1
|
Diaz-Castro J, Reyes-Olavarría D, Toledano JM, Puche-Juarez M, Garcia-Vega JE, Ochoa JJ, Moreno-Fernandez J. Assessment of muscle endocrine function and inflammatory signalling in male school children following a physical activity programme. Clin Nutr 2024; 43:936-942. [PMID: 38422951 DOI: 10.1016/j.clnu.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND & AIMS Regular and planned physical activity can diminish the risk of numerous illnesses. However, school children and teenagers often exercise intermittently and for brief periods, restricting potential benefits. Furthermore, previous studies mainly focused on body composition, without providing molecular mechanisms elucidating the role of physical activity in muscle tissue and inflammatory signalling. The objective of this study was to determine the effect of a vigorous physical activity intervention on endocrine muscle function and cytokine output in children. METHODS 103 boys were divided into two groups: control (n = 51, did not perform additional physical activity) and exercise (n = 52, performed vigorous physical activity). Body composition measurements, endocrine muscle function and inflammatory signalling biomarkers were assessed at enrolment and after 6 months of intervention. RESULTS No statistical significance was found for fractalkine, oncostatin, EGF, TNF-α and eotaxin. However, LIF, FBAP3, IL-6, FGF21 and IL-15 increased in the exercise group at the end of the protocol, though myostatin got decreased. In contrast, IFN-γ was increased in the exercise group at the beginning and end of the exercise protocol, IL-10 was also increased in this group, IL-1α decreased in the exercise group before and after the exercise protocol, and IP-10 and MCP-1 also decreased in the exercise group. CONCLUSION It can be affirmed that a physical activity programme for boys was shown to produce changes in body composition (decreased fat mass, increased lean mass) and in markers of endocrine muscle function and cytokine release. It is possible that these changes, if sustained, could reduce the risk of chronic disease.
Collapse
Affiliation(s)
- Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Daniela Reyes-Olavarría
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain; Department of Physical Education, Sport, and Recreation, Universidad de La Frontera, Temuco 4780000, Chile
| | - Juan M Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain.
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain.
| | - Jose Eulogio Garcia-Vega
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Julio J Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain.
| |
Collapse
|
2
|
de Las Heras JI, Todorow V, Krečinić-Balić L, Hintze S, Czapiewski R, Webb S, Schoser B, Meinke P, Schirmer EC. Metabolic, fibrotic and splicing pathways are all altered in Emery-Dreifuss muscular dystrophy spectrum patients to differing degrees. Hum Mol Genet 2023; 32:1010-1031. [PMID: 36282542 PMCID: PMC9991002 DOI: 10.1093/hmg/ddac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetically and clinically variable disorder. Previous attempts to use gene expression changes to find its pathomechanism were unavailing, so we engaged a functional pathway analysis. RNA-Seq was performed on cells from 10 patients diagnosed with an EDMD spectrum disease with different mutations in seven genes. Upon comparing to controls, the pathway analysis revealed that multiple genes involved in fibrosis, metabolism, myogenic signaling and splicing were affected in all patients. Splice variant analysis revealed alterations of muscle-specific variants for several important muscle genes. Deeper analysis of metabolic pathways revealed a reduction in glycolytic and oxidative metabolism and reduced numbers of mitochondria across a larger set of 14 EDMD spectrum patients and 7 controls. Intriguingly, the gene expression signatures segregated the patients into three subgroups whose distinctions could potentially relate to differences in clinical presentation. Finally, differential expression analysis of miRNAs changing in the patients similarly highlighted fibrosis, metabolism and myogenic signaling pathways. This pathway approach revealed a transcriptome profile that can both be used as a template for establishing a biomarker panel for EDMD and direct further investigation into its pathomechanism. Furthermore, the segregation of specific gene changes into distinct groups that appear to correlate with clinical presentation may template development of prognostic biomarkers, though this will first require their testing in a wider set of patients with more clinical information.
Collapse
Affiliation(s)
| | - Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Lejla Krečinić-Balić
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Impact of habitual chewing on gut motility via microbiota transition. Sci Rep 2022; 12:13819. [PMID: 35970869 PMCID: PMC9378666 DOI: 10.1038/s41598-022-18095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
The gut environment, including the microbiota and its metabolites and short-chain fatty acids (SCFA), is essential for health maintenance. It is considered that functional recovery treatment for masticatory dysphagia affects the composition of the gut microbiota, indicating that habitual mastication, depending on the hardness of the food, may affect the gut microbiota and environment. However, the impact of chronic powdered diet feeding on the colonic condition and motility remains unclear. Here, we evaluated various colonic features in mice fed with powdered diets for a long-term and a mouse model with masticatory behavior. We observed a decreased abundance of the SCFA-producing bacterial genera in the ceca of the powdered diet-fed mice. Based on the importance of SCFAs in gut immune homeostasis and motility, interestingly, powdered diet feeding also resulted in constipation-like symptoms due to mild colitis, which were ameliorated by the administration of a neutrophil-depleting agent and neutrophil elastase inhibitors. Lastly, the suppressed colonic motility in the powdered diet-fed mice was significantly improved by loading masticatory activity for 2 h. Thus, feeding habits with appropriate masticatory activity and stimulation may play a key role in providing a favorable gut environment based on interactions between the gut microbiota and host immune system.
Collapse
|
4
|
Schilling BK, Baker JS, Komatsu C, Marra KG. Intramuscular injection of skeletal muscle derived extracellular matrix mitigates denervation atrophy after sciatic nerve transection. J Tissue Eng 2021; 12:20417314211032491. [PMID: 34567507 PMCID: PMC8458676 DOI: 10.1177/20417314211032491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury and the associated muscle atrophy has an estimated annual healthcare burden of $150 billion dollars in the United States. When considering the total annual health-related spending of $3.5 trillion, these pathologies alone occupy about 4.3%. The prevalence of these ailments is rooted, at least in part, in the lack of specific preventative therapies that can be administered to muscle while it remains in the denervated state. To address this, skeletal muscle-derived ECM (skECM) was injected directly in denervated muscle with postoperative analysis performed at 20 weeks, including gait analysis, force production, cytokine quantification, and histological analysis. skECM was shown to be superior against non-injected muscle controls showing no difference in contraction force to uninjured muscle at 20 weeks. Cytokines IL-1β, IL-18, and IFNγ appeared to mediate regeneration with statistical regression implicating these cytokines as strong predictors of muscle contraction, showing significant linear correlation.
Collapse
Affiliation(s)
- Benjamin K Schilling
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jocelyn S Baker
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiaki Komatsu
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kacey G Marra
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Chaweewannakorn C, Harada T, Nyasha MR, Koide M, Shikama Y, Hagiwara Y, Sasaki K, Kanzaki M, Tsuchiya M. Imaging of muscle activity-induced morphometric changes in fibril network of myofascia by two-photon microscopy. J Anat 2021; 238:515-526. [PMID: 33078407 PMCID: PMC7855069 DOI: 10.1111/joa.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 01/15/2023] Open
Abstract
Myofascia, deep fascia enveloping skeletal muscles, consists of abundant collagen and elastin fibres that play a key role in the transmission of muscular forces. However, understanding of biomechanical dynamics in myofascia remains very limited due to less quantitative and relevant approaches for in vivo examination. The purpose of this study was to evaluate the myofascial fibril structure by means of a quantitative approach using two-photon microscopy (TPM) imaging in combination with intravital staining of Evans blue dye (EBD), a far-red fluorescence dye, which potentially labels elastin. With focus on myofascia of the tibial anterior (TA) muscle, the fibril structure intravitally stained with EBD was observed at the depth level of collagen fibrous membrane above the muscle belly. The EBD-labelled fibril structure and orientation in myofascia indicated biomechanical responses to muscle activity and ageing. The orientation histograms of EBD-labelled fibrils were significantly modified depending upon the intensity of muscle activity and ageing. Moreover, the density of EBD-labelled fibrils in myofascia decreased with habitual exercise but increased with muscle immobilization or ageing. In particular, the diameter of EBD-labelled fibrils in aged mice was significantly higher. The orientation histograms of EBD-labelled fibrils after habitual exercise, muscle immobilization and ageing showed significant differences compared to control. Indeed, the histograms in bilateral TA myofascia of exercise mice made simple waveforms without multiple sharp peaks, whilst muscular immobilization or ageing significantly shifted a histogram with sustaining multiple sharp peaks. Therefore, the dynamics of fibre network with EBD fluorescence in response to the biomechanical environment possibly indicate functional tissue adaptation in myofascia. Furthermore, on the basis of the knowledge that neutrophil recruitment occurs locally in working muscles, we suggested the unique reconstruction mechanism involving neutrophilic elastase in the myofascial fibril structure. In addition to the elastolytic susceptibility of EBD-labelled fibrils, distinct immunoreactivities and activities of neutrophil elastase in the myofascia were observed after electric pulse stimulation-induced muscle contraction for 15 min. Our findings of EBD-labelled fibril dynamics in myofascia through quantitative approach using TPM imaging and intravital fluorescence labelling potentially brings new insights to examine muscle physiology and pathology.
Collapse
Affiliation(s)
- Chayanit Chaweewannakorn
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku UniversitySendaiJapan
- Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Takashi Harada
- Department of Orthopaedic SurgeryGraduate School of MedicineTohoku UniversitySendaiJapan
| | - Mazvita R. Nyasha
- Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Masashi Koide
- Department of Orthopaedic SurgeryGraduate School of MedicineTohoku UniversitySendaiJapan
| | - Yosuke Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic SurgeryGraduate School of MedicineTohoku UniversitySendaiJapan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku UniversitySendaiJapan
| | - Makoto Kanzaki
- Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | | |
Collapse
|
6
|
Cytokines, Masticatory Muscle Inflammation, and Pain: an Update. J Mol Neurosci 2020; 70:790-795. [PMID: 32008162 DOI: 10.1007/s12031-020-01491-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Cytokines are proteins secreted by diverse types of immune and non-immune cells and play a role in the communication between the immune and nervous systems. Cytokines include lymphokines, monokines, chemokines, interleukins, interferons, colony stimulating factors, and growth factors. They can be both pro- and anti-inflammatory and have autocrine, paracrine, and endocrine activities. These proteins are involved in initiation and persistence of pain, and the progress of hyperalgesia and allodynia, upon stimulating nociceptive sensory neurons, and inducing central sensitization. The objective of this review is to discuss several types of pro- and anti-inflammatory mediators and their relation with inflammatory pain in masticatory muscles.
Collapse
|
7
|
Buvinic S, Balanta-Melo J, Kupczik K, Vásquez W, Beato C, Toro-Ibacache V. Muscle-Bone Crosstalk in the Masticatory System: From Biomechanical to Molecular Interactions. Front Endocrinol (Lausanne) 2020; 11:606947. [PMID: 33732211 PMCID: PMC7959242 DOI: 10.3389/fendo.2020.606947] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules. Bone cells embedded in the mineralized tissue respond to the biomechanical input by releasing molecular factors that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-derived factors act as soluble signals that modulate the remodeling process of the underlying bones. This concept of muscle-bone crosstalk at a molecular level is particularly interesting in the mandible, due to its tight anatomical relationship with one of the biggest and strongest masticatory muscles, the masseter. However, despite the close physical and physiological interaction of both tissues for proper functioning, this topic has been poorly addressed. Here we present one of the most detailed reviews of the literature to date regarding the biomechanical and biochemical interaction between muscles and bones of the masticatory system, both during development and in physiological or pathological remodeling processes. Evidence related to how masticatory function shapes the craniofacial bones is discussed, and a proposal presented that the masticatory muscles and craniofacial bones serve as secretory tissues. We furthermore discuss our current findings of myokines-release from masseter muscle in physiological conditions, during functional adaptation or pathology, and their putative role as bone-modulators in the craniofacial system. Finally, we address the physiological implications of the crosstalk between muscles and bones in the masticatory system, analyzing pathologies or clinical procedures in which the alteration of one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-bone crosstalk in the masticatory system opens broad possibilities for understanding and treating temporomandibular disorders, which severely impair the quality of life, with a high cost for diagnosis and management.
Collapse
Affiliation(s)
- Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Sonja Buvinic,
| | - Julián Balanta-Melo
- School of Dentistry, Faculty of Health, Universidad del Valle, Cali, Colombia
- Evidence-Based Practice Unit Univalle, Hospital Universitario del Valle, Cali, Colombia
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Walter Vásquez
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Beato
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
8
|
Chaweewannakorn C, Nyasha MR, Chen W, Sekiai S, Tsuchiya M, Hagiwara Y, Bouzakri K, Sasaki K, Kanzaki M. Exercise‐evoked intramuscular neutrophil‐endothelial interactions support muscle performance and GLUT4 translocation: a mouse gnawing model study. J Physiol 2019; 598:101-122. [DOI: 10.1113/jp278564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Chayanit Chaweewannakorn
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku University Sendai Japan
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | - Mazvita R. Nyasha
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | - Weijian Chen
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | - Shigenori Sekiai
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | | | - Yoshihiro Hagiwara
- Department of Orthopaedic SurgeryGraduate School of MedicineTohoku University Sendai Japan
| | - Karim Bouzakri
- Centre Européen d'Etude du DiabèteDiabète et ThérapeutiqueUniversité de StrasbourgFédération de Médecine Translationnelle de Strasbourg EA7294 Strasbourg France
| | - Keiichi Sasaki
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku University Sendai Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| |
Collapse
|
9
|
Ayada K, Tsuchiya M, Yoneda H, Yamaguchi K, Kumamoto H, Sasaki K, Tadano T, Watanabe M, Endo Y. Induction of the Histamine-Forming Enzyme Histidine Decarboxylase in Skeletal Muscles by Prolonged Muscular Work: Histological Demonstration and Mediation by Cytokines. Biol Pharm Bull 2018; 40:1326-1330. [PMID: 28769013 DOI: 10.1248/bpb.b17-00112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies suggest that histamine-a regulator of the microcirculation-may play important roles in exercise. We have shown that the histamine-forming enzyme histidine decarboxylase (HDC) is induced in skeletal muscles by prolonged muscular work (PMW). However, histological analysis of such HDC induction is lacking due to appropriate anti-HDC antibodies being unavailable. We also showed that the inflammatory cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α can induce HDC, and that PMW increases both IL-1α and IL-1β in skeletal muscles. Here, we examined the effects (a) of PMW on the histological evidence of HDC induction and (b) of IL-1β and TNF-α on HDC activity in skeletal muscles. By immunostaining using a recently introduced commercial polyclonal anti-HDC antibody, we found that cells in the endomysium and around blood vessels, and also some muscle fibers themselves, became HDC-positive after PMW. After PMW, TNF-α, but not IL-1α or IL-1β, was detected in the blood serum. The minimum intravenous dose of IL-1β that would induce HDC activity was about 1/10 that of TNF-α, while in combination they synergistically augmented HDC activity. These results suggest that PMW induces HDC in skeletal muscles, including cells in the endomysium and around blood vessels, and also some muscle fibers themselves, and that IL-1β and TNF-α may cooperatively mediate this induction.
Collapse
Affiliation(s)
- Kentaro Ayada
- Division of Oral Pathology, Graduate School of Dentistry, Tohoku University
| | | | - Hiroyuki Yoneda
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| | - Kouji Yamaguchi
- Division of Oral Pathology, Graduate School of Dentistry, Tohoku University
| | - Hiroyuki Kumamoto
- Division of Oral Pathology, Graduate School of Dentistry, Tohoku University
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| | - Takeshi Tadano
- Department of Health Care Medical Research Venture Business Laboratory, Kanazawa University
| | | | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
10
|
Tsuchiya M, Sekiai S, Hatakeyama H, Koide M, Chaweewannakorn C, Yaoita F, Tan-No K, Sasaki K, Watanabe M, Sugawara S, Endo Y, Itoi E, Hagiwara Y, Kanzaki M. Neutrophils Provide a Favorable IL-1-Mediated Immunometabolic Niche that Primes GLUT4 Translocation and Performance in Skeletal Muscles. Cell Rep 2018; 23:2354-2364. [DOI: 10.1016/j.celrep.2018.04.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/09/2018] [Accepted: 04/14/2018] [Indexed: 11/27/2022] Open
|
11
|
Chaweewannakorn C, Tsuchiya M, Koide M, Hatakeyama H, Tanaka Y, Yoshida S, Sugawara S, Hagiwara Y, Sasaki K, Kanzaki M. Roles of IL-1α/β in regeneration of cardiotoxin-injured muscle and satellite cell function. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29513560 DOI: 10.1152/ajpregu.00310.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Skeletal muscle regeneration after injury is a complex process involving interactions between inflammatory microenvironments and satellite cells. Interleukin (IL)-1 is a key mediator of inflammatory responses and exerts pleiotropic impacts on various cell types. Thus, we aimed to investigate the role of IL-1 during skeletal muscle regeneration. We herein show that IL-1α/β-double knockout (IL-1KO) mice exhibit delayed muscle regeneration after cardiotoxin (CTX) injection, characterized by delayed infiltrations of immune cells accompanied by suppressed local production of proinflammatory factors including IL-6 and delayed increase of paired box 7 (PAX7)-positive satellite cells postinjury compared with those of wild-type (WT) mice. A series of in vitro experiments using satellite cells obtained from the IL-1KO mice unexpectedly revealed that IL-1KO myoblasts have impairments in terms of both proliferation and differentiation, both of which were reversed by exogenous IL-1β administration in culture. Intriguingly, the delay in myogenesis was not attributable to the myogenic transcriptional program since MyoD and myogenin were highly upregulated in IL-1KO cells, instead appearing, at least in part, to be due to dysregulation of cellular fusion events, possibly resulting from aberrant actin regulatory systems. We conclude that IL-1 plays a positive role in muscle regeneration by coordinating the initial interactions among inflammatory microenvironments and satellite cells. Our findings also provide compelling evidence that IL-1 is intimately engaged in regulating the fundamental function of myocytes.
Collapse
Affiliation(s)
- Chayanit Chaweewannakorn
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry , Sendai , Japan.,Tohoku University Graduate School of Biomedical Engineering , Sendai , Japan
| | | | - Masashi Koide
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Hiroyasu Hatakeyama
- Tohoku University Graduate School of Biomedical Engineering , Sendai , Japan.,Frontier Research Institute for Interdisciplinary Science, Tohoku University , Sendai , Japan
| | - Yukinori Tanaka
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Shinichirou Yoshida
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Makoto Kanzaki
- Tohoku University Graduate School of Biomedical Engineering , Sendai , Japan
| |
Collapse
|
12
|
Alam J, Jantan I, Bukhari SNA. Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed Pharmacother 2017; 92:615-633. [PMID: 28582758 DOI: 10.1016/j.biopha.2017.05.055] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 01/13/2023] Open
Abstract
An autoimmune disease is defined as a clinical syndrome resulted from an instigation of both T cell and B cell or individually, in the absence of any present infection or any sort of distinguishable cause. Clonal deletion of auto reactive cells remains the central canon of immunology for decades, keeping the role of T cell and B cell aside, which are actually the guards to recognize the entry of foreign body. According to NIH, 23.5 million Americans are all together affected by these diseases. They are rare, but with the exception of RA. Rheumatoid arthritis is chronic and systemic autoimmune response to the multiple joints with unknown ethology, progressive disability, systemic complications, early death and high socioeconomic costs. Its ancient disease with an old history found in North American tribes since 1500 BCE, but its etiology is yet to be explored. Current conventional and biological therapies used for RA are not fulfilling the need of the patients but give only partial responses. There is a lack of consistent and liable biomarkers of prognosis therapeutic response, and toxicity. Rheumatoid arthritis is characterized by hyperplasic synovium, production of cytokines, chemokines, autoantibodies like rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA), osteoclastogensis, angiogenesis and systemic consequences like cardiovascular, pulmonary, psychological, and skeletal disorders. Cytokines, a diverse group of polypeptides, play critical role in the pathogenesis of RA. Their involvement in autoimmune diseases is a rapidly growing area of biological and clinical research. Among the proinflammatory cytokines, IL-1α/β and TNF-α trigger the intracellular molecular signalling pathway responsible for the pathogenesis of RA that leads to the activation of mesenchymal cell, recruitment of innate and adaptive immune system cells, activation of synoviocytes which in term activates various mediators including tumour necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6) and interleukin-8 (IL-8), resulting in inflamed synovium, increase angiogenesis and decrease lymphangiogensis. Their current pharmacotherapy should focus on their three phases of progression i.e. prearthritis phase, transition phase and clinical phase. In this way we will be able to find a way to keep the balance between the pro and anti-inflammatory cytokines that is believe to be the dogma of pathogenesis of RA. For this we need to explore new agents, whether from synthetic or natural source to find the answers for unresolved etiology of autoimmune diseases and to provide a quality of life to the patients suffering from these diseases specifically RA.
Collapse
Affiliation(s)
- Javaid Alam
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|