1
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Ruff SE, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells. PLoS Biol 2024; 22:e3002638. [PMID: 38990824 PMCID: PMC11239054 DOI: 10.1371/journal.pbio.3002638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/24/2024] [Indexed: 07/13/2024] Open
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single-cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing 8 new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nanoscale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal noncanonical amino acid tagging (BONCAT), we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Virginia Edgcomb
- Woods Hole Oceanographic Institution, Falmouth, Massachusetts, United States of America
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
2
|
Lamont RJ, Kuboniwa M. The polymicrobial pathogenicity of Porphyromonas gingivalis. FRONTIERS IN ORAL HEALTH 2024; 5:1404917. [PMID: 38736461 PMCID: PMC11082793 DOI: 10.3389/froh.2024.1404917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Accumulating microbiome data and mechanistic studies in vitro and in vivo have refined our understanding of the oral microbiota as a functionally integrated polymicrobial community. Emergent properties of these communities are driven to a large extent by interspecies communication which can be based on physical association, secreted small molecules or nutritional exchange. Porphyromonas gingivalis is a consensus periodontal pathogen; however, virulence is only expressed in the context of a polymicrobial community. Multivalent fimbriae mediate attachment to other oral species which can initiate a distinct transcriptional program in both constituents of the binding pair. P. gingivalis also responds to small molecules and nutritional cues produced by partner organisms. Physiological interdependence forms the basis of complex networks of cooperating organisms which begin to resemble an organismal entity exhibiting a spectrum of pathogenic potential.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
3
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Emil Ruff S, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacterial consortia are metabolically differentiated and not clonal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568837. [PMID: 38076927 PMCID: PMC10705294 DOI: 10.1101/2023.11.27.568837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing eight new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nano-scale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal non-canonical amino acid tagging (BONCAT) we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543
| | | | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
4
|
de Freitas AS, Gan FC, de David DB, Wurdig Roesch LF. The microbiome shifts throughout the gastrointestinal tract of Bradford cattle in the Pampa biome. PLoS One 2022; 17:e0279386. [PMID: 36538559 PMCID: PMC9767327 DOI: 10.1371/journal.pone.0279386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
A deep understanding of the cattle gastrointestinal microbiome is crucial to selective breeding high-efficiency animals that produce more and generate less environmental damage. Here we performed the taxonomic identification of Bacterial and Archaeal communities using high throughput 16SrRNA gene sequencing from critical compartments of the gastrointestinal tract of Bradford cattle raised in a natural grassland in the Pampa biome, Brazil. We analyzed 110 samples, including saliva, ruminal fluid, and feces from 36 months old Bradford heifers (weighing on average 343 ± 30 kg by the sampling time). To reduce unexpected variation and confounders, we selected the animals from the same breed, submitted them to the same food source, and collected the samples for three consecutive years from different animals in the same season. Our main goal was to analyze the microbial shifts throughout the gastrointestinal tract to reference future works proposing management strategies and interventions to improve animal nutrition and increase production in the Pampa Biome. To accomplish our objective, we accessed the microbial community differences in groups with a high and low weight gain controlling for food ingestion and quality of grazed pasture. Few taxa were shared among the samples. About 40% of the phyla and 60% of the genera were unique from saliva samples, and 12.4% of the microbial genera were uniquely found in feces. All samples shared only 36.1% of phyla and 7.5% of genera. Differences in microbial diversity and taxa counts were observed. The ruminal fluid presented the lowest microbial richness, while saliva and feces presented the highest microbial richness. On the other hand, saliva and feces also presented more distinct communities between themselves when compared with ruminal samples. Our data showed that the saliva microbiome is not representative of the rumen microbiome and should not be used as an easy-to-collect sample for studies about the rumen microbiome.
Collapse
Affiliation(s)
| | - Flávia Caroline Gan
- Centro Interdisciplinar de Pesquisas em Biotecnologia–CIP-Biotec, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Diego Bittencourt de David
- Departamento de Diagnóstico e Pesquisa Agropecuária–DDPA, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural–SEADPR/RS, São Gabriel, Rio Grande do Sul, Brazil
| | - Luiz Fernando Wurdig Roesch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bryson SJ, Hunt KA, Stahl DA, Winkler MKH. Metagenomic Insights Into Competition Between Denitrification and Dissimilatory Nitrate Reduction to Ammonia Within One-Stage and Two-Stage Partial-Nitritation Anammox Bioreactor Configurations. Front Microbiol 2022; 13:825104. [PMID: 35547121 PMCID: PMC9083452 DOI: 10.3389/fmicb.2022.825104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Anaerobic ammonia oxidizing bacteria (Anammox) are implemented in high-efficiency wastewater treatment systems operated in two general configurations; one-stage systems combine aerobic ammonia oxidizing bacteria (AOB) and Anammox within a single aerated reactor, whereas two-stage configurations separate these processes into discrete tanks. Within both configurations heterotrophic populations that perform denitrification or dissimilatory nitrate reduction to ammonia (DNRA) compete for carbon and nitrate or nitrite and can impact reactor performance because DNRA retains nitrogen in the system. Therefore, it is important to understand how selective pressures imposed by one-stage and two-stage reactor configurations impact the microbial community structure and associated nitrogen transforming functions. We performed 16S rRNA gene and metagenomic sequencing on different biomass fractions (granules, flocs, and suspended biomass) sampled from two facilities treating sludge dewatering centrate: a one-stage treatment facility (Chambers Creek, Tacoma, WA) and a two-stage system (Rotterdam, Netherlands). Similar microbial populations were identified across the different samples, but relative abundances differed between reactor configurations and biomass sources. Analysis of metagenome assembled genomes (MAGs) indicated different lifestyles for abundant heterotrophic populations. Acidobacteria, Bacteroidetes, and Chloroflexi MAGs had varying capacity for DNRA and denitrification. Acidobacteria MAGs possessed high numbers of glycosyl hydrolases and glycosyl transferases indicating a role in biomass degradation. Ignavibacteria and Phycosphaerae MAGs contributed to the greater relative abundance of DNRA associated nrf genes in the two-stage granules and contained genomic features suggesting a preference for an anoxic or microoxic niche. In the one-stage granules a MAG assigned to Burkholderiales accounted for much of the abundant denitrification genes and had genomic features, including the potential for autotrophic denitrification using reduced sulfur, that indicate an ability to adapt its physiology to varying redox conditions. Overall, the competition for carbon substrates between denitrifying and DNRA performing heterotrophs may be impacted by configuration specific selective pressures. In one-stage systems oxygen availability in the bulk liquid and the oxygen gradient within granules would provide a greater niche space for heterotrophic populations capable of utilizing both oxygen and nitrate or nitrite as terminal electron acceptors, compared to two-stage systems where a homogeneous anoxic environment would favor heterotrophic populations primarily adapted to anaerobic metabolism.
Collapse
Affiliation(s)
- Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Berg JS, Ahmerkamp S, Pjevac P, Hausmann B, Milucka J, Kuypers MMM. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6517451. [PMID: 35094062 PMCID: PMC9075580 DOI: 10.1093/femsre/fuac006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022] Open
Abstract
Oxygen (O2) is the ultimate oxidant on Earth and its respiration confers such an energetic advantage that microorganisms have evolved the capacity to scavenge O2 down to nanomolar concentrations. The respiration of O2 at extremely low levels is proving to be common to diverse microbial taxa, including organisms formerly considered strict anaerobes. Motivated by recent advances in O2 sensing and DNA/RNA sequencing technologies, we performed a systematic review of environmental metatranscriptomes revealing that microbial respiration of O2 at nanomolar concentrations is ubiquitous and drives microbial activity in seemingly anoxic aquatic habitats. These habitats were key to the early evolution of life and are projected to become more prevalent in the near future due to anthropogenic-driven environmental change. Here, we summarize our current understanding of aerobic microbial respiration under apparent anoxia, including novel processes, their underlying biochemical pathways, the involved microorganisms, and their environmental importance and evolutionary origin.
Collapse
Affiliation(s)
- Jasmine S Berg
- Corrresponding author: Géopolis, Quartier Unil-Mouline, Université de Lausanne, 1015 Lausanne, Switzerland. E-mail:
| | - Soeren Ahmerkamp
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 2359, Germany
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna 1090, Austria
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1090, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna 1090, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 2359, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 2359, Germany
| |
Collapse
|
7
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants (Basel) 2021; 10:antiox10060839. [PMID: 34073980 PMCID: PMC8225038 DOI: 10.3390/antiox10060839] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) comprise the superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
- Correspondence: (V.B.B.); (E.F.)
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
| | - Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Correspondence: (V.B.B.); (E.F.)
| |
Collapse
|
9
|
Chathoth K, Martin B, Cornelis P, Yvenou S, Bonnaure-Mallet M, Baysse C. The events that may contribute to subgingival dysbiosis: a focus on the interplay between iron, sulfide and oxygen. FEMS Microbiol Lett 2020; 367:5860280. [DOI: 10.1093/femsle/fnaa100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
This minireview considers the disruption of the host–microbiota harmless symbiosis in the subgingival niche. The establishment of a chronic infection by subversion of a commensal microbiota results from a complex and multiparametric sequence of events. This review narrows down to the interplay between oxygen, iron and sulfide that can result in a vicious cycle that would favor peroxygenic and glutathione producing streptococci as well as sulfidogenic anaerobic pathogens in the subgingival niche. We propose hypothesis and discuss strategies for the therapeutic modulation of the microbiota to prevent periodontitis and promote oral health.
Collapse
Affiliation(s)
- Kanchana Chathoth
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Bénédicte Martin
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Laboratory of Microbiology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, F-27000 Évreux, France
| | - Stéven Yvenou
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Martine Bonnaure-Mallet
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
- CHU Pontchaillou Rennes, 35000 Rennes, France
| | - Christine Baysse
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| |
Collapse
|
10
|
The Small Protein CydX Is Required for Cytochrome bd Quinol Oxidase Stability and Function in Salmonella enterica Serovar Typhimurium: a Phenotypic Study. J Bacteriol 2020; 202:JB.00348-19. [PMID: 31659011 DOI: 10.1128/jb.00348-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/21/2019] [Indexed: 01/12/2023] Open
Abstract
Cytochrome bd quinol oxidases, which have a greater affinity for oxygen than heme-copper cytochrome oxidases (HCOs), promote bacterial respiration and fitness in low-oxygen environments, such as host tissues. Here, we show that, in addition to the CydA and CydB subunits, the small protein CydX is required for the assembly and function of the cytochrome bd complex in the enteric pathogen Salmonella enterica serovar Typhimurium. Mutant S Typhimurium lacking CydX showed a loss of proper heme arrangement and impaired oxidase activity comparable to that of a ΔcydABX mutant lacking all cytochrome bd subunits. Moreover, both the ΔcydX mutant and the ΔcydABX mutant showed increased sensitivity to β-mercaptoethanol and nitric oxide (NO). Cytochrome bd-mediated protection from β-mercaptoethanol was not a result of resistance to reducing damage but, rather, was due to cytochrome bd oxidase managing Salmonella respiration, while β-mercaptoethanol interacted with the copper ions necessary for the HCO activity of the cytochrome bo-type quinol oxidase. Interactions between NO and hemes in cytochrome bd and cytochrome bd-dependent respiration during nitrosative stress indicated a direct role for cytochrome bd in mediating Salmonella resistance to NO. Additionally, CydX was required for S Typhimurium proliferation inside macrophages. Mutants deficient in cytochrome bd, however, showed a significant increase in resistance to antibiotics, including aminoglycosides, d-cycloserine, and ampicillin. The essential role of CydX in cytochrome bd assembly and function suggests that targeting this small protein could be a useful antimicrobial strategy, but potential drug tolerance responses should also be considered.IMPORTANCE Cytochrome bd quinol oxidases, which are found only in bacteria, govern the fitness of many facultative anaerobic pathogens by promoting respiration in low-oxygen environments and by conferring resistance to antimicrobial radicals. Thus, cytochrome bd complex assembly and activity are considered potential therapeutic targets. Here we report that the small protein CydX is required for the assembly and function of the cytochrome bd complex in S Typhimurium under stress conditions, including exposure to β-mercaptoethanol, nitric oxide, or the phagocytic intracellular environment, demonstrating its crucial function for Salmonella fitness. However, cytochrome bd inactivation also leads to increased resistance to some antibiotics, so considerable caution should be taken when developing therapeutic strategies targeting the CydX-dependent cytochrome bd.
Collapse
|
11
|
Aggregatibacter actinomycetemcomitans mediates protection of Porphyromonas gingivalis from Streptococcus sanguinis hydrogen peroxide production in multi-species biofilms. Sci Rep 2019; 9:4944. [PMID: 30894650 PMCID: PMC6426879 DOI: 10.1038/s41598-019-41467-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/06/2019] [Indexed: 01/10/2023] Open
Abstract
Mixed species biofilms are shaped and influenced by interactions between species. In the oral cavity, dysbiosis of the microbiome leads to diseases such as periodontitis. Porphyromonas gingivalis is a keystone pathogen of periodontitis. In this study, we showed that polymicrobial biofilm formation promoted the tolerance of Porphyromonas gingivalis to oxidative stress under micro-aerobic conditions. The presence of Streptococcus sanguinis, an oral commensal bacterium, inhibited the survival of P. gingivalis in dual-species biofilms via the secretion of hydrogen peroxide (H2O2). Interestingly, this repression could be attenuated by the presence of Aggregatibacter actinomycetemcomitans in tri-species biofilms. It was also shown that the katA gene, encoding a cytoplasmic catalase in A. actinomycetemcomitans, was responsible for the reduction of H2O2 produced by S. sanguinis, which consequently increased the biomass of P. gingivalis in tri-species biofilms. Collectively, these findings reveal that polymicrobial interactions play important roles in shaping bacterial community in biofilm. The existence of catalase producers may support the colonization of pathogens vulnerable to H2O2, in the oral cavity. The catalase may be a potential drug target to aid in the prevention of periodontitis.
Collapse
|
12
|
Phillips PL, Reyes L, Sampson EM, Murrell EA, Whitlock JA, Progulske-Fox A. Deletion of a conserved transcript PG_RS02100 expressed during logarithmic growth in Porphyromonas gingivalis results in hyperpigmentation and increased tolerance to oxidative stress. PLoS One 2018; 13:e0207295. [PMID: 30419070 PMCID: PMC6231650 DOI: 10.1371/journal.pone.0207295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023] Open
Abstract
The oral obligate anaerobe Porphyromonas gingivalis possesses a small conserved transcript PG_RS02100 of unknown function we previously identified using small RNA-seq analysis as expressed during logarithmic growth. In this study, we sought to determine if PG_RS02100 plays a role in P. gingivalis growth or stress response. We show that a PG_RS02100 deletion mutant’s (W83Δ514) ability to grow under anaerobic conditions was no different than wildtype (W83), but it was better able to survive hydrogen peroxide exposure when cultured under heme limiting growth conditions, and was more aerotolerant when plated on enriched whole blood agar and exposed to atmospheric oxygen. Together, these results indicate that PG_RS02100 plays a role in surviving oxidative stress in actively growing P. gingivalis and that P. gingivalis’ response to exogenous hydrogen peroxide stress is linked to heme availability. Relative qRT-PCR expression analysis of oxyR, trx-1, tpx, sodB, ahpC, dinF, cydB, and frd, in W83Δ514 and W83 in response to 1 h exogenous dioxygen or hydrogen peroxide exposure, when cultured with varying heme availability, support our phenotypic evidence that W83Δ514 has a more highly primed defense system against exogenous peroxide, dioxygen, and heme generated ROS. Interestingly, W83Δ514 turned black faster than W83 when cultured on whole blood agar, suggesting it was able to accumulate heme more rapidly. The mechanism of increased heme acquisition observed in W83Δ514 is not yet known. However, it is clear that PG_RS02100 is involved in modulating the P. gingivalis cell surface in a manner related to survival, particularly against oxidative stress.
Collapse
Affiliation(s)
- Priscilla L. Phillips
- Department of Microbiology and Immunology, A.T Still University of Health Sciences, Kirksville, Missouri, United States of America
- * E-mail: (PLP); (APF)
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Edith M. Sampson
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Evan A. Murrell
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Joan A. Whitlock
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Ann Progulske-Fox
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (PLP); (APF)
| |
Collapse
|
13
|
Xia X, Wu S, Li L, Xu B, Wang G. The Cytochrome bd Complex Is Essential for Chromate and Sulfide Resistance and Is Regulated by a GbsR-Type Regulator, CydE, in Alishewanella Sp. WH16-1. Front Microbiol 2018; 9:1849. [PMID: 30147685 PMCID: PMC6096048 DOI: 10.3389/fmicb.2018.01849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfate-reducing bacteria are a group of microorganisms that use sulfate as an electron acceptor. These bacteria are useful in the bioremediation of heavy metal pollution since they can reduce/precipitate metals. Previously, we identified the Alishewanella strain WH16-1 from soil of a copper and iron mine and determined that it can reduce sulfate and chromate and that it was tolerant to many heavy metals. In this study, we investigated the chromate reduction mechanism of strain WH16-1 through Tn5 transposon mutagenesis. A cytochrome bd (cytbd) Tn5 mutant was generated (Δcytbd), and a detail analysis showed that the following: (1) gene cydE (coding for a GbsR-type regulator) was co-transcribed with the two subunits coding genes of the Cytochrome bd complex (Cytbd), namely, cydA and cydB, based on RT-PCR analysis, and similar gene arrangements were also found in other Alteromonadaceae family strains; (2) the chromate resistance level was dramatically decreased and chromate reduction efficiency also decreased in strain Δcytbd compared to the wild-type and a complemented strain (Δcytbd-C); (3) Cytbd could catalyze the decomposition of H2O2 according to the analyses of H2O2 decomposition ability, cellular H2O2 contents, H2O2 inhibition zone, and H2O2 sensitivity tests; (4) surprisingly, chromate was not an inducer of the expression of Cytbd, but sulfate induced expression of Cytbd, and sulfate/sulfide resistance levels were also decreased in the Δcytbd strain; (5) the addition of sulfate enhanced the chromate resistance level and reduction efficiency; (6) Cytbd expression was repressed by CydE and derepressed by sulfate based on an in vivo bacterial one hybrid system and in vitro EMSA tests; and (7) DNA footprinting and short-fragment EMSA tests revealed two binding sites of CydE in its promoter region. All these results showed that Cytbd is negatively regulated by CydE and derepressed by sulfate. In addition, Cytbd contributes to the resistance of sulfate and sulfide, and sulfide could be used as a reductant to reduce chromate. Moreover, Cytbd is essential to decompose H2O2 to decrease cellular oxidative stress. Thus, the regulation and function of Cytbd may explain why sulfate could enhance chromate reduction.
Collapse
Affiliation(s)
- Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Biao Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Pourhajibagher M, Ghorbanzadeh R, Bahador A. Expression patterns of oxyR induced by oxidative stress from Porphyromonas gingivalis in response to photo-activated disinfection. Infect Drug Resist 2018; 11:717-725. [PMID: 29805265 PMCID: PMC5960254 DOI: 10.2147/idr.s152834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Porphyromonas gingivalis, an important endodontic pathogen, may be exposed to sublethal doses of photo-activated disinfection (sPAD) during root canal therapy. Such an exposure can affect bacterial survival and virulence features. In this study, we evaluated the effect of sPAD-related oxidative stresses on the expression of oxidative stress response gene (oxyR) in P. gingivalis clinical isolates surviving in vitro photodynamic treatment. Materials and methods To determine the sPAD, 16 clinical P. gingivalis isolates photosensitized with toluidine blue O (TBO), methylene blue (MB), and indocyanine green (ICG) were irradiated with specific wavelength and energy density of diode laser corresponding to the photosensitizers following bacterial viability measurements. The effects of sPAD on the expression ratio of oxyR of 16 clinical P. gingivalis isolates were then assessed using quantitative real-time PCR (qRT-PCR) assay. Results Maximum values of sPAD against P. gingivalis were 6.25, 15.6, and 25 μg/mL at fluencies of 171.87, 15.6, and 93.75 J/cm2, respectively, for TBO-, ICG-, and MB-sPAD (P>0.05). ICG-, MB-, and TBO-sPAD could increase the oxyR gene expression of the clinical P. gingivalis isolates 12.3-, 5.6-, and 8.5-fold, respectively. ICG-sPAD increased the expression of oxyR gene in clinical isolates of P. gingivalis ~1.5- and 2-fold higher than TBO- and MB-sPAD, respectively. Conclusion Our results showed that upregulation of oxyR during sPAD may lead to better survival and increased pathogenicity of P. gingivalis isolates. Therefore, selection of appropriate photo-activated disinfection dosage should be considered for the successful treatment of endodontic infection.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Laser Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Martin B, Mahé F. [Mathematic modeling: a tool for investigation of bacterial interactions in biofilms]. Med Sci (Paris) 2017; 33:1035-1038. [PMID: 29261487 DOI: 10.1051/medsci/20173312006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bénédicte Martin
- Inserm U1241 Nutrition, métabolismes et cancer (NuMeCan) - Équipe Contrôle du métabolisme du fer et maladies associées au fer (CIMIAD), Université de Rennes 1-2, avenue du professeur Léon Bernard, 35043 Rennes, France
| | - Fabrice Mahé
- Institut de recherche mathématique de Rennes CNRS, Université de Rennes 1, 263, avenue du général Leclerc, 35042 Rennes, France
| |
Collapse
|
16
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|
17
|
Correction: The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance. PLoS One 2015; 10:e0145804. [PMID: 26690573 PMCID: PMC4686963 DOI: 10.1371/journal.pone.0145804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|