1
|
Li T, Patel KB, Yu X, Yao S, Wang L, Chung CH, Wang X. Identifying targeted cell-free DNA methylation regions in head and neck cancer via paired methylome analysis. RESEARCH SQUARE 2024:rs.3.rs-5124805. [PMID: 39649173 PMCID: PMC11623779 DOI: 10.21203/rs.3.rs-5124805/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Despite the critical need, progress in developing cell-free DNA (cfDNA) liquid biopsy biomarkers for the diagnosis and risk stratification of head and neck squamous cell carcinoma (HNSC) has been limited. In this study, we present a comprehensive paired-sample differential methylation region (psDMR) analysis in HNSC, aimed at identifying reliable and HNSC-specific regions for cfDNA biomarker discovery. Traditional DMR analyses often overlook paired-sample information and fail to account for the heterogeneity within HNSC tissues. Our findings reveal a substantial overlap of hypermethylated DMRs across two independent HNSC methylation datasets, demonstrating the robustness and clinical relevance of these regions for cfDNA biomarker development. Furthermore, we identified consistent DMRs in both HNSC and lung squamous cell carcinoma (LSCC), suggesting the potential for pan-squamous cell carcinoma biomarkers. Notably, gene clusters such as HOXD, ZNF, and NKX2 were frequently hypermethylated, providing new insights into the shared epigenetic landscape of HNSC and LSCC. This study underscores the importance of incorporating matched normal tissues in cancer methylome analyses and establishes a foundation for advancing cfDNA-based biomarker discovery across squamous cell carcinomas.
Collapse
Affiliation(s)
- Tingyi Li
- H Lee Moffitt Cancer Center and Research Center Inc: Moffitt Cancer Center
| | - Krupal B Patel
- City of Hope Comprehensive Cancer Center: City of Hope Inc
| | - Xiaoqing Yu
- H Lee Moffitt Cancer Center and Research Center Inc: Moffitt Cancer Center
| | - Sijie Yao
- H Lee Moffitt Cancer Center and Research Center Inc: Moffitt Cancer Center
| | - Liang Wang
- H Lee Moffitt Cancer Center and Research Center Inc: Moffitt Cancer Center
| | - Christine H Chung
- H Lee Moffitt Cancer Center and Research Center Inc: Moffitt Cancer Center
| | - Xuefeng Wang
- H Lee Moffitt Cancer Center and Research Center Inc: Moffitt Cancer Center
| |
Collapse
|
2
|
Li T, Patel KB, Yu X, Yao S, Wang L, Chung CH, Wang X. Unveiling targeted cell-free DNA methylation regions through paired methylome analysis of tumor and normal tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546654. [PMID: 37425680 PMCID: PMC10327111 DOI: 10.1101/2023.06.27.546654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Liquid biopsy analysis of cell-free DNA (cfDNA) has revolutionized cancer research by enabling non-invasive assessment of tumor-derived genetic and epigenetic changes. In this study, we conducted a comprehensive paired-sample differential methylation analysis (psDMR) on reprocessed methylation data from two large datasets, CPTAC and TCGA, to identify and validate differentially methylated regions (DMRs) as potential cfDNA biomarkers for head and neck squamous cell carcinoma (HNSC). Our hypothesis is that the paired sample test provides a more suitable and powerful approach for the analysis of heterogeneous cancers like HNSC. The psDMR analysis revealed a significant number of overlapped hypermethylated DMRs between two datasets, indicating the reliability and relevance of these regions for cfDNA methylation biomarker discovery. We identified several candidate genes, including CALCA, ALX4, and HOXD9, which have been previously established as liquid biopsy methylation biomarkers in various cancer types. Furthermore, we demonstrated the efficacy of targeted region analysis using cfDNA methylation data from oral cavity squamous cell carcinoma and nasopharyngeal carcinoma patients, further validating the utility of psDMR analysis in prioritizing cfDNA methylation biomarkers. Overall, our study contributes to the development of cfDNA-based approaches for early cancer detection and monitoring, expanding our understanding of the epigenetic landscape of HNSC, and providing valuable insights for liquid biopsy biomarker discovery not only in HNSC and other cancer types.
Collapse
Affiliation(s)
- Tingyi Li
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, USA
| | - Krupal B Patel
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, USA
| | - Sijie Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, USA
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, Florida, 33612, USA
| |
Collapse
|
3
|
Inchanalkar M, Srivatsa S, Ambatipudi S, Bhosale PG, Patil A, Schäffer AA, Beerenwinkel N, Mahimkar MB. Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers. Clin Epigenetics 2023; 15:93. [PMID: 37245006 DOI: 10.1186/s13148-023-01510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Gingivobuccal complex oral squamous cell carcinoma (GBC-OSCC) is an aggressive malignancy with high mortality often preceded by premalignant lesions, including leukoplakia. Previous studies have reported genomic drivers in OSCC, but much remains to be elucidated about DNA methylation patterns across different stages of oral carcinogenesis. RESULTS There is a serious lack of biomarkers and clinical application of biomarkers for early detection and prognosis of gingivobuccal complex cancers. Hence, in search of novel biomarkers, we measured genome-wide DNA methylation in 22 normal oral tissues, 22 leukoplakia, and 74 GBC-OSCC tissue samples. Both leukoplakia and GBC-OSCC had distinct methylation profiles as compared to normal oral tissue samples. Aberrant DNA methylation increases during the different stages of oral carcinogenesis, from premalignant lesions to carcinoma. We identified 846 and 5111 differentially methylated promoters in leukoplakia and GBC-OSCC, respectively, with a sizable fraction shared between the two sets. Further, we identified potential biomarkers from integrative analysis in gingivobuccal complex cancers and validated them in an independent cohort. Integration of genome, epigenome, and transcriptome data revealed candidate genes with gene expression synergistically regulated by copy number and DNA methylation changes. Regularised Cox regression identified 32 genes associated with patient survival. In an independent set of samples, we validated eight genes (FAT1, GLDC, HOXB13, CST7, CYB5A, MLLT11, GHR, LY75) from the integrative analysis and 30 genes from previously published reports. Bisulfite pyrosequencing validated GLDC (P = 0.036), HOXB13 (P < 0.0001) promoter hypermethylation, and FAT1 (P < 0.0001) hypomethylation in GBC-OSCC compared to normal controls. CONCLUSIONS Our findings identified methylation signatures associated with leukoplakia and gingivobuccal complex cancers. The integrative analysis in GBC-OSCC identified putative biomarkers that enhance existing knowledge of oral carcinogenesis and may potentially help in risk stratification and prognosis of GBC-OSCC.
Collapse
Affiliation(s)
- Mayuri Inchanalkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Srikant Ambatipudi
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Priyanka G Bhosale
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Centre for Gene Therapy and Regenerative Medicine, Guy's Hospital, King's College London, Tower Wing, London, UK
| | - Asawari Patil
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, and National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Manoj B Mahimkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
4
|
Patel KB, Padhya TA, Huang J, Hernandez-Prera JC, Li T, Chung CH, Wang L, Wang X. Plasma cell-free DNA methylome profiling in pre- and post-surgery oral cavity squamous cell carcinoma. Mol Carcinog 2023; 62:493-502. [PMID: 36636912 PMCID: PMC10023468 DOI: 10.1002/mc.23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC), a highly heterogeneous disease that involves multiple anatomic sites, is a leading cause of cancer-related mortality worldwide. Although the utility of noninvasive biomarkers based on circulating cell-free DNA (cfDNA) methylation profiling has been widely recognized, limited studies have been reported so far regarding the dynamics of cfDNA methylome in oral cavity squamous cell carcinoma (OCSCC). It is hypothesized in this study that comparison of methylation profiles in pre- and postsurgery plasma samples will reveal OCSCC-specific prognostic and diagnostic biomarkers. As a strategy to further prioritize tumor-specific targets, top differential methylated regions (DMRs) were called by reanalyzing methylation data from paired tumor and normal tissue collected in the the cancer genome atlas head-neck squamous cell carcinoma (TCGA) head and neck cancer cohort. Matched plasma samples from eight patients with OCSCC were collected at Moffitt Cancer Center before and after surgical resection. Plasma-derived cfDNA was analyzed by cfMBD-seq, which is a high-sensitive methylation profiling assay. Differential methylation analysis was then performed based on the matched samples profiled. In the top 200 HNSCC-specific DMRs detected based on the TCGA data set, a total of 23 regions reached significance in the plasma-based DMR test. The top five validated DMR regions (ranked by the significance in the plasma study) are located in the promoter regions of genes PENK, NXPH1, ZIK1, TBXT, and CDO1, respectively. The genome-wide cfDNA DMR analysis further highlighted candidate biomarkers located in genes SFRP4, SOX1, IRF4, and PCDH17. The prognostic relevance of candidate genes was confirmed by survival analysis using the TCGA data. This study supports the utility of cfDNA-based methylome profiling as a promising noninvasive biomarker source for OCSCC and HNSCC.
Collapse
Affiliation(s)
- Krupal B Patel
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tapan A Padhya
- Otolaryngology - Head and Neck Surgery, University of South Florida Morsani College of Medicine, Tampa, USA
| | - Jinyong Huang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Juan C Hernandez-Prera
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tingyi Li
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Li P, Liu S, Du L, Mohseni G, Zhang Y, Wang C. Liquid biopsies based on DNA methylation as biomarkers for the detection and prognosis of lung cancer. Clin Epigenetics 2022; 14:118. [PMID: 36153611 PMCID: PMC9509651 DOI: 10.1186/s13148-022-01337-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Lung cancer (LC) is the main cause of cancer-related mortality. Most LC patients are diagnosed in an advanced stage when the symptoms are obvious, and the prognosis is quite poor. Although low-dose computed tomography (LDCT) is a routine clinical examination for early detection of LC, the false-positive rate is over 90%. As one of the intensely studied epigenetic modifications, DNA methylation plays a key role in various diseases, including cancer and other diseases. Hypermethylation in tumor suppressor genes or hypomethylation in oncogenes is an important event in tumorigenesis. Remarkably, DNA methylation usually occurs in the very early stage of malignant tumors. Thus, DNA methylation analysis may provide some useful information about the early detection of LC. In recent years, liquid biopsy has developed rapidly. Liquid biopsy can detect and monitor both primary and metastatic malignant tumors and can reflect tumor heterogeneity. Moreover, it is a minimally invasive procedure, and it causes less pain for patients. This review summarized various liquid biopsies based on DNA methylation for LC. At first, we briefly discussed some emerging technologies for DNA methylation analysis. Subsequently, we outlined cell-free DNA (cfDNA), sputum, bronchoalveolar lavage fluid, bronchial aspirates, and bronchial washings DNA methylation-based liquid biopsy for the early detection of LC. Finally, the prognostic value of DNA methylation in cfDNA and sputum and the diagnostic value of other DNA methylation-based liquid biopsies for LC were also analyzed.
Collapse
|
6
|
Birknerova N, Mancikova V, Paul ED, Matyasovsky J, Cekan P, Palicka V, Parova H. Circulating Cell-Free DNA-Based Methylation Pattern in Saliva for Early Diagnosis of Head and Neck Cancer. Cancers (Basel) 2022; 14:4882. [PMID: 36230805 PMCID: PMC9563959 DOI: 10.3390/cancers14194882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Head and neck cancer (HNC) remains one of the leading causes of mortality worldwide due to tumor diagnosis at a late stage, loco-regional aggression, and distant metastases. A standardized diagnostic procedure for HNC is a tissue biopsy that cannot faithfully portray the in-depth tumor dynamics. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for cancer detection and follow-up. A saliva-based liquid biopsy allows convenient, non-invasive, and painless collection of high volumes of this biofluid, with the possibility of repetitive sampling, all enabling real-time monitoring of the disease. No approved clinical test for HNC has yet been established. However, epigenetic changes in saliva circulating cell-free DNA (cfDNA) have the potential for a wide range of clinical applications. Therefore, the aim of this review is to present an overview of cfDNA-based methylation patterns in saliva for early detection of HNC, with particular attention to circulating tumor DNA (ctDNA). Due to advancements in isolation and detection technologies, as well as next- and third-generation sequencing, recent data suggest that salivary biomarkers may be successfully applied for early detection of HNC in the future, but large prospective clinical trials are still warranted.
Collapse
Affiliation(s)
- Natalia Birknerova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Veronika Mancikova
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Evan David Paul
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Jan Matyasovsky
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Pavol Cekan
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Vladimir Palicka
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
8
|
Salivary DNA Methylation as an Epigenetic Biomarker for Head and Neck Cancer. Part I: A Diagnostic Accuracy Meta-Analysis. J Pers Med 2021; 11:jpm11060568. [PMID: 34204396 PMCID: PMC8233749 DOI: 10.3390/jpm11060568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
DNA hypermethylation is an important epigenetic mechanism for gene expression inactivation in head and neck cancer (HNC). Saliva has emerged as a novel liquid biopsy representing a potential source of biomarkers. We performed a comprehensive meta-analysis to evaluate the overall diagnostic accuracy of salivary DNA methylation for detecting HNC. PubMed EMBASE, Web of Science, LILACS, and the Cochrane Library were searched. Study quality was assessed by the Quality Assessment for Studies of Diagnostic Accuracy-2, and sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (dOR), and their corresponding 95% confidence intervals (CIs) were calculated using a bivariate random-effect meta-analysis model. Meta-regression and subgroup analyses were performed to assess heterogeneity. Eighty-four study units from 18 articles with 8368 subjects were included. The pooled sensitivity and specificity of salivary DNA methylation were 0.39 and 0.87, respectively, while PLR and NLR were 3.68 and 0.63, respectively. The overall area under the curve (AUC) was 0.81 and the dOR was 8.34. The combination of methylated genes showed higher diagnostic accuracy (AUC, 0.92 and dOR, 36.97) than individual gene analysis (AUC, 0.77 and dOR, 6.02). These findings provide evidence regarding the potential clinical application of salivary DNA methylation for HNC diagnosis.
Collapse
|
9
|
Chen Z, Cui N, Zhao JS, Wu JF, Ma F, Li C, Liu XY. Expressions of ZNF436, β-catenin, EGFR, and CMTM5 in breast cancer and their clinical significances. Eur J Histochem 2021; 65. [PMID: 33478201 PMCID: PMC7856825 DOI: 10.4081/ejh.2021.3173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
As the leading malignancy among women, breast cancer is a serious threat to the life and health of women. In this context, it is of particular importance that a proper therapeutic target be identified for breast cancer treatment. We collected the pathological tissues of 80 patients, with the view to discovering appropriate molecular targets for the treatment of breast cancer, this paper analyzes the expressions of ZNF436, β-catenin, EGFR and CMTM5 in breast cancer tissues, as well as their correlations with breast cancer in combination with the clinicopathologic characteristics of studied patients. Immunohistochemistry (IHC) was utilized to detect the expression levels of ZNF436, β-catenin, EGFR and CMTM5 in cancerous and paracancerous tissues of breast cancer patients. The expression levels of ZNF436, β-Catenin and EGFR in breast cancer tissues were significantly greater than those in paracancerous tissues in this study (p<0.05), while CMTM5 was highly expressed in paracancerous tissues (p<0.05). Additionally, the correlation of the expressions of such indicators with the staging, differentiation and lymphatic metastasis of breast cancer, were also found to be statistically significant at the level p<0.05. The different expression levels of ZNF436, β-catenin, EGFR and CMTM5 in breast cancer and paracancerous tissues open up the possibility of utilizing them as molecular markers for breast cancer. These findings provide a theoretical basis for targeted molecular therapies for breast cancer, and hence carry a significant practical significance.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei.
| | - Na Cui
- Department of ICU, Affiliated Hospital of Hebei University, Baoding, Hebei.
| | - Ji-Sen Zhao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei.
| | - Jian-Fei Wu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei.
| | - Fang Ma
- Department of Anesthesiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei.
| | - Cong Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei.
| | - Xian-Yi Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei.
| |
Collapse
|
10
|
Romanowska K, Sobecka A, Rawłuszko-Wieczorek AA, Suchorska WM, Golusiński W. Head and Neck Squamous Cell Carcinoma: Epigenetic Landscape. Diagnostics (Basel) 2020; 11:diagnostics11010034. [PMID: 33375464 PMCID: PMC7823717 DOI: 10.3390/diagnostics11010034] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) constitutes the sixth most prevalent cancer worldwide. The molecular pathogenesis of HNSCC includes disorders in cell cycle, intercellular signaling, proliferation, squamous cell differentiation and apoptosis. In addition to the genetic mutations, changes in HNSCC are also characterized by the accumulation of epigenetic alterations such as DNA methylation, histone modifications, non-coding RNA activity and RNA methylation. In fact, some of them may promote cancer formation and progression by controlling the gene expression machinery, hence, they could be used as biomarkers in the clinical surveillance of HNSCC or as targets for therapeutic strategies. In this review, we focus on the current knowledge regarding epigenetic modifications observed in HNSCC and its predictive value for cancer development.
Collapse
Affiliation(s)
- Kamila Romanowska
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
- Correspondence:
| | - Agnieszka Sobecka
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | | | - Wiktoria M. Suchorska
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
| |
Collapse
|
11
|
Su Y, Shetty A, Jiang F. Integrated analysis of miRNAs and DNA methylation identifies miR-132-3p as a tumor suppressor in lung adenocarcinoma. Thorac Cancer 2020; 11:2112-2124. [PMID: 32500672 PMCID: PMC7396385 DOI: 10.1111/1759-7714.13497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Aberrant miRNA expression and DNA methylation are two major epigenetic events in lung adenocarcinoma (LUAD). We conducted a combined analysis of the molecular changes in LUAD. METHODS We analyzed differentially expressed miRNAs and methylated CpG loci in 489 LUAD tissues versus 49 normal lung tissues of the Cancer Genome Atlas (TCGA). The results were validated in cell lines and xenograft mouse models and additional pairs of 36 LUAD and 36 normal lung tissues. RESULTS A total of 125 differentially expressed miRNAs and 145 differentially methylated CpG loci were identified in the LUAD versus normal lung tissues of TCGA data. Expression of the 22 miRNAs was inversely correlated with the 47 differentially methylated sites located in the miRNAs. Molecular and cellular function analysis showed that the abnormally methylated miRNAs were mainly involved in cell-to-cell signaling and interaction in airway cells. The DNA methylation status and altered expressions of miRNAs and their target genes were confirmed in 36 pairs of lung tumor and noncancerous lung tissues. Furthermore, aberrant miRNA expressions or DNA methylations alone could be involved in tumorigenesis of LUAD via different pathways. In addition, elevated miR-132-3p expression, reduced expression of its targeted gene (ZEB2), and decreased cell proliferation was observed in lung cancer cells treated with DNA methyltransferase inhibitor. Moreover, in vitro and in vivo analyses showed that miR-132-3p-3p downregulation via DNA methylation promoted tumorigenicity of lung cancer by directly regulating ZEB2. CONCLUSIONS The interaction between two epigenetic aberrations could have important functions in LUAD. miR-132-3p might act as a tumor suppressor in the tumorigenicity of LUAD. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: Systemically investigating relationship between aberrant miRNA expression and DNA methylation in lung cancer could improve understanding of lung tumorigenesis and develop diagnostic and therapeutic targets. WHAT THIS STUDY ADDS Three forms of relationships between the two epigenetic changes are defined. miR-132-3p is further identified as a tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Yun Su
- Department of Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Zhang H, Sun X, Lu Y, Wu J, Feng J. DNA-methylated gene markers for colorectal cancer in TCGA database. Exp Ther Med 2020; 19:3042-3050. [PMID: 32256791 PMCID: PMC7086203 DOI: 10.3892/etm.2020.8565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is characterized by the accumulation of genetic and epigenetic alterations in neoplastic processes. DNA methylation, as an important epigenetic process, contributes to the development of CRC. In the present study, the epigenetic landscape of genes in CRC was characterized by analyzing the dataset from The Cancer Genome Atlas database and 177 DNA-methylated genes were screened based on the criterion of the Pearson correlation (R) between expression and methylation levels being >0.4. Pathway enrichment analysis revealed prominent pathways, including transcription and metabolism, further implying their significant role in tumorigenesis. Among the methylated genes, only zinc finger protein (ZNF)726 with aberrant expression was determined to affect overall survival (OS) as well as disease-free survival of patients with CRC. In addition, ZNF726 was identified as an independent prognostic risk factor for OS in patients with CRC. The methylation-based regulation of ZNF726 expression in CRC cells was further assessed using the Cancer Cell Line Encyclopedia database. Finally, the CpG island methylation of the ZNF726 promoter was evaluated to further elucidate its role in the development of CRC. In conclusion, the epigenetic landscape of genes in terms of promoter methylation in CRC was characterized, revealing that aberrant expression of ZNF726 may be an independent prognostic risk factor for OS in patients with CRC.
Collapse
Affiliation(s)
- Hui Zhang
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Xun Sun
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Ya Lu
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Jifeng Feng
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
13
|
Ding W, Feng G, Hu Y, Chen G, Shi T. Co-occurrence and Mutual Exclusivity Analysis of DNA Methylation Reveals Distinct Subtypes in Multiple Cancers. Front Cell Dev Biol 2020; 8:20. [PMID: 32064261 PMCID: PMC7000380 DOI: 10.3389/fcell.2020.00020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Co-occurrence and mutual exclusivity (COME) of DNA methylation refer to two or more genes that tend to be positively or negatively correlated in DNA methylation among different samples. Although COME of gene mutations in pan-cancer have been well explored, little is known about the COME of DNA methylation in pan-cancer. Here, we systematically explored the COME of DNA methylation profile in diverse human cancer. A total of 5,128,332 COME events were identified in 14 main cancers types in The Cancer Genome Atlas (TCGA). We also identified functional epigenetic modules of the zinc finger gene family in six cancer types by integrating the gene expression and DNA methylation data and the frequently occurred COME network. Interestingly, most of the genes in those functional epigenetic modules are epigenetically repressed. Strikingly, those frequently occurred COME events could be used to classify the patients into several subtypes with significant different clinical outcomes in six cancers as well as pan-cancer (p-value ≤ = 0.05). Moreover, we observed significant associations between different COME subtypes and clinical features (e.g., age, gender, histological type, neoplasm histologic grade, and pathologic stage) in distinct cancers. Taken together, we identified millions of COME events of DNA methylation in pan-cancer and detected functional epigenetic COME events that could separate tumor patients into different subtypes, which may benefit the diagnosis and prognosis of pan-cancer.
Collapse
Affiliation(s)
- Wubin Ding
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoshuang Feng
- Big Data and Engineering Research Center, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yige Hu
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Geng Chen
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Big Data and Engineering Research Center, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Kagohara LT, Stein-O’Brien GL, Kelley D, Flam E, Wick HC, Danilova LV, Easwaran H, Favorov AV, Qian J, Gaykalova DA, Fertig EJ. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics 2019; 17:49-63. [PMID: 28968850 PMCID: PMC5860551 DOI: 10.1093/bfgp/elx018] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells. Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype. Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer. The precise functional role of these alterations is an area of active research using emerging high-throughput approaches and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies, public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review. Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with epigenetics biomarkers and precision medicine using emerging epigenetic therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daria A Gaykalova
- Corresponding authors: Daria A. Gaykalova, Otolaryngology - Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Rm 574, CRBII Baltimore, MD 21231, USA. Tel.: +1 410 614 2745; Fax: +1 410 614 1411; E-mail: ; Elana J. Fertig, Assistant Professor of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, 550 N Broadway, 1101 E Baltimore, MD 21205, USA. Tel.: +1 410 955 4268; Fax: +1 410 955 0859; E-mail:
| | | |
Collapse
|
15
|
Ghosh J, Schultz B, Coutifaris C, Sapienza C. Highly variant DNA methylation in normal tissues identifies a distinct subclass of cancer patients. Adv Cancer Res 2019; 142:1-22. [PMID: 30885359 DOI: 10.1016/bs.acr.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The "CpG Island Methylator Phenotype" (CIMP) has been found to be a useful concept in stratifying several types of human cancer into molecularly and clinically distinguishable subgroups. We have identified an additional epigenetic stratification category, the "Outlier Methylation Phenotype" (OMP). Whereas CIMP is defined on the basis of hyper-methylation in tumor genomes, OMP is defined on the basis of highly variant (either or both hyper- and hypo-methylation) methylation at many sites in normal tissues. OMP was identified and defined, originally, as being more common among low birth weight individuals conceived in vitro but we have also identified OMP individuals among colon cancer patients profiled by us, as well as multiple types of cancer patients in the TCGA database. The cause(s) of OMP are unknown, as is whether these individuals identify a clinically useful subgroup of patients, but both the causes of, and potential consequences to, this epigenetically distinct group are of great interest.
Collapse
Affiliation(s)
- Jayashri Ghosh
- Fels Institute of Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute of Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Christos Coutifaris
- Department of Obstetrics & Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Carmen Sapienza
- Fels Institute of Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
16
|
Ren S, Gaykalova D, Wang J, Guo T, Danilova L, Favorov A, Fertig E, Bishop J, Khan Z, Flam E, Wysocki PT, DeJong P, Ando M, Liu C, Sakai A, Fukusumi T, Haft S, Sadat S, Califano JA. Discovery and development of differentially methylated regions in human papillomavirus-related oropharyngeal squamous cell carcinoma. Int J Cancer 2018; 143:2425-2436. [PMID: 30070359 DOI: 10.1002/ijc.31778] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/30/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) exhibits a different composition of epigenetic alterations. In this study, we identified differentially methylated regions (DMRs) with potential utility in screening for HPV-positive OPSCC. Genome wide DNA methylation was measured using methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) in 50 HPV-positive OPSCC tissues and 25 normal tissues. Fifty-one DMRs were defined with maximal methylation specificity to cancer samples. The Cancer Genome Atlas (TCGA) methylation array data was used to evaluate the performance of the proposed candidates. Supervised hierarchical clustering of 51 DMRs found that HPV-positive OPSCC had significantly higher DNA methylation levels compared to normal samples, and non-HPV-related head and neck squamous cell carcinoma (HNSCC). The methylation levels of all top 20 DNA methylation biomarkers in HPV-positive OPSCC were significantly higher than those in normal samples. Further confirmation using quantitative methylation specific PCR (QMSP) in an independent set of 24 HPV-related OPSCCs and 22 controls showed that 16 of the 20 candidates had significant higher methylation levels in HPV-positive OPSCC samples compared with controls. One candidate, OR6S1, had a sensitivity of 100%, while 17 candidates (KCNA3, EMBP1, CCDC181, DPP4, ITGA4, BEND4, ELMO1, SFMBT2, C1QL3, MIR129-2, NID2, HOXB4, ZNF439, ZNF93, VSTM2B, ZNF137P and ZNF773) had specificities of 100%. The prediction accuracy of the 20 candidates rang from 56.2% to 99.8% by receiver operating characteristic analysis. We have defined 20 highly specific DMRs in HPV-related OPSCC, which can potentially be applied to molecular-based detection tests and improve disease management.
Collapse
Affiliation(s)
- Shuling Ren
- Moores Cancer Center, University of California San Diego, La Jolla, CA.,Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daria Gaykalova
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Jennifer Wang
- Department of Head and Neck Surgery, MD Anderson Cancer Center, Houston, TX
| | - Theresa Guo
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Ludmila Danilova
- Division of Oncology Biostatistics, Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, RAS, Moscow, Russia
| | - Alexander Favorov
- Division of Oncology Biostatistics, Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, RAS, Moscow, Russia
| | - Elana Fertig
- Division of Oncology Biostatistics, Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Justin Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zubair Khan
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Emily Flam
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Piotr T Wysocki
- Laboratory of Human Cancer Genetics, Center of New Technologies, University of Warsaw, Warsaw, Poland.,The Maria Sklodowska-Curie Institute Oncology Center, Warsaw, Poland
| | - Peter DeJong
- Moores Cancer Center, University of California San Diego, La Jolla, CA.,College of Human Medicine, Michigan State University, East Lansing, MI
| | - Mizuo Ando
- Moores Cancer Center, University of California San Diego, La Jolla, CA.,Department of Otolaryngology-Head and Neck Surgery, Tokyo University, Tokyo, Japan
| | - Chao Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA.,Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Akihiro Sakai
- Moores Cancer Center, University of California San Diego, La Jolla, CA.,Department of Otolaryngology, Center of Head and Neck Surgery, Tokai University, Isehara, Japan
| | - Takahito Fukusumi
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Sunny Haft
- Moores Cancer Center, University of California San Diego, La Jolla, CA.,Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, CA
| | - Sayed Sadat
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Joseph A Califano
- Moores Cancer Center, University of California San Diego, La Jolla, CA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD.,Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, CA
| |
Collapse
|
17
|
Liu C, Guo T, Xu G, Sakai A, Ren S, Fukusumi T, Ando M, Sadat S, Saito Y, Khan Z, Fisch KM, Califano J. Characterization of Alternative Splicing Events in HPV-Negative Head and Neck Squamous Cell Carcinoma Identifies an Oncogenic DOCK5 Variant. Clin Cancer Res 2018; 24:5123-5132. [PMID: 29945995 DOI: 10.1158/1078-0432.ccr-18-0752] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/29/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023]
Abstract
Purpose: Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide, and alternative splicing is considered to play important roles in tumor progression. Our study is designed to identify alternative splicing events (ASEs) in human papillomavirus (HPV)-negative HNSCC.Experimental Design: RNA sequencing data of 407 HPV-negative HNSCC and 38 normal samples were obtained from The Cancer Genome Atlas (TCGA), and splice junctions were discovered using MapSplice. Outlier analysis was used to identify significant splicing junctions between HPV-negative HNSCC and normal samples. To explore the functional role of the identified DOCK5 variant, we checked its expression with qRT-PCR in a separate primary tumor validation set and performed proliferation, migration, and invasion assays.Results: A total of 580 significant splicing events were identified in HPV-negative HNSCC, and the most common type of splicing events was an alternative start site (33.3%). The prevalence of a given individual ASE among the tumor cohort ranged from 9.8% and 64.4%. Within the 407 HPV-negative HNSCC samples in TCGA, the number of significant ASEs differentially expressed in each tumor ranged from 17 to 290. We identified a novel candidate oncogenic DOCK5 variant confirmed using qRT-PCR in a separate primary tumor validation set. Loss- and gain-of-function experiments indicated that DOCK5 variant promoted proliferation, migration, and invasion of HPV-negative HNSCC cells, and patients with higher expression of DOCK5 variant showed decreased overall survival.Conclusions: Analysis of ASEs in HPV-negative HNSCC identifies multiple alterations likely related to carcinogenesis, including an oncogenic DOCK5 variant. Clin Cancer Res; 24(20); 5123-32. ©2018 AACR.
Collapse
Affiliation(s)
- Chao Liu
- Moores Cancer Center, University of California San Diego, San Diego, California.,Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Theresa Guo
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Guorong Xu
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, California
| | - Akihiro Sakai
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Shuling Ren
- Moores Cancer Center, University of California San Diego, San Diego, California.,Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Takahito Fukusumi
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Mizuo Ando
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Sayed Sadat
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Yuki Saito
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Zubair Khan
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, California
| | - Joseph Califano
- Moores Cancer Center, University of California San Diego, San Diego, California. .,Division of Otolaryngology - Head and Neck Surgery, University of California San Diego, San Diego, California
| |
Collapse
|
18
|
Walter V, Du Y, Danilova L, Hayward MC, Hayes DN. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors. Cancer Res 2018; 78:3375-3385. [PMID: 29700001 DOI: 10.1158/0008-5472.can-17-3464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/10/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including CCND1 and CTTN, genes not identified by copy number analysis in the primary reports. We demonstrate highly concordant usage of shared oncogenes on chr3q, yet strikingly diverse oncogene usage on chr11q as a function of HPV infection status. Regions of chr19 that display remarkable associations between methylation and gene expression were identified, as were previously unreported miRNA-gene expression associations that may contribute to the epithelial-to-mesenchymal transition.Significance: This study presents an important bioinformatics tool that will enable integrated analyses of multiple genomic datatypes. Cancer Res; 78(12); 3375-85. ©2018 AACR.
Collapse
Affiliation(s)
- Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania. .,Department of Biochemistry, Penn State College of Medicine, Hershey, Pennsylvania.,UNC Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - Ying Du
- Center for Infectious Disease Research, Seattle, Washington
| | - Ludmila Danilova
- Johns Hopkins University School of Medicine and Bloomberg∼Kimmel Institute, Baltimore, Maryland.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Michele C Hayward
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - D Neil Hayes
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina.,Department of Internal Medicine, Division of Medical Oncology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
19
|
Zhai J, Yang Z, Cai X, Yao G, An Y, Wang W, Fan Y, Zeng C, Liu K. ZNF280B promotes the growth of gastric cancer in vitro and in vivo. Oncol Lett 2018; 15:5819-5824. [PMID: 29556309 DOI: 10.3892/ol.2018.8060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Zinc finger protein 280B (ZNF280B) mediates pro-survival and pro-growth functions in prostate cancer. However, in gastric cancer, its clinical significance remains poorly characterized. In the present study, the expression levels of ZNF280B in 60 patients with gastric cancer were examined using immunohistochemistry. The association between ZNF280B expression and clinicopathological features was assessed. Positive ZNF280B staining was demonstrated for 38 (63.3%) samples out of 60 gastric cancer cases in immunohistochemical analysis. ZNF280B expression was significantly associated with tumor size (P=0.017) and TNM stage (P=0.001). Furthermore, the proliferation index in the positive ZNF280B expression group was significantly higher (38.8±6.2) compared with that of the negative ZNF280B expression group (16.9±8.9; P<0.01). These results suggest that ZNF280B expression may be associated with the proliferation of gastric cancer cells. The role of ZNF280B in the growth of gastric cancer cells (MGC-803) was also investigated in vitro and in vivo by enhancing the expression of ZNF280B. A colony formation assay indicated that the number of colonies in the MGC-803 cells with enhanced ZNF280B (146±5.8) was significantly higher than that of the MGC-803 control group (97±5.1) and the negative control group (101±6.5; P<0.05). An MTT assay demonstrated that ZNF280B significantly promoted the proliferation of MGC-803 cells at days 3 and 4 (P<0.05). It was observed that the overexpression of ZNF280B may promote the growth of gastric cancer in vivo in xenograft studies. These findings indicate that ZNF280B may be a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jingming Zhai
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zheng Yang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaodong Cai
- Department of Neurology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Guoliang Yao
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yanhui An
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yonggang Fan
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Chao Zeng
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Kefeng Liu
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
20
|
Kagohara LT, Stein-O'Brien GL, Kelley D, Flam E, Wick HC, Danilova LV, Easwaran H, Favorov AV, Qian J, Gaykalova DA, Fertig EJ. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics 2018. [PMID: 28968850 DOI: 10.1101/114025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells. Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype. Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer. The precise functional role of these alterations is an area of active research using emerging high-throughput approaches and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies, public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review. Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with epigenetics biomarkers and precision medicine using emerging epigenetic therapies.
Collapse
|
21
|
Arantes LMRB, De Carvalho AC, Melendez ME, Lopes Carvalho A. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn 2017; 18:85-112. [PMID: 29134827 DOI: 10.1080/14737159.2017.1404906] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) encompasses tumors arising from several locations (oral and nasal cavities, paranasal sinuses, salivary glands, pharynx, and larynx) and currently stands as the sixth most common cancer worldwide. The most important risk factors identified so far are tobacco and alcohol consumption, and, for a subgroup of HNSCCs, infection with high-risk types of human papillomavirus (HPV). Despite several improvements in the treatment of these tumors in the last decades, overall survival rates have only improved marginally, mainly due to the advanced clinical stage at diagnosis and the high rates of treatment failure associated with this late diagnosis. Areas covered: This review will focus on the feasibility of evaluating molecular-based biomarkers (mRNA, microRNA, lncRNA, DNA methylation and protein expression) in body fluids (serum, plasma, and saliva) as markers for diagnosis, prognosis, and surveillance. Expert commentary: The potential use of those markers in the clinical setting would allow for early diagnosis, prediction of treatment response, improvement in treatment selection and provide disease monitoring for early detection of tumor recurrence. It can ultimately be translated into better survival rates and improved quality of life for HNSCC patients.
Collapse
Affiliation(s)
| | | | - Matias Eliseo Melendez
- a Molecular Oncology Research Center , Barretos Cancer Hospital , Barretos - SP , Brazil
| | - André Lopes Carvalho
- a Molecular Oncology Research Center , Barretos Cancer Hospital , Barretos - SP , Brazil
| |
Collapse
|
22
|
Cheng SJ, Chang CF, Ko HH, Liu YC, Peng HH, Wang HJ, Lin HS, Chiang CP. Hypermethylated ZNF582 and PAX1 genes in oral scrapings collected from cancer-adjacent normal oral mucosal sites are associated with aggressive progression and poor prognosis of oral cancer. Oral Oncol 2017; 75:169-177. [PMID: 29224816 DOI: 10.1016/j.oraloncology.2017.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/16/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study assessed whether hypermethylated ZNF582 and PAX1 genes in oral scrapings are correlated with the progression and prognosis of oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Methylation levels of ZNF582 and PAX1 genes in oral scrapings, collected from the cancer and adjacent normal oral mucosal sites of 80 OSCC patients before surgical cancer excision, were quantified using real-time methylation-specific PCR after bisulfite conversion. RESULTS Both the mean methylation (M)-indices of ZNF582 and PAX1 genes in oral scrapings were significantly higher at the cancer sites than at the adjacent normal oral mucosal sites (both P < .001). In the oral scrapings collected from the adjacent normal oral mucosal sites, the higher M-index of methylated ZNF582 (ZNF582m) was significantly correlated with a more advanced clinical stage (P = .04). Moreover, the higher M-index of methylated PAX1 (PAX1m) was significantly related to larger tumor size (P = .046). When the 80 OSCC patients were classified based on gene methylation tests, using the oral scrapings collected from the adjacent normal oral mucosal sites, we found a significantly shorter 3-year overall survival in ZNF582m-positive, PAX1m-positive, and ZNF582m/PAX1m-positive OSCC patients than in ZNF582m-negative (P = .02), PAX1m-negative (P = .04), and ZNF582m/PAX1m-negative OSCC patients (P = .02), respectively. Multivariate Cox regression analyses identified ZNF582m and ZNF582m/PAX1m as independent unfavorable prognostic factors. CONCLUSION Hypermethylated ZNF582 and PAX1 genes in the oral scrapings collected from adjacent normal oral mucosal sites rather than cancer sites are associated with aggressive progression and poor prognosis of OSCC.
Collapse
Affiliation(s)
- Shih-Jung Cheng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chi-Feng Chang
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan; Academia-Industry Bridging Program (AIBP), National Research Program for Bio-pharmaceuticals, Taipei, Taiwan
| | - Hui-Hsin Ko
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ching Liu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hui Peng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | - Chun-Pin Chiang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
23
|
Kanwal M, Ding XJ, Ma ZH, Li LW, Wang P, Chen Y, Huang YC, Cao Y. Characterization of germline mutations in familial lung cancer from the Chinese population. Gene 2017; 641:94-104. [PMID: 29054765 DOI: 10.1016/j.gene.2017.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/07/2017] [Indexed: 11/18/2022]
Abstract
Compared with numerous studies of somatic mutations using sporadic lung cancer, the research into germline mutations using familial lung cancer (FLC) is limited. In the present study, we used FLC samples obtained from the Chinese population in highly air-polluted regions to screen for novel germline mutations in lung cancer. Through a whole genome sequencing (WGS) analysis of the nine subjects (four lung cancer patients and five normal family members of FLC), we obtained a whole genome dataset of DNA alterations in FLC samples. A total of 1218 genes were identified with mutations of multiple types. Subsequently, the top 12 highly mutated genes were selected for validation by polymerase chain reaction and DNA sequencing in an expanded sample set including FLC, sporadic lung cancer, and healthy population. Mutations of the five genes (ARHGEF5, ANKRD20A2, ZNF595, ZNF812, MYO18B) may be potential germline mutations of lung cancer. We also analyzed specific mutations within the 12 genes and found that some specific mutations within the MUC12, FOXD4L3 and FOXD4L5 genes showed higher frequencies in the samples of FLC and/or lung cancer tissue, compared with the healthy population. Moreover, some genes with copy number variation may be potentially associated with a predisposition to lung cancer. Furthermore, non-coding DNA alterations of the WGS data in FLC were systematically analyzed and arranged. Interestingly, we found that germline mutations also occurred in many genes of non-coding RNA. This study uncovered the mutation spectrum in FLC and provided important clues for the evaluation of the genetic susceptibility to lung cancer.
Collapse
Affiliation(s)
- Madiha Kanwal
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Xiao-Jie Ding
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhans-Han Ma
- Computational Biology and Medical Ecology Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lian-Wei Li
- Computational Biology and Medical Ecology Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Ying Chen
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China; The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Ministry of Education of the People's Republic of China, Kunming, China
| | - Yun-Chao Huang
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China; The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Ministry of Education of the People's Republic of China, Kunming, China.
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
24
|
Kelley DZ, Flam EL, Izumchenko E, Danilova LV, Wulf HA, Guo T, Singman DA, Afsari B, Skaist AM, Considine M, Welch JA, Stavrovskaya E, Bishop JA, Westra WH, Khan Z, Koch WM, Sidransky D, Wheelan SJ, Califano JA, Favorov AV, Fertig EJ, Gaykalova DA. Integrated Analysis of Whole-Genome ChIP-Seq and RNA-Seq Data of Primary Head and Neck Tumor Samples Associates HPV Integration Sites with Open Chromatin Marks. Cancer Res 2017; 77:6538-6550. [PMID: 28947419 DOI: 10.1158/0008-5472.can-17-0833] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/22/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022]
Abstract
Chromatin alterations mediate mutations and gene expression changes in cancer. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has been utilized to study genome-wide chromatin structure in human cancer cell lines, yet numerous technical challenges limit comparable analyses in primary tumors. Here we have developed a new whole-genome analytic pipeline to optimize ChIP-Seq protocols on patient-derived xenografts from human papillomavirus-related (HPV+) head and neck squamous cell carcinoma (HNSCC) samples. We further associated chromatin aberrations with gene expression changes from a larger cohort of the tumor and normal samples with RNA-Seq data. We detect differential histone enrichment associated with tumor-specific gene expression variation, sites of HPV integration in the human genome, and HPV-associated histone enrichment sites upstream of cancer driver genes, which play central roles in cancer-associated pathways. These comprehensive analyses enable unprecedented characterization of the complex network of molecular changes resulting from chromatin alterations that drive HPV-related tumorigenesis. Cancer Res; 77(23); 6538-50. ©2017 AACR.
Collapse
Affiliation(s)
- Dylan Z Kelley
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emily L Flam
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ludmila V Danilova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Hildegard A Wulf
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theresa Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dzov A Singman
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bahman Afsari
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alyza M Skaist
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Considine
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jane A Welch
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins Medical School of Medicine, Baltimore, Maryland
| | - Elena Stavrovskaya
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia.,Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Justin A Bishop
- Department of Pathology, Johns Hopkins Medical School of Medicine, Baltimore, Maryland
| | - William H Westra
- Department of Pathology, Johns Hopkins Medical School of Medicine, Baltimore, Maryland
| | - Zubair Khan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wayne M Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah J Wheelan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph A Califano
- Head and Neck Cancer Center, Moores Cancer Center, University of California, San Diego, La Jolla, California.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Alexander V Favorov
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Bioinformatics, Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - Elana J Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
25
|
Integrative computational analysis of transcriptional and epigenetic alterations implicates DTX1 as a putative tumor suppressor gene in HNSCC. Oncotarget 2017; 8:15349-15363. [PMID: 28146432 PMCID: PMC5362490 DOI: 10.18632/oncotarget.14856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/16/2017] [Indexed: 01/23/2023] Open
Abstract
Over a half million new cases of Head and Neck Squamous Cell Carcinoma (HNSCC) are diagnosed annually worldwide, however, 5 year overall survival is only 50% for HNSCC patients. Recently, high throughput technologies have accelerated the genome-wide characterization of HNSCC. However, comprehensive pipelines with statistical algorithms that account for HNSCC biology and perform independent confirmatory and functional validation of candidates are needed to identify the most biologically relevant genes. We applied outlier statistics to high throughput gene expression data, and identified 76 top-scoring candidates with significant differential expression in tumors compared to normal tissues. We identified 15 epigenetically regulated candidates by focusing on a subset of the genes with a negative correlation between gene expression and promoter methylation. Differential expression and methylation of 3 selected candidates (BANK1, BIN2, and DTX1) were confirmed in an independent HNSCC cohorts from Johns Hopkins and TCGA (The Cancer Genome Atlas). We further performed functional evaluation of NOTCH regulator, DTX1, which was downregulated by promoter hypermethylation in tumors, and demonstrated that decreased expression of DTX1 in HNSCC tumors maybe associated with NOTCH pathway activation and increased migration potential.
Collapse
|
26
|
Shen S, Wang G, Shi Q, Zhang R, Zhao Y, Wei Y, Chen F, Christiani DC. Seven-CpG-based prognostic signature coupled with gene expression predicts survival of oral squamous cell carcinoma. Clin Epigenetics 2017; 9:88. [PMID: 28852427 PMCID: PMC5571486 DOI: 10.1186/s13148-017-0392-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022] Open
Abstract
Background DNA methylation has started a recent revolution in genomics biology by identifying key biomarkers for multiple cancers, including oral squamous cell carcinoma (OSCC), the most common head and neck squamous cell carcinoma. Methods A multi-stage screening strategy was used to identify DNA-methylation-based signatures for OSCC prognosis. We used The Cancer Genome Atlas (TCGA) data as training set which were validated in two independent datasets from Gene Expression Omnibus (GEO). The correlation between DNA methylation and corresponding gene expression and the prognostic value of the gene expression were explored as well. Results The seven DNA methylation CpG sites were identified which were significantly associated with OSCC overall survival. Prognostic signature, a weighted linear combination of the seven CpG sites, successfully distinguished the overall survival of OSCC patients and had a moderate predictive ability for survival [training set: hazard ratio (HR) = 3.23, P = 5.52 × 10−10, area under the curve (AUC) = 0.76; validation set 1: HR = 2.79, P = 0.010, AUC = 0.67; validation set 2: HR = 3.69, P = 0.011, AUC = 0.66]. Stratification analysis by human papillomavirus status, clinical stage, age, gender, smoking status, and grade retained statistical significance. Expression of genes corresponding to candidate CpG sites (AJAP1, SHANK2, FOXA2, MT1A, ZNF570, HOXC4, and HOXB4) was also significantly associated with patient’s survival. Signature integrating of DNA methylation, gene expression, and clinical information showed a superior ability for prognostic prediction (AUC = 0.78). Conclusion Prognostic signature integrated of DNA methylation, gene expression, and clinical information provides a better prognostic prediction value for OSCC patients than that with clinical information only. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0392-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sipeng Shen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard School of Public Health, Boston, MA USA
| | - Guanrong Wang
- National Health and Family Planning Commission Contraceptives Adverse Reaction Surveillance Center, Jiangsu Institute of Planned Parenthood Research, Nanjing, China
| | - Qianwen Shi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China.,Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,101 Longmian Avenue, Nanjing, Jiangsu 211136 China
| | - David C Christiani
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard School of Public Health, Boston, MA USA
| |
Collapse
|
27
|
Kim YR, Song MH, Lee JW, Bae JH, Kim JE, Kang DM, Lee SY. Identification of tumor antigens in malignant mesothelioma. Oncol Lett 2017; 14:4557-4562. [PMID: 29085453 PMCID: PMC5649555 DOI: 10.3892/ol.2017.6805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/02/2017] [Indexed: 12/28/2022] Open
Abstract
Serological analysis of recombinant tumor cDNA expression library (SEREX) is a powerful and widely used method to explore the cancer immune environment. In the present study, immunoscreening of normal testicular tissues and malignant mesothelioma (MM) cancer MSTO-211H cell line cDNA libraries with sera from 5 MM patients led to the isolation of 16 independent antigens, which were designated ‘Korea Pusan-Malignant Mesothelioma’ (KP-MM)-1 to −16. In total, 3/16 antigens were identified using the results of previous SEREX analyses, and 13 were newly identified. Of these, KP-MM-8, which was subsequently identified as amyotrophic lateral sclerosis 2 chromosome region candidate 11, was shown to be tissue-restricted. Reverse transcription-polymerase chain reaction demonstrated KP-MM-8 to be expressed strongly only in the normal testis, and weakly in the spleen, prostate, ovary, heart and skeletal muscle. In addition, KP-MM-8 mRNA was identified in MM cell lines, and in various other cancer cell lines, including MM (3/4), lung cancer (5/7), melanoma (5/7) and liver cancer (5/5) cell lines. Additionally, 2/16 antigens (KP-MM-2 and KP-MM-6) exclusively reacted with sera from cancer patients. However, KP-MM-8 reacted with 1 of 8 MM sera. Notably, 8/8 patients with MM and 8/8 normal individuals exhibited antibodies reactive to KP-MM-5, which was identified as cell division cycle 25B, a known oncogene. Overall, this data suggests that KP-MM-8 may be considered as a cancer/testis-like antigen and KP-MM-5 as an immunogenic tumor antigen in MM patients.
Collapse
Affiliation(s)
- Ye-Rin Kim
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Myung-Ha Song
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Jun-Won Lee
- Department of Life Science and Genetic Engineering, Paichai University, Daejeon 35345, Republic of Korea
| | - Jae-Ho Bae
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Jong-Eun Kim
- Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Dong-Muk Kang
- Environmental Health Center for Asbestos, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Sang-Yull Lee
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| |
Collapse
|
28
|
Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget 2017; 8:69162-69173. [PMID: 28978187 PMCID: PMC5620327 DOI: 10.18632/oncotarget.19942] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Tumor DNA contains specific somatic alterations that are crucial for the diagnosis and treatment of cancer. Due to the spatial and temporal intra-tumor heterogeneity, multi-sampling is needed to adequately characterize the somatic alterations. Tissue biopsy, however, is limited by the restricted access to sample and the challenges to recapitulate the tumor clonal diversity. Non-blood circulating tumor DNA are tumor DNA fragments presents in non-blood body fluids, such as urine, saliva, sputum, stool, pleural fluid, and cerebrospinal fluid (CSF). Recent studies have demonstrated the presence of tumor DNA in these non-blood body fluids and their application to the diagnosis, screening, and monitoring of cancers. Non-blood circulating tumor DNA has an enormous potential for large-scale screening of local neoplasms because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option. It permits longitudinal assessments and allows sequential monitoring of response and progression. Enrichment of tumor DNA of local cancers in non-blood body fluids may help to archive a higher sensitivity than in plasma ctDNA. The direct contact of cancerous cells and body fluid may facilitate the detection of tumor DNA. Furthermore, normal DNA always dilutes the plasma ctDNA, which may be aggravated by inflammation and injury when very high amounts of normal DNA are released into the circulation. Altogether, our review indicate that non-blood circulating tumor DNA presents an option where the disease can be tracked in a simple and less-invasive manner, allowing for serial sampling informing of the tumor heterogeneity and response to treatment.
Collapse
Affiliation(s)
- Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Alicia Hulbert
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malcolm V Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| |
Collapse
|
29
|
Guo T, Sakai A, Afsari B, Considine M, Danilova L, Favorov AV, Yegnasubramanian S, Kelley DZ, Flam E, Ha PK, Khan Z, Wheelan SJ, Gutkind JS, Fertig EJ, Gaykalova DA, Califano J. A Novel Functional Splice Variant of AKT3 Defined by Analysis of Alternative Splice Expression in HPV-Positive Oropharyngeal Cancers. Cancer Res 2017; 77:5248-5258. [PMID: 28733453 DOI: 10.1158/0008-5472.can-16-3106] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/15/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022]
Abstract
The incidence of HPV-related oropharyngeal squamous cell carcinoma (OPSCC) has increased more than 200% in the past 20 years. Recent genetic sequencing efforts have elucidated relevant genes in head and neck cancer, but HPV-related tumors have consistently shown few DNA mutations. In this study, we sought to analyze alternative splicing events (ASE) that could alter gene function independent of mutations. To identify ASE unique to HPV-related tumors, RNA sequencing was performed on 46 HPV-positive OPSCC and 25 normal tissue samples. A novel algorithm using outlier statistics on RNA-sequencing junction expression identified 109 splicing events, which were confirmed in a validation set from The Cancer Genome Atlas. Because the most common type of splicing event identified was an alternative start site (39%), MBD-seq genome-wide CpG methylation data were analyzed for methylation alterations at promoter regions. ASE in six genes showed significant negative correlation between promoter methylation and expression of an alternative transcriptional start site, including AKT3 The novel AKT3 transcriptional variant and methylation changes were confirmed using qRT-PCR and qMSP methods. In vitro silencing of the novel AKT3 variant resulted in significant growth inhibition of multiple head and neck cell lines, an effect not observed with wild-type AKT3 knockdown. Analysis of ASE in HPV-related OPSCC identified multiple alterations likely involved in carcinogenesis, including a novel, functionally active transcriptional variant of AKT3 Our data indicate that ASEs represent a significant mechanism of oncogenesis with untapped potential for understanding complex genetic changes that result in the development of cancer. Cancer Res; 77(19); 5248-58. ©2017 AACR.
Collapse
Affiliation(s)
- Theresa Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Akihiro Sakai
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Bahman Afsari
- Division of Oncology Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Michael Considine
- Division of Oncology Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Ludmila Danilova
- Division of Oncology Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Alexander V Favorov
- Division of Oncology Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University, Baltimore, Maryland.,Vavilov Institute of General Genetics, Moscow, Russia.,Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | | | - Dylan Z Kelley
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Emily Flam
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Zubair Khan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sarah J Wheelan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Elana J Fertig
- Division of Oncology Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Joseph Califano
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland. .,Moores Cancer Center, University of California San Diego, San Diego, California.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, California
| |
Collapse
|
30
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is frequently impervious to curative treatment efforts. Similar to other cancers associated with prolonged exposure to carcinogens, HNSCCs often have a high burden of mutations, contributing to substantial inter- and intra-tumor heterogeneity. The heterogeneity of this malignancy is further increased by the rising rate of human papillomavirus (HPV)-associated (HPV+) HNSCC, which defines an etiological subtype significantly different from the more common tobacco and alcohol associated HPV-negative (HPV-) HNSCC. Since 2011, application of large scale genome sequencing projects by The Cancer Genome Atlas (TCGA) network and other groups have established extensive datasets to characterize HPV- and HPV+ HNSCC, providing a foundation for advanced molecular diagnoses, identification of potential biomarkers, and therapeutic insights. Some genomic lesions are now appreciated as widely dispersed. For example, HPV- HNSCC characteristically inactivates the cell cycle suppressors TP53 (p53) and CDKN2A (p16), and often amplifies CCND1 (cyclin D), which phosphorylates RB1 to promote cell cycle progression from G1 to S. By contrast, HPV+ HNSCC expresses viral oncogenes E6 and E7, which inhibit TP53 and RB1, and activates the cell cycle regulator E2F1. Frequent activating mutations in PIK3CA and inactivating mutations in NOTCH1 are seen in both subtypes of HNSCC, emphasizing the importance of these pathways. Studies of large patient cohorts have also begun to identify less common genetic alterations, predominantly found in HPV- tumors, which suggest new mechanisms relevant to disease pathogenesis. Targets of these alterations including AJUBA and FAT1, both involved in the regulation of NOTCH/CTNNB1 signaling. Genes involved in oxidative stress, particularly CUL3, KEAP1 and NFE2L2, strongly associated with smoking, have also been identified, and are less well understood mechanistically. Application of sophisticated data-mining approaches, integrating genomic information with profiles of tumor methylation and gene expression, have helped to further yield insights, and in some cases suggest additional approaches to stratify patients for clinical treatment. We here discuss some recent insights built on TCGA and other genomic foundations.
Collapse
Affiliation(s)
- Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
31
|
Mishra S, Saadat D, Kwon O, Lee Y, Choi WS, Kim JH, Yeo WH. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics. Biosens Bioelectron 2016; 81:181-197. [PMID: 26946257 DOI: 10.1016/j.bios.2016.02.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 01/05/2023]
Abstract
There is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers. The salivary diagnostic method holds great potential for early-stage cancer diagnostics without any complicated and expensive procedures. Here, we review various cancer biomarkers in saliva and compare the biomarkers efficacy with traditional diagnostics and state-of-the-art bioelectronics. We summarize biomarkers in four major groups: genomics, transcriptomics, proteomics, and metabolomics/microbiota. Representative bioelectronic systems for each group are summarized based on various stages of a cancer. Systematic study of oxidative stress establishes the relationship between macromolecules and cancer biomarkers in saliva. We also introduce the most recent examples of salivary diagnostic electronics based on nanotechnologies that can offer rapid, yet highly accurate detection of biomarkers. A concluding section highlights areas of opportunity in the further development and applications of these technologies.
Collapse
Affiliation(s)
- Saswat Mishra
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Darius Saadat
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
| | - Ohjin Kwon
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Yongkuk Lee
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Woon-Seop Choi
- School of Display Engineering, Hoseo University, Asan, Republic of Korea
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA.
| | - Woon-Hong Yeo
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Center for Rehabilitation Science and Engineering, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|