1
|
Wan M, Yu H, Zhai H. Suppression of JAK2/STAT3 Pathway by Notoginsenoside R1 Reduces Epithelial-Mesenchymal Transition in Non-small Cell Lung Cancer. Mol Biotechnol 2025; 67:1526-1538. [PMID: 38565774 DOI: 10.1007/s12033-024-01136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
It has bene reported that a novel saponin-notoginsenoside R1 (NGR1) possesses strong anti-tumor activities. This study aimed to investigate the role and mechanism of NGR1 in non-small cell lung cancer (NSCLC). NSCLC cell viability, proliferation, migration, and invasiveness were assessed using the ex vivo assays. NSCLC xenograft mouse models were constructed to confirm the role of NGR1 in vivo. Epithelial-mesenchymal transition (EMT)-related proteins and key markers in the JAK2/STAT3 pathway were examined using immunoblotting and immunohistochemistry analyses. NGR1 treatment suppressed NSCLC cell growth ex vivo and in vivo. It also decreased the migratory and invasive capacities of NSCLC cells. Additionally, NGR1 increased E-cadherin expression and reduced N-cadherin, vimentin, and snail expression in TGF-β1-treated NSCLC cells and xenograft tumors. JAK2/STAT3 pathway was inhibited by NGR1. Moreover, a specific inhibitor of JAK2, AG490, or STAT3 silencing significantly enhanced the effects of NGR1 against the EMT process in NSCLC cells. NGR1 restrains EMT process in NSCLC by inactivating JAK2/STAT3 signaling, suggesting the potential of NGR1 in anti-NSCLC therapy.
Collapse
Affiliation(s)
- Min Wan
- Department of Medical Laboratory, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Hong Yu
- Department of Medical Laboratory, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Haoqing Zhai
- Department of Oncology Hematology, Qianjiang Central Hospital, No.22 Zhanghua Road, Qianjiang, 433100, Hubei, China.
| |
Collapse
|
2
|
Retraction: The Combination of Three Natural Compounds Effectively Prevented Lung Carcinogenesis by Optimal Wound Healing. PLoS One 2023; 18:e0294975. [PMID: 37988362 PMCID: PMC10662744 DOI: 10.1371/journal.pone.0294975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
|
3
|
Li L, Zhang L, Liao T, Zhang C, Chen K, Huang Q. Advances on pharmacology and toxicology of aconitine. Fundam Clin Pharmacol 2022; 36:601-611. [PMID: 35060168 DOI: 10.1111/fcp.12761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Aconitum alkaloids are considered to be the characteristic bioactive ingredients of Aconitum species, which are widely applied to the treatment of diverse diseases, and aconitine (AC) is found in most Aconitum plants. Research evidence shows that low-dose AC has a good therapeutic potential in heart failure, myocardial infarction, neuroinflammatory diseases, rheumatic diseases, and tumors, which has become one of the hotspots in global research in recent years. However, the cardiotoxicity and neurotoxicity of AC have also attracted extensive attention. Excessive use of AC always induces ventricular tachyarrhythmia and heart arrest, even can be potentially lethal. Therefore, AC cannot simply be regarded as a good medicine or a toxicant, but its underlying curative and toxic properties remained chaos. In order to dig the unique pharmacological value of AC while preventing its toxicity, the pharmacological activities and toxic effects of AC were summarized in this paper, providing new insight into the safe and effective use of AC in clinical practice.
Collapse
Affiliation(s)
- Liuying Li
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Zigong City, Zigong, China
| | - Limin Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keling Chen
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Eraky SM, Ramadan NM, Abo El-Magd NF. Antidiabetic effects of quercetin and liraglutide combination through modulation of TXNIP/IRS-1/PI3K pathway. Cell Biochem Funct 2021; 40:90-102. [PMID: 34855213 DOI: 10.1002/cbf.3678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
The study was designed to assess the possible augmented antidiabetic effects of combining quercetin and liraglutide in a type 1 diabetes model, with emphasis on the contribution of hepatic thioredoxin interacting protein (TXNIP)/insulin receptor substrate 1 (IRS-1)/phosphatidyl inositol-3 kinase (PI3K) pathway. The wound-healing effects were also examined. Diabetes was induced by a single i.p STZ injection (55 mg/kg). Diabetic rats were treated with either quercetin (100 mg/kg/day, orally) or liraglutide (0.3 mg/kg/twice daily, S.C.) or their combination. Drugs were also applied topically on the wound. Blood glucose levels, serum albumin, total protein, total cholesterol and triglycerides were measured. Histopathological examination of the liver, pancreas and skin tissues was performed using haematoxylin and eosin staining. The hepatic malondialdehyde level was measured spectrophotometrically. Hepatic TXNIP and PI3K levels were measured by enzyme-linked immunsorbent assay (ELISA). Tissue expression of IRS-1 and phospho-IRS-1 (Ser 616) was assessed by immunohistochemistry. Quercetin, liraglutide and their combination effectively decreased blood glucose levels, improved lipid profile, upregulated albumin and total protein serum levels and reduced hepatic oxidative stress with the combination being most effective. Moreover, the combination group showed enhanced wound-healing effects and almost normalized hepatic and pancreatic histopathology. Quercetin and/or liraglutide significantly decreased TXNIP levels and serine phosphorylation of IRS-1 and increased PI3K levels compared to the diabetic untreated group. Interestingly, only the combination therapy normalized hepatic IRS-1 expression. The combination of quercetin and liraglutide showed enhanced antidiabetic effects, possibly through lowering hepatic TXNIP levels, with the resultant up-regulation of the IRS-1/PI3K pathway.
Collapse
Affiliation(s)
- Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nada F Abo El-Magd
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Zhou L, Gu W, Kui F, Gao F, Niu Y, Li W, Zhang Y, Guo L, Wang J, Guo Z, Du G. The mechanism and candidate compounds of aged citrus peel ( chenpi) preventing chronic obstructive pulmonary disease and its progression to lung cancer. Food Nutr Res 2021; 65:7526. [PMID: 34262419 PMCID: PMC8254466 DOI: 10.29219/fnr.v65.7526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is an important risk factor for developing lung cancer. Aged citrus peel (chenpi) has been used as a dietary supplement for respiratory diseases in China. Objective To explore the mechanism and candidate compounds of chenpi preventing COPD and its progression to lung cancer. Methods The active components and potential targets of chenpi were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Disease-associated targets of COPD and lung cancer were collected in the Gene Cards and TTD database. The component-target network and PPI network were constructed using the Cytoscape 3.8.0 software. David database was used for GO and KEGG enrichment analysis. The main active components were verified by using the autodock Vina 1.1.2 software. Mouse lung cancer with COPD was induced by cigarette smoking (CS) combined with urethane injection to confirm preventing the effect of hesperetin (the candidate compound of chenpi) on COPD progression to lung cancer and its underlying mechanisms. Results The network analysis revealed that the key active components of chenpi (nobiletin, naringenin, hesperetin) regulate five core targets (AKT1, TP53, IL6, VEGFA, MMP9). In addition, 103 potential pathways of chenpi were identified. Chenpi can prevent COPD and its progression to lung cancer by getting involved in the PI3K-Akt signaling pathway and MAPK signaling pathway. Molecular docking indicated that hesperetin had better binding activity for core targets. In mouse lung cancer with COPD, treatment with hesperetin dose-dependently improved not only lung tissue injury in COPD but also carcinoma lesions in lung cancer. Meanwhile, hesperetin could suppress the protein expression of AKT1, IL6, VEGFA, MMP9 and up-regulate the protein expression of TP53, and thus reduced the risk of COPD progression to lung cancer. Conclusion Hesperetin is a candidate compound of chenpi that helps in preventing COPD and its progression to lung cancer by regulating AKT1, IL6, VEGFA, MMP9 and TP53.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Lijuan Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Junru Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| |
Collapse
|
6
|
Ahmad I, Mir MA, Srivastava S, Shati AA, Elbehairi SEI, Irfan S, Abohashrh M, Nisar N, Bashir N, Srivastava P. Phytochemical Screening and In-Vitro Antibacterial and Anticancer Activity of Crude Extract of Matricaria aurea. Curr Pharm Des 2021; 27:69-79. [PMID: 33292113 DOI: 10.2174/1381612826666201207105620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Infectious diseases constantly represent the source of sickness as well as mortality in human beings. Herbal applications in human life through using plants for antibacterial and anticancer activity have shown the potential medicinal outcome. OBJECTIVES To evaluate the antibacterial and anticancer activities of the crude extract of Matricaria aurea. MATERIALS AND METHODS The antibacterial activity of the crude flowers of M. aurea extract was examined against reference and clinical bacterial strains by agar well diffusion method. Minimum inhibitory concentrations and minimum bactericidal concentrations were determined by micro broth dilution assays using MH broth. Herbal extract was employed over human breast adenocarcinoma cell line (MCF-7), hepatocellular carcinoma cell line (HepG-2) and colorectal adenocarcinoma cell line (HCT-116) to optimize cancer cells proliferation by SRB assay. RESULTS The data has shown that the extract from M. aurea had significant antimicrobial activity against the tested microorganisms. The plant extract showed higher antibacterial activity against the reference strain of Streptococcus pyogenes. The MIC and MBC varied between 0.38-12.5 mg/ml and 3.1-200 mg/ml respectively. Synergy study elucidated the significant bacteriostatic effect of M. aurea extract on S. aureus and S. saprophyticus. The data of SRB assay deliver the potential anticancer activity through cell death. CONCLUSION This study delivers innovative information that M. aurea possessed excellent bio-activities against pathogenic microbes and cancer cells, which drive attention for further research to explore the active components responsible for biological efficacies.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mushtaq Ahmad Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Srivastava
- Department of Pharmaceutics, Era College of Pharmacy, Era University, Lucknow, UP, India
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Safia Irfan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Nasreena Bashir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
7
|
Al Fayi M. Anti-cancer effects of Nepeta Deflersiana Extract (NDE) in estrogen positive and negative forms of breast cancer. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_464_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
9
|
Lu M, Xie K, Lu X, Lu L, Shi Y, Tang Y. Notoginsenoside R1 counteracts mesenchymal stem cell-evoked oncogenesis and doxorubicin resistance in osteosarcoma cells by blocking IL-6 secretion-induced JAK2/STAT3 signaling. Invest New Drugs 2020; 39:416-425. [PMID: 33128383 DOI: 10.1007/s10637-020-01027-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022]
Abstract
Tumor microenvironment is a critical participant in the initiation, progression and drug resistance of carcinomas, including osteosarcoma. Notoginsenoside R1 (NGR1) is a proverbial active ingredient of the traditional Chinese medicine Panax notoginseng (PN) and possess undeniable roles in several cancers. Nevertheless, its function in osteosarcoma and tumor microenvironment remains elusive. In the current study, exposure to NGR1 dose-dependently inhibited osteosarcoma cell viability and migration, and induced apoptosis. Furthermore, osteosarcoma cells that were incubated with conditioned medium (CM) from bone marrow mesenchymal stem cells (BMSCs) exhibited greater proliferation, migration capacity and MMP-2 and MMP-9 expression relative to control cells, which was reversed when BMSCs were treated with NGR1. Notably, administration with NGR1 antagonized CM-evoked doxorubicin resistance in osteosarcoma cells by decreasing cell viability and increasing cell apoptosis and caspase-3/9 activity. Mechanically, NGR1 suppressed IL-6 secretion from BMSCs, as well as the subsequent activation of the JAK2/STAT3 signaling in osteosarcoma cells. In addition, blocking the JAK2 pathway by its antagonist AG490 reversed CM-induced osteosarcoma cell proliferation, migration and doxorubicin resistance. Moreover, exogenous supplementation with IL-6 engendered not only the reactivation of the JAK2/STAT3 signaling but also muted NGR1-mediated efficacy against osteosarcoma cell malignancy and doxorubicin resistance. Collectively, NGR1 may directly restrain osteosarcoma cell growth and migration, or indirectly antagonize MSC-evoked malignancy and drug resistance by interdicting IL-6 secretion-evoked activation of the JAK2/STAT3 pathway. Consequently, the current study may highlight a promising therapeutic strategy against osteosarcoma by regulating tumor cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Minan Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Kegong Xie
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xianzhe Lu
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lu Lu
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yu Shi
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yujin Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
10
|
Nguyen UT, Nguyen LTH, Kim BA, Choi MJ, Yang IJ, Shin HM. Natural Compound Mixture, Containing Emodin, Genipin, Chlorogenic Acid, Cimigenoside, and Ginsenoside Rb1, Ameliorates Psoriasis-Like Skin Lesions by Suppressing Inflammation and Proliferation in Keratinocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:9416962. [PMID: 33149756 PMCID: PMC7603578 DOI: 10.1155/2020/9416962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 01/13/2023]
Abstract
Herbal combinations of Rhei Radix et Rhizoma, Gardeniae Fructus, Cimicifugae Rhizoma, and Ginseng Radix have been used in traditional formulas to treat the symptoms of heat and dryness. This study investigated the therapeutic effects of a natural compound mixture (PSM) of these herbal combinations, containing emodin, genipin, chlorogenic acid, cimigenoside, and ginsenoside Rb1, for the treatment of psoriasis and its underlying molecular mechanisms. PSM was applied topically to the dorsal skin lesions of imiquimod- (IMQ-) induced C57BL/6 mice, and the expression of the proinflammatory mediators was investigated. The topical application of 1% PSM reduced psoriasis-like symptoms in IMQ-induced C57BL/6 mice significantly. PSM also attenuated the production of IFN-γ, IL-1β, and IL-6 in skin lesions. Histological analysis showed that PSM had antipsoriatic effects by reducing the lesional epidermal thickness. Either M5 (IL-1α, IL-17A, IL-22, oncostatin M, and TNF-α, 10 ng/ml each) or IL-22- (100 ng/ml) stimulated HaCaT cells were used to examine the efficacy and underlying mechanism of PSM. In M5-stimulated HaCaT cells, PSM inhibited the production of C-X-C motif chemokine ligand (CXCL) 10 and C-C motif chemokine ligand (CCL) 20 effectively. Moreover, compared to the use of a single compound, it had synergistic inhibitory effects in CXCL8 production. PSM suppressed the phosphorylation of ERK1/2, p38, and STAT3 signaling pathways in M5-stimulated HaCaT cells. Furthermore, PSM reduced the proliferation rate and K16 and K17 expressions in IL-22-stimulated HaCaT cells by inhibiting the Akt/mTOR signaling pathway. These results suggest that PSM may have a therapeutic potential in the treatment of psoriasis lesions.
Collapse
Affiliation(s)
- Uy Thai Nguyen
- Department of Physiology, College of Korean Medicine Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine Dongguk University, Gyeongju 38066, Republic of Korea
| | - Bo-Ae Kim
- Division of Biomedicinal & Cosmetics, College of Sciences & Technology, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Min-Jin Choi
- Department of Physiology, College of Korean Medicine Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
11
|
Indirubin-3-monoxime and thymoquinone exhibit synergistic efficacy as therapeutic combination in in-vitro and in-vivo models of Lung cancer. Arch Pharm Res 2020; 43:655-665. [PMID: 32588331 DOI: 10.1007/s12272-020-01241-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/21/2020] [Indexed: 12/25/2022]
Abstract
In this study, we report the combination of indirubin-3-monoxime (I3M) and thymoquinone (Tq) to have excellent therapeutic efficacy in models of Lung cancer (LC). Preliminary screening was done with A549 cells. Cell cycle, apoptosis and NFκB phosphorylation were determined by flow cytometry, while apoptotic proteins, Akt and mTOR were assessed by western blotting. Mouse xenograft model was used to assess the therapeutic efficacy in-vivo. Synergistic reduction in cell viability was observed with I3M + Tq combinations, which were non-toxic to normal HFL-1 cells. Cell cycle analysis indicated G1 phase reduction with subsequent accumulation of sub G0 contents. Annexin V assay revealed higher apoptotic cells with combinations compared to individual treatments with a decrease in Bcl-2/Bax ratio. The combinations exhibited anti-metastasis activity in cell migration in the scratch, scatter and tumour cell migration assays and effectively reduced the tumour growth in mouse xenograft model. Expression levels of p-AKT, p-mTOR, Caspase-3, p-53 and NFκB were significantly reduced in the combination treated mice compared to individual treatments. Results of current study demonstrate clear efficacy of I3M + Tq combinations in LC models mediated by suppressing Akt/mTOR/NFκB signalling. Further research is recommended to transform these findings into novel therapeutic combinations against LC.
Collapse
|
12
|
Piperine Inhibits TGF-β Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells. MEDICINES 2020; 7:medicines7040019. [PMID: 32276474 PMCID: PMC7235759 DOI: 10.3390/medicines7040019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Background: Piperine, an amide extracted from the Piper spices, exhibits strong anti-tumor properties. However, its effect on the epithelial–mesenchymal transition (EMT) process has never been investigated. Herein, we evaluate the toxic effect of piperine on lung adenocarcinoma (A549), breast adenocarcinoma (MDA-MB-231) and hepatocellular carcinoma (HepG2) cell lines, as well as its ability to inhibit EMT-related events induced by TGF-β1 treatment. Methods: The cell viability was investigated by MTT assay. Protein expression was evaluated by Western blot. Gene expression was monitored by real-time PCR. Zymography assay was employed to detect metalloproteinase (MMP) activity in conditioned media. Cell motility was assessed by the wound-healing and phagokinetic gold sol assays. Results: The results revealed that piperine was cytotoxic in concentrations over 100 µM, showing IC50 values for HepG2, MDA-MB-231 and A549 cell lines of 214, 238 and 198 µM, respectively. In order to investigate whether piperine would reverse the TGF-β1 induced-EMT, the A549 cell line was pretreated with sublethal concentrations of the natural amide followed by the addition of TGF-β1. Besides disrupting EMT-related events, piperine also inhibited both ERK 1/2 and SMAD 2 phosphorylation. Conclusions: These results suggest that piperine might be further used in therapeutic strategies for metastatic cancer and EMT-related disorders.
Collapse
|
13
|
GC-MS analysis of ethanol extract from areal parts of Nepeta deflersiana and its anticancer and antimicrobial efficacies. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00473-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization. J Surg Res 2020; 246:213-223. [DOI: 10.1016/j.jss.2019.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
15
|
Zhang S, Zhou L, Zhang M, Wang Y, Wang M, Du J, Gu W, Kui F, Li J, Geng S, Du G. Berberine Maintains the Neutrophil N1 Phenotype to Reverse Cancer Cell Resistance to Doxorubicin. Front Pharmacol 2020; 10:1658. [PMID: 32063859 PMCID: PMC7000449 DOI: 10.3389/fphar.2019.01658] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
This study explores the contributions of neutrophils to chemotherapeutic resistance and berberine-regulated cancer cell sensitivity to doxorubicin (DOX). In vitro experiments, continuous DOX treatment led to the shift of HL-60 cells to N2 neutrophils and thus induced chemotherapeutic resistance. The combination treatment with DOX and 2 µM berberine resulted in the differentiation of HL-60 cells toward N1 and therefore stimulated HL-60 cell immune clearance. Berberine increased reactive oxygen species (ROS) and decreased autophagy and therefore induced apoptosis in HL-60-N2 cells with morphological changes, but had no effect on cell viability in HL-60-N1 cells. The neutrophil-regulating efficacy of berberine was confirmed in the urethane-induced lung carcinogenic model and H22 liver cancer allograft model. Furthermore, we found that DOX-derived neutrophils had high levels of CD133 and CD309 surface expression, which prevented both chemotherapeutic sensitivity and immune rejection by self-expression of PD-L1 and surface expression of PD-1 receptor on T cells, whereas berberine could downregulate CD133 and CD309 surface expression. Finally, berberine-relevant targets and pathways were evaluated. This study first suggests an important role of berberine in regulating neutrophil phenotypes to maintain cancer cell sensitivity to DOX.
Collapse
Affiliation(s)
- Shuhui Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Lin Zhou
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Mengdi Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yuehua Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Mengqi Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Jincheng Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- Chinese Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Shengnan Geng
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| |
Collapse
|
16
|
Dydowiczová A, Brózman O, Babica P, Sovadinová I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci Rep 2020; 10:730. [PMID: 31959888 PMCID: PMC6971000 DOI: 10.1038/s41598-020-57536-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) is a vital cellular process required for maintenance of tissue homeostasis. In vitro assessment of GJIC represents valuable phenotypic endpoint that could be effectively utilized as an integral component in modern toxicity testing, drug screening or biomedical in vitro research. However, currently available methods for quantifying GJIC with higher-throughputs typically require specialized equipment, proprietary software and/or genetically engineered cell models. To overcome these limitations, we present here an innovative adaptation of traditional, fluorescence microscopy-based scrape loading-dye transfer (SL-DT) assay, which has been optimized to simultaneously evaluate GJIC, cell density and viability. This multiparametric method was demonstrated to be suitable for various multiwell microplate formats, which facilitates an automatized image acquisition. The assay workflow is further assisted by an open source-based software tools for batch image processing, analysis and evaluation of GJIC, cell density and viability. Our results suggest that this approach provides a simple, fast, versatile and cost effective way for in vitro high-throughput assessment of GJIC and other related phenotypic cellular events, which could be included into in vitro screening and assessment of pharmacologically and toxicologically relevant compounds.
Collapse
Affiliation(s)
- Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Ondřej Brózman
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
17
|
Ahmad I, Rajagopalan P, Wahab S, Dera A, Chandramoorthy H, Irfan S, Patel A, Abullias S, Zaman G. Anti-cancer activity of ethanolic leaf extract of Salvia officinalis against oral squamous carcinoma cells in vitro via caspase mediated mitochondrial apoptosis. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_90_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Aasen T, Leithe E, Graham SV, Kameritsch P, Mayán MD, Mesnil M, Pogoda K, Tabernero A. Connexins in cancer: bridging the gap to the clinic. Oncogene 2019; 38:4429-4451. [PMID: 30814684 PMCID: PMC6555763 DOI: 10.1038/s41388-019-0741-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 02/08/2023]
Abstract
Gap junctions comprise arrays of intercellular channels formed by connexin proteins and provide for the direct communication between adjacent cells. This type of intercellular communication permits the coordination of cellular activities and plays key roles in the control of cell growth and differentiation and in the maintenance of tissue homoeostasis. After more than 50 years, deciphering the links among connexins, gap junctions and cancer, researchers are now beginning to translate this knowledge to the clinic. The emergence of new strategies for connexin targeting, combined with an improved understanding of the molecular bases underlying the dysregulation of connexins during cancer development, offers novel opportunities for clinical applications. However, different connexin isoforms have diverse channel-dependent and -independent functions that are tissue and stage specific. This can elicit both pro- and anti-tumorigenic effects that engender significant challenges in the path towards personalised medicine. Here, we review the current understanding of the role of connexins and gap junctions in cancer, with particular focus on the recent progress made in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain.
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital and K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), University of A Coruña, A Coruña, Spain
| | - Marc Mesnil
- STIM Laboratory, Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers, France
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
19
|
Shikonin derivatives for cancer prevention and therapy. Cancer Lett 2019; 459:248-267. [PMID: 31132429 DOI: 10.1016/j.canlet.2019.04.033] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022]
Abstract
Phytochemicals gained considerable interest during the past years as source to develop new treatment options for chemoprevention and cancer therapy. Motivated by the fact that a majority of established anticancer drugs are derived in one way or another from natural resources, we focused on shikonin, a naphthoquinone with high potentials to be further developed as preventive or therapeutic drug to fight cancer. Shikonin is the major chemical component of Lithospermum erythrorhizon (Purple Cromwell) roots. Traditionally, the root extract has been applied to cure dermatitis, burns, and wounds. Over the past three decades, the anti-inflammatory and anticancer effects of root extracts, isolated shikonin as well as semi-synthetic and synthetic derivatives and nanoformulations have been described. In vitro and in vivo experiments were conducted to understand the effect of shikonin at cellular and molecular levels. Preliminary clinical trials indicate the potential of shikonin for translation into clinical oncology. Shikonin exerts additive and synergistic interactions in combination with established chemotherapeutics, immunotherapeutic approaches, radiotherapy and other treatment modalities, which further underscores the potential of this phytochemical to be integrated into standard treatment regimens.
Collapse
|
20
|
Du Z, Zhang S, Lin Y, Zhou L, Wang Y, Yan G, Zhang M, Wang M, Li J, Tong Q, Duan Y, Du G. Momordicoside G Regulates Macrophage Phenotypes to Stimulate Efficient Repair of Lung Injury and Prevent Urethane-Induced Lung Carcinoma Lesions. Front Pharmacol 2019; 10:321. [PMID: 30984004 PMCID: PMC6450463 DOI: 10.3389/fphar.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Momordicoside G is a bioactive component from Momordica charantia, this study explores the contributions of macrophages to the effects of momordicoside G on lung injury and carcinoma lesion. In vitro, when administered at the dose that has no effect on cell viability in M2-like macrophages, momordicoside G decreased ROS and promoted autophagy and thus induced apoptosis in M1-like macrophages with the morphological changes. In the urethane-induced lung carcinogenic model, prior to lung carcinoma lesions, urethane induced obvious lung injury accompanied by the increased macrophage infiltration. The lung carcinoma lesions were positively correlated with lung tissue injury and macrophage infiltration in alveolar cavities in the control group, these macrophages showed mainly a M1-like (iNOS+/CD68+) phenotype. ELISA showed that the levels of IL-6 and IL-12 were increased and the levels of IL-10 and TGF-β1 were reduced in the control group. After momordicoside G treatment, lung tissue injury and carcinoma lesions were ameliorated with the decreased M1-like macrophages and the increased M2-like (arginase+/CD68+) macrophages, whereas macrophage depletion by liposome-encapsulated clodronate (LEC) decreased significantly lung tissue injury and carcinoma lesions and also attenuated the protective efficacy of momordicoside G. The M2 macrophage dependent efficacy of momordicoside G was confirmed in a LPS-induced lung injury model in which epithelial closure was promoted by the transfer of M2-like macrophages and delayed by the transfer of M1-like macrophages. To acquire further insight into the underlying molecular mechanisms by which momordicoside G regulates M1 macrophages, we conduct a comprehensive bioinformatics analysis of momordicoside G relevant targets and pathways involved in M1 macrophage phenotype. This study suggests a function of momordicoside G, whereby it selectively suppresses M1 macrophages to stimulate M2-associated lung injury repair and prevent inflammation-associated lung carcinoma lesions.
Collapse
Affiliation(s)
- Zhenhua Du
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Shuhui Zhang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Yukun Lin
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Lin Zhou
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Yuehua Wang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Guixi Yan
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Mengdi Zhang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Mengqi Wang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Jiahuan Li
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Qiaozhen Tong
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yongjian Duan
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Gangjun Du
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industrial Technology, Xinzheng, China
| |
Collapse
|
21
|
Yao J, Du Z, Li Z, Zhang S, Lin Y, Li H, Zhou L, Wang Y, Yan G, Wu X, Duan Y, Du G. 6-Gingerol as an arginase inhibitor prevents urethane-induced lung carcinogenesis by reprogramming tumor supporting M2 macrophages to M1 phenotype. Food Funct 2019; 9:4611-4620. [PMID: 30151521 DOI: 10.1039/c8fo01147h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
6-Gingerol (6-G) is the main bioactive component in Ginger (Zingiber officinale Roscoe). The aim of this study was to explore the contribution of macrophage polarization in 6-G-associated anti-cancer effects. In a urethane-induced lung carcinogenic model, lung carcinogenesis was positively correlated with macrophage (F4/80+) infiltration in lung interstitial in the control group. Furthermore, higher numbers of arginase+/F4/80+ M2 cells than iNOS+/F4/80+ M1 cells were observed in interstitial macrophages. Moreover, macrophage depletion by liposome-encapsulated clodronate (LEC) could significantly prevent lung carcinogenesis, whereas pexidartinib promoted lung carcinogenesis. After 6-G treatment, lung carcinogenesis was ameliorated with increased M1 macrophages and decreased M2 macrophages in the lung interstitial. ELISA showed that the levels of IFN-γ and IL-12 increased and the levels of IL-10 and TGF-β1 decreased in the alveolar cavity compared to those in the control group. Unexpectedly, the carcinogenesis-preventing efficacy of 6-G was promoted in LEC-treated mice, but completely aborted in pexidartinib-treated mice. In the in vitro experiment, 6-G reset the IL-4-induced arginase+ M2 cells toward iNOS+ M1 cells and exhibited reduced levels of arginase 1 and ROS and elevated levels of L-arginine and NO. LEC and nor-NOHA selectively suppressed M2 macrophages but had a negligible effect on M1 macrophages, whereas pexidartinib decreased both M2 and M1 macrophages. The iNOS+ macrophage-promoting efficacy of 6-G was increased by LEC, but was completely eliminated by pretreatment with pexidartinib or nor-NOHA. M2 macrophage-resetting efficacy of 6-G was confirmed in a Lewis lung cancer allograft model. This study indicated a reprogramming effect of 6-G as an arginase inhibitor on tumor supporting macrophages.
Collapse
Affiliation(s)
- Jingjing Yao
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Prevention of Breast Cancer by Natural Phytochemicals: Focusing on Molecular Targets and Combinational Strategy. Mol Nutr Food Res 2018; 62:e1800392. [DOI: 10.1002/mnfr.201800392] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/12/2018] [Indexed: 12/11/2022]
|
23
|
Gouda MM, Bhandary YP. Curcumin down-regulates IL-17A mediated p53-fibrinolytic system in bleomycin induced acute lung injury in vivo. J Cell Biochem 2018; 119:7285-7299. [PMID: 29775223 DOI: 10.1002/jcb.27026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
Bleomycin (BLM) induced cellular damage causes inflammation in the alveolar compartment and impairment of fibrinolytic system leads to alveolar epithelial cell apoptosis. Here, we describe novel inflammatory pathway associated with p53-fibrinolytic system and apoptosis of alveolar epithelial cells and pharmacological efficiency of curcumin against this action. In the present study we used C57BL/6 mice. The specific dose and time interval of curcumin were analyzed to assess the intervention. Experiments were designed to investigate the IL-17A mediated modulation in the alveolar epithelial cell apoptosis and injury. Various techniques such as Western blot, RT-PCR, Immunohistochemistry were used for this study. We observed that the BLM-induced lung injury and its progression were successfully regulated by the effective dose and time intervention of curcumin. There was also decreased expression of chemokines, p53, and fibrinolytic components such as PAI-1 and increased uPA, uPAR expression, and decreased alveolar epithelial cell apoptosis, which indicates the IL-17A mediated novel inflammatory pathway. It is confirmed that the IL-17A involved in the modulation of p53-fibrinolytic system and epithelial cell apoptosis in BLM induced mice. The cross-talk between the inflammatory, fibrinolytic, and apoptotic pathways were resolved by curcumin intervention. This pathway and intervention could serve as a modern therapy to resolve the complications to cure the lung injury and its progression.
Collapse
Affiliation(s)
- Mahesh M Gouda
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| | | |
Collapse
|
24
|
Cao N, Ma X, Guo Z, Zheng Y, Geng S, Meng M, Du Z, Lin H, Duan Y, Du G. Oral kanglaite injection (KLTI) attenuates the lung cancer-promoting effect of high-fat diet (HFD)-induced obesity. Oncotarget 2018; 7:61093-61106. [PMID: 27528218 PMCID: PMC5308638 DOI: 10.18632/oncotarget.11212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022] Open
Abstract
Obesity is a risk factor for cancer and cancer-related mortality, however, its role in lung cancer progression remains controversial. This study aimed to assess whether high-fat diet (HFD)-induced obesity promotes lung cancer progression and whether the promotion can be decreased by Kanglaite injection (KLTI). In vivo, HFD-induced overweight or obesity increases the lung carcinoma incidence and multiplicity in a urethane-induced lung carcinogenic model and cancer-related mortality in a LLC allograft model by increasing oxidative stress and cellular signaling molecules including JAK, STAT3, Akt, mTOR, NF-κB and cyclin D1. These changes resulted in increases in vascular disruption and the lung water content, thereby promoting lung epithelial proliferation and the epithelial-mesenchymal transition (EMT) during carcinogenesis. Chronic KLTI treatment substantially prevented the weight gain resulting from HFD consumption, thereby reversing the metabolic dysfunction-related physiological changes and reducing susceptibility to lung carcinogenesis. In vitro, KLTI significantly suppressed the proliferation and induced apoptosis and differentiation in 3T3-L1 preadipocyte cells and attenuated endothelial cell permeability in HUVECs. Our study indicates that there is a potential relationship between obesity and lung cancer. This is the first study to show that obesity can directly accelerate carcinogen-induced lung cancer progression and that KLTI can decrease the lung cancer-promoting effect of HFD-induced obesity.
Collapse
Affiliation(s)
- Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Mingjing Meng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Zhenhua Du
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Haihong Lin
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yongjian Duan
- Department of Oncology, The First Hospital Affiliated to Henan University, Kaifeng, Henan Province 475001, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| |
Collapse
|
25
|
Ethyl carbamate: An emerging food and environmental toxicant. Food Chem 2017; 248:312-321. [PMID: 29329860 DOI: 10.1016/j.foodchem.2017.12.072] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Ethyl carbamate (EC), a chemical substance widely present in fermented food products and alcoholic beverages, has been classified as a Group 2A carcinogen by the International Agency for Research on Cancer (IARC). New evidence indicates that long-term exposure to EC may cause neurological disorders. Formation of EC in food and its metabolism have therefore been studied extensively and analytical methods for EC in various food matrices have been established. Due to the potential threat of EC to human health, mitigation strategies for EC in food products by physical, chemical, enzymatic, and genetic engineering methods have been developed. Natural products are suggested to provide protection against EC-induced toxicity through the modulation of oxidative stress. This review summarizes knowledge on the formation and metabolism of EC, detection of EC in food products, toxic effects of EC on various organs, and mitigation strategies including prevention of EC-induced tumorigenesis and genotoxicity by natural products.
Collapse
|
26
|
Zhao H, Han Z, Li G, Zhang S, Luo Y. Therapeutic Potential and Cellular Mechanisms of Panax Notoginseng on Prevention of Aging and Cell Senescence-Associated Diseases. Aging Dis 2017; 8:721-739. [PMID: 29344413 PMCID: PMC5758348 DOI: 10.14336/ad.2017.0724] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Owing to a dramatic increase in average life expectancy, most countries in the world are rapidly entering an aging society. Therefore, extending health span with pharmacological agents targeting aging-related pathological changes, are now in the spotlight of gerosciences. Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, has been called the "Miracle Root for the Preservation of Life," and has long been used as a Chinese herb with magical medicinal value. Panax notoginseng has been extensively employed in China to treat microcirculatory disturbances, inflammation, trauma, internal and external bleeding due to injury, and as a tonic. In recent years, with the deepening of the research pharmacologically, many new functions have been discovered. This review will introduce its pharmacological function on lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer properties, aiming to lay the ground for fully elucidating the potential mechanisms of Panax notoginseng's anti-aging effect to promote its clinical application.
Collapse
Affiliation(s)
- Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guangwen Li
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Sijia Zhang
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
27
|
Aliper A, Jellen L, Cortese F, Artemov A, Karpinsky-Semper D, Moskalev A, Swick AG, Zhavoronkov A. Towards natural mimetics of metformin and rapamycin. Aging (Albany NY) 2017; 9:2245-2268. [PMID: 29165314 PMCID: PMC5723685 DOI: 10.18632/aging.101319] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Aging is now at the forefront of major challenges faced globally, creating an immediate need for safe, widescale interventions to reduce the burden of chronic disease and extend human healthspan. Metformin and rapamycin are two FDA-approved mTOR inhibitors proposed for this purpose, exhibiting significant anti-cancer and anti-aging properties beyond their current clinical applications. However, each faces issues with approval for off-label, prophylactic use due to adverse effects. Here, we initiate an effort to identify nutraceuticals-safer, naturally-occurring compounds-that mimic the anti-aging effects of metformin and rapamycin without adverse effects. We applied several bioinformatic approaches and deep learning methods to the Library of Integrated Network-based Cellular Signatures (LINCS) dataset to map the gene- and pathway-level signatures of metformin and rapamycin and screen for matches among over 800 natural compounds. We then predicted the safety of each compound with an ensemble of deep neural network classifiers. The analysis revealed many novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin), epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored compounds also scored well with rapamycin. This work revealed promising candidates for future experimental validation while demonstrating the applications of powerful screening methods for this and similar endeavors.
Collapse
Affiliation(s)
- Alexander Aliper
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Leslie Jellen
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Franco Cortese
- Biogerontology Research Foundation, Research Department, Oxford, United Kingdom
- Department of Biomedical and Molecular Science, Queen's University School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Artem Artemov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | | | - Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | | | - Alex Zhavoronkov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
- Biogerontology Research Foundation, Research Department, Oxford, United Kingdom
| |
Collapse
|
28
|
Gouda MM, Prabhu A, Bhandary YP. Curcumin alleviates IL‐17A‐mediated p53‐PAI‐1 expression in bleomycin‐induced alveolar basal epithelial cells. J Cell Biochem 2017; 119:2222-2230. [DOI: 10.1002/jcb.26384] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/23/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Mahesh M. Gouda
- Yenepoya Research CentreYenepoya UniversityMangaloreKarnatakaIndia
| | - Ashwini Prabhu
- Yenepoya Research CentreYenepoya UniversityMangaloreKarnatakaIndia
| | | |
Collapse
|
29
|
Shikonin suppresses pulmonary fibroblasts proliferation and activation by regulating Akt and p38 MAPK signaling pathways. Biomed Pharmacother 2017; 95:1119-1128. [PMID: 28922731 DOI: 10.1016/j.biopha.2017.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblast is believed to be the primary effector in idiopathic pulmonary fibrosis (IPF), a progressive lung disorder characterized by aberrant tissue remodeling and the formation of fibroblastic foci. Due to the complicated etiology and mechanism, there are few effective drugs for this fatal disease. Shikonin (SHI), which is the major ingredient isolated from the plant Lithospermum Erythrorhizon, has long been used as traditional medicine for many diseases including inflammation and cancer. The roles of SHI in attenuating skin scar and renal fibrosis by reducing TGFβ1-stimulated fibroblast activation are also reported. But whether SHI works on IPF which exhibits both inflammatory and carcinoma-like features remains unknown. In this study, using isolated pulmonary fibroblasts, we demonstrated that SHI inhibited the proliferation, migration of fibroblasts, enhanced cell apoptosis and led to cell cycle arrest at G1 and G2/M phase. Moreover, SHI reduced the production of α-SMA, fibronectin, collagen I and III in response to TGF-β induction in pulmonary fibroblasts, and all of these gene production is the key component of extracellular matrix for tissue remodeling for IPF. The phosphorylation of Akt was down-regulated, p53 increased, the mRNA levels of p21 and p27 enhanced after SHI treatments. The phosphorylation of both p38 MAPK and Akt stimulated by TGF-β was reduced after SHI treatments. Collectively, these data indicate that SHI has a strong cytotoxicity in pulmonary fibroblast via inhibiting Akt activation signaling pathway, and attenuates TGF-β induced extracellular matrix genes production in pulmonary fibroblasts via modulating the activities of p38 MAPK and Akt. SHI might serve as a therapeutically candidate for IPF patients.
Collapse
|
30
|
Berberine and cinnamaldehyde together prevent lung carcinogenesis. Oncotarget 2017; 8:76385-76397. [PMID: 29100319 PMCID: PMC5652713 DOI: 10.18632/oncotarget.20059] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022] Open
Abstract
Starving tumor cells by restricting nutrient sources is a promising strategy for combating cancer. Because both berberine and cinnamaldehyde can activate AMP-activated protein kinase (AMPK, a sensor of cellular energy status), we investigated whether the combination of berberine and cinnamaldehyde could synergistically prevent lung carcinogenesis through tumor cell starvation. Urethane treatment induced lung carcinogenesis in mice, downregulated AMPK and mammalian target of rapamycin (mTOR) while upregulating aquaporin-1 (AQP-1) and nuclear factor kappa B (NF-κB). Together, berberine and cinnamaldehyde reduced mouse susceptibility to urethane-induced lung carcinogenesis, and reversed the urethane-induced AMPK, mTOR, AQP-1, and NF-κB expression patterns. In vitro, berberine and cinnamaldehyde together induced A549 cell apoptosis, prevented cell proliferation, autophagy, and wound healing, upregulated AMPK, and downregulated AQP-1. The effects of the combined treatment were reduced by rapamycin (a mTOR inhibitor) or HgCL2 (an AQP inhibitor), but not Z-VAD-FMK (a caspase inhibitor). The berberine/cinnamaldehyde combination also prevented A549 cell substance permeability and decreased intracellular ATP concentrations. These results suggest the combination of berberine and cinnamaldehyde limited both primary and adaptive nutrient acquisition by lung tumors via AMPK-reduced AQP-1 expression, which ultimately starved the tumor cells.
Collapse
|
31
|
Geng S, Zheng Y, Meng M, Guo Z, Cao N, Ma X, Du Z, Li J, Duan Y, Du G. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6203-6211. [PMID: 27436516 DOI: 10.1021/acs.jafc.6b02480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Both gingerol and capsaicin are agonists of TRPV1, which can negatively control tumor progression. This study observed the long-term effects of oral administration of 6-gingerol alone or in combination with capsaicin for 20 weeks in a urethane-induced lung carcinogenic model. We showed that lung carcinoma incidence and multiplicity were 70% and 21.2 ± 3.6, respectively, in the control versus 100% and 35.6 ± 5.2 in the capsaicin group (P < 0.01) and 50% and 10.8 ± 3.1 in the 6-gingerol group (P < 0.01). The combination of 6-gingerol and capsaicin reversed the cancer-promoting effect of capsaicin (carcinoma incidence of 100% versus 20% and multiplicity of 35.6 ± 5.2 versus 4.7 ± 2.3; P < 0.001). The cancer-promoting effect of capsaicin was due to increased epidermal growth-factor receptor (EGFR) level by decreased transient receptor potential vanilloid type-1 (TRPV1) level (P < 0.01) . The capsaicin-decreased EGFR level subsequently reduced levels of nuclear factor-κB (NF-κB) and cyclin D1 that favored enhanced lung epithelial proliferation and epithelial-mesenchymal transition (EMT) during lung carcinogenesis (P < 0.01). In contrast, 6-gingerol promoted TRPV1 level and drastically decreased the levels of EGFR, NF-κB, and cyclin D1 that favored reduced lung epithelial proliferation and EMT (P < 0.01). This study provides valuable information for the long-term consumption of chili-pepper-rich diets to decrease the risk of cancer development.
Collapse
Affiliation(s)
- Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Mingjing Meng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenhua Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yongjian Duan
- Department of Oncology, The First Hospital Affiliated to Henan University , Kaifeng, Henan 475001, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| |
Collapse
|