID: 33927266 PMCID: PMC8085130 DOI: 10.1038/s41598-021-88611-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/14/2021] [Indexed: 02/02/2023] Open
Abstract
This study presents CHISEL (Computer-assisted Histopathological Image Segmentation and EvaLuation), an end-to-end system capable of quantitative evaluation of benign and malignant (breast cancer) digitized tissue samples with immunohistochemical nuclear staining of various intensity and diverse compactness. It stands out with the proposed seamless segmentation based on regions of interest cropping as well as the explicit step of nuclei cluster splitting followed by a boundary refinement. The system utilizes machine learning and recursive local processing to eliminate distorted (inaccurate) outlines. The method was validated using two labeled datasets which proved the relevance of the achieved results. The evaluation was based on the IISPV dataset of tissue from biopsy of breast cancer patients, with markers of T cells, along with Warwick Beta Cell Dataset of DAB&H-stained tissue from postmortem diabetes patients. Based on the comparison of the ground truth with the results of the detected and classified objects, we conclude that the proposed method can achieve better or similar results as the state-of-the-art methods. This system deals with the complex problem of nuclei quantification in digitalized images of immunohistochemically stained tissue sections, achieving best results for DAB&H-stained breast cancer tissue samples. Our method has been prepared with user-friendly graphical interface and was optimized to fully utilize the available computing power, while being accessible to users with fewer resources than needed by deep learning techniques.
Collapse
Affiliation(s)
- Lukasz Roszkowiak
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4 st., 02-109, Warsaw, Poland.
| | - Anna Korzynska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4 st., 02-109, Warsaw, Poland
| | - Krzysztof Siemion
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4 st., 02-109, Warsaw, Poland
- Medical Pathomorphology Department, Medical University of Bialystok, Białystok, Poland
| | - Jakub Zak
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4 st., 02-109, Warsaw, Poland
| | - Dorota Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4 st., 02-109, Warsaw, Poland
| | - Ramon Bosch
- Pathology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigacio Sanitaria Pere Virgili (IISPV), URV, Tortosa, Spain
| | - Marylene Lejeune
- Molecular Biology and Research Section, Hospital de Tortosa Verge de la Cinta, Institut d'Investigacio Sanitaria Pere Virgili (IISPV), URV, Tortosa, Spain
| | - Carlos Lopez
- Molecular Biology and Research Section, Hospital de Tortosa Verge de la Cinta, Institut d'Investigacio Sanitaria Pere Virgili (IISPV), URV, Tortosa, Spain
| |
Collapse
|
4
|
Nasir IM, Rashid M, Shah JH, Sharif M, Awan MYH, Alkinani MH. An Optimized Approach for Breast Cancer Classification for Histopathological Images Based on Hybrid Feature Set. Curr Med Imaging 2021; 17:136-147. [PMID: 32324518 DOI: 10.2174/1573405616666200423085826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is considered as one of the most perilous sickness among females worldwide and the ratio of new cases is increasing yearly. Many researchers have proposed efficient algorithms to diagnose breast cancer at early stages, which have increased the efficiency and performance by utilizing the learned features of gold standard histopathological images. OBJECTIVE Most of these systems have either used traditional handcrafted or deep features, which had a lot of noise and redundancy, and ultimately decrease the performance of the system. METHODS A hybrid approach is proposed by fusing and optimizing the properties of handcrafted and deep features to classify the breast cancer images. HOG and LBP features are serially fused with pre-trained models VGG19 and InceptionV3. PCR and ICR are used to evaluate the classification performance of the proposed method. RESULTS The method concentrates on histopathological images to classify the breast cancer. The performance is compared with the state-of-the-art techniques, where an overall patient-level accuracy of 97.2% and image-level accuracy of 96.7% is recorded. CONCLUSION The proposed hybrid method achieves the best performance as compared to previous methods and it can be used for the intelligent healthcare systems and early breast cancer detection.
Collapse
Affiliation(s)
| | - Muhammad Rashid
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan
| | - Jamal Hussain Shah
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan
| | | | - Monagi H Alkinani
- College of Computer Science and Engineering, Department of Computer Science and Artificial Intelligence, University of Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Li X, Plataniotis KN. Novel chromaticity similarity based color texture descriptor for digital pathology image analysis. PLoS One 2018; 13:e0206996. [PMID: 30419049 PMCID: PMC6231632 DOI: 10.1371/journal.pone.0206996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
Pathology images are color in nature due to the use of chemical staining in biopsy examination. Aware of the high color diagnosticity in pathology images, this work introduces a compact rotation-invariant texture descriptor, named quantized diagnostic counter-color pattern (QDCP), for digital pathology image understanding. On the basis of color similarity quantified by the inner product of unit-length color vectors, local counter-color textons are indexed first. Then the underlined distribution of QDCP indexes is estimated by an image-wise histogram. Since QDCP is computed based on color difference directly, it is robust to small color variation usually observed in pathology images. This study also discusses QDCP's extraction, parameter settings, and feature fusion techniques in a generic pathology image analysis pipeline, and introduces two more descriptors QDCP-LBP and QDCP/LBP. Experimentation on public pathology image sets suggests that the introduced color texture descriptors, especially QDCP-LBP, outperform prior color texture features in terms of strong descriptive power, low computational complexity, and high adaptability to different image sets.
Collapse
Affiliation(s)
- Xingyu Li
- Multimedia Lab, The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Konstantinos N. Plataniotis
- Multimedia Lab, The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Xu X, Liu Y, Zhang X, Tian Q, Wu Y, Zhang G, Meng J, Yang Z, Lu H. Preoperative prediction of muscular invasiveness of bladder cancer with radiomic features on conventional MRI and its high-order derivative maps. Abdom Radiol (NY) 2017; 42:1896-1905. [PMID: 28217825 DOI: 10.1007/s00261-017-1079-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To determine radiomic features which are capable of reflecting muscular invasiveness of bladder cancer (BC) and propose a non-invasive strategy for the differentiation of muscular invasiveness preoperatively. METHODS Sixty-eight patients with clinicopathologically confirmed BC were included in this retrospective study. A total of 118 cancerous volumes of interest (VOI) were segmented from patients' T2 weighted MR images (T2WI), including 34 non-muscle invasive bladder carcinomas (NMIBCs, stage <T2) and 84 muscle invasive ones (MIBCs, stage ≥T2). The radiomic features quantifying tumor signal intensity and textures were extracted from each VOI and its high-order derivative maps to characterize heterogeneity of tumor tissues. Statistical analysis was used to build radiomic signatures with significant inter-group differences of NMIBCs and MIBCs. The synthetic minority oversampling technique (SMOTE) and a support vector machine (SVM)-based feature selection and classification strategy were proposed to first rebalance the imbalanced sample size and then further select the most predictive and compact signature subset to verify its differentiation capability. RESULTS From each tumor VOI, a total of 63 radiomic features were derived and 30 of them showed significant inter-group differences (P ≤ 0.01). By using the SVM-based feature selection algorithm with rebalanced samples, an optimal subset including 13 radiomic signatures was determined. The area under receiver operating characteristic curve and Youden index were improved to 0.8610 and 0.7192, respectively. CONCLUSION 3D radiomic signatures derived from T2WI and its high-order derivative maps could reflect muscular invasiveness of bladder cancer, and the proposed strategy can be used to facilitate the preoperative prediction of muscular invasiveness in patients with bladder cancer.
Collapse
Affiliation(s)
- Xiaopan Xu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Liu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Xi Zhang
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiang Tian
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yuxia Wu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Guopeng Zhang
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiang Meng
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Zengyue Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Abstract
Immunohistochemical (IHC) biomarkers in breast tissue microarray (TMA) samples are used daily in pathology departments. In recent years, automatic methods to evaluate positive staining have been investigated since they may save time and reduce errors in the diagnosis. These errors are mostly due to subjective evaluation. The aim of this work is to develop a density tool able to automatically quantify the positive brown IHC stain in breast TMA for different biomarkers. To avoid the problem of colour variation and make a robust tool independent of the staining process, several colour standardization methods have been analysed. Four colour standardization methods have been compared against colour model segmentation. The standardization methods have been compared by means of NBS colour distance. The use of colour standardization helps to reduce noise due to stain and histological sample preparation. However, the most reliable and robust results have been obtained by combining the HSV and RGB colour models for segmentation with the HSB channels. The segmentation provides three outputs based on three saturation values for weak, medium and strong staining. Each output image can be combined according to the type of biomarker staining. The results with 12 biomarkers were evaluated and compared to the segmentation and density calculation done by expert pathologists. The Hausdorff distance, sensitivity and specificity have been used to quantitative validate the results. The tests carried out with 8000 TMA images provided an average of 95.94% accuracy applied to the total tissue cylinder area. Colour standardization was used only when the tissue core had blurring and fading stain and the expert could not evaluate them without a pre-processing.
Collapse
|
8
|
The METINUS Plus method for nuclei quantification in tissue microarrays of breast cancer and axillary node tissue section. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Bueno G, Fernández-Carrobles MM, Deniz O, García-Rojo M. New Trends of Emerging Technologies in Digital Pathology. Pathobiology 2017; 83:61-9. [PMID: 27100343 DOI: 10.1159/000443482] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The future paradigm of pathology will be digital. Instead of conventional microscopy, a pathologist will perform a diagnosis through interacting with images on computer screens and performing quantitative analysis. The fourth generation of virtual slide telepathology systems, so-called virtual microscopy and whole-slide imaging (WSI), has allowed for the storage and fast dissemination of image data in pathology and other biomedical areas. These novel digital imaging modalities encompass high-resolution scanning of tissue slides and derived technologies, including automatic digitization and computational processing of whole microscopic slides. Moreover, automated image analysis with WSI can extract specific diagnostic features of diseases and quantify individual components of these features to support diagnoses and provide informative clinical measures of disease. Therefore, the challenge is to apply information technology and image analysis methods to exploit the new and emerging digital pathology technologies effectively in order to process and model all the data and information contained in WSI. The final objective is to support the complex workflow from specimen receipt to anatomic pathology report transmission, that is, to improve diagnosis both in terms of pathologists' efficiency and with new information. This article reviews the main concerns about and novel methods of digital pathology discussed at the latest workshop in the field carried out within the European project AIDPATH (Academia and Industry Collaboration for Digital Pathology).
Collapse
|
10
|
Gupta V, Bhavsar A. An Integrated Multi-scale Model for Breast Cancer Histopathological Image Classification with Joint Colour-Texture Features. COMPUTER ANALYSIS OF IMAGES AND PATTERNS 2017. [DOI: 10.1007/978-3-319-64698-5_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
11
|
Casanova D, Florindo J, Falvo M, Bruno O. Texture analysis using fractal descriptors estimated by the mutual interference of color channels. Inf Sci (N Y) 2016. [DOI: 10.1016/j.ins.2016.01.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Bagging Tree Classifier and Texture Features for Tumor Identification in Histological Images. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.procs.2016.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|