1
|
Dillon MN, Dickey AN, Roberts RB, Betz JA, Mousseau TA, Kleiman NJ, Breen M. Is increased mutation driving genetic diversity in dogs within the Chornobyl exclusion zone? PLoS One 2024; 19:e0315244. [PMID: 39729458 DOI: 10.1371/journal.pone.0315244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Environmental contamination can have lasting impacts on surrounding communities, though the long-term impacts can be difficult to ascertain. The disaster at the Chornobyl Nuclear Power Plant in 1986 and subsequent remediation efforts resulted in contamination of the local environment with radioactive material, heavy metals, and additional environmental toxicants. Many of these are mutagenic in nature, and the full effect of these exposures on local flora and fauna has yet to be understood. Several hundred free-roaming dogs occupy the contaminated area surrounding the Chornobyl Nuclear Power Plant, and previous studies have highlighted a striking level of genetic differentiation between two geographically close populations of these dogs. With this work, we investigate mutation as a possible driver of this genetic differentiation. First, we consider large-scale mutation by assessing the karyotypic architecture of these dogs. We then search for evidence of mutation through short tandem repeat/microsatellite diversity analyses and by calculating the proportion of recently derived alleles in individuals in both populations. Through these analyses, we do not find evidence of differential mutation accumulation for these populations. Thus, we find no evidence that an increased mutation rate is driving the genetic differentiation between these two Chornobyl populations. The dog populations at Chornobyl present a unique opportunity for studying the genetic effects of the long-term exposures they have encountered, and this study expands and builds on previous work done in the area.
Collapse
Affiliation(s)
- Megan N Dillon
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America
| | - Reade B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Jennifer A Betz
- Visiting Veterinarians International, Damascus, OR, United States of America
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States of America
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States of America
- Cancer Genetics, UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
- Duke Cancer Institute, Duke University, Durham, NC, United States of America
| |
Collapse
|
2
|
Pannkuk EL, Laiakis EC, Garty G, Ponnaiya B, Wu X, Shuryak I, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Variable Dose Rates in Realistic Radiation Exposures: Effects on Small Molecule Markers of Ionizing Radiation in the Murine Model. Radiat Res 2023; 200:1-12. [PMID: 37212727 PMCID: PMC10410530 DOI: 10.1667/rade-22-00211.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Novel biodosimetry assays for use in preparedness and response to potential malicious attacks or nuclear accidents would ideally provide accurate dose reconstruction independent of the idiosyncrasies of a complex exposure to ionizing radiation. Complex exposures will consist of dose rates spanning the low dose rates (LDR) to very high-dose rates (VHDR) that need to be tested for assay validation. Here, we investigate how a range of relevant dose rates affect metabolomic dose reconstruction at potentially lethal radiation exposures (8 Gy in mice) from an initial blast or subsequent fallout exposures compared to zero or sublethal exposures (0 or 3 Gy in mice) in the first 2 days, which corresponds to an integral time individuals will reach medical facilities after a radiological emergency. Biofluids (urine and serum) were collected from both male and female 9-10-week-old C57BL/6 mice at 1 and 2 days postirradiation (total doses of 0, 3 or 8 Gy) after a VHDR of 7 Gy/s. Additionally, samples were collected after a 2-day exposure consisting of a declining dose rate (1 to 0.004 Gy/min) recapitulating the 7:10 rule-of-thumb time dependency of nuclear fallout. Overall similar perturbations were observed in both urine and serum metabolite concentrations irrespective of sex or dose rate, with the exception of xanthurenic acid in urine (female specific) and taurine in serum (VHDR specific). In urine, we developed identical multiplex metabolite panels (N6, N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, and taurine) that could identify individuals receiving potentially lethal levels of radiation from the zero or sublethal cohorts with excellent sensitivity and specificity, with creatine increasing model performance at day 1. In serum, individuals receiving a 3 or 8 Gy exposure could be identified from their pre-irradiation samples with excellent sensitivity and specificity, however, due to a lower dose response the 3 vs. 8 Gy groups could not be distinguished from each other. Together with previous results, these data indicate that dose-rate-independent small molecule fingerprints have potential in novel biodosimetry assays.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| | - Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| |
Collapse
|
3
|
Shuryak I, Nemzow L, Bacon BA, Taveras M, Wu X, Deoli N, Ponnaiya B, Garty G, Brenner DJ, Turner HC. Machine learning approach for quantitative biodosimetry of partial-body or total-body radiation exposures by combining radiation-responsive biomarkers. Sci Rep 2023; 13:949. [PMID: 36653416 PMCID: PMC9849198 DOI: 10.1038/s41598-023-28130-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
During a large-scale radiological event such as an improvised nuclear device detonation, many survivors will be shielded from radiation by environmental objects, and experience only partial-body irradiation (PBI), which has different consequences, compared with total-body irradiation (TBI). In this study, we tested the hypothesis that applying machine learning to a combination of radiation-responsive biomarkers (ACTN1, DDB2, FDXR) and B and T cell counts will quantify and distinguish between PBI and TBI exposures. Adult C57BL/6 mice of both sexes were exposed to 0, 2.0-2.5 or 5.0 Gy of half-body PBI or TBI. The random forest (RF) algorithm trained on ½ of the data reconstructed the radiation dose on the remaining testing portion of the data with mean absolute error of 0.749 Gy and reconstructed the product of dose and exposure status (defined as 1.0 × Dose for TBI and 0.5 × Dose for PBI) with MAE of 0.472 Gy. Among irradiated samples, PBI could be distinguished from TBI: ROC curve AUC = 0.944 (95% CI: 0.844-1.0). Mouse sex did not significantly affect dose reconstruction. These results support the hypothesis that combinations of protein biomarkers and blood cell counts can complement existing methods for biodosimetry of PBI and TBI exposures.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA.
| | - Leah Nemzow
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Bezalel A Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
4
|
Pannkuk EL, Laiakis EC, Girgis M, Garty GY, Morton SR, Pujol-Canadell M, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator. J Proteome Res 2021; 20:5145-5155. [PMID: 34585931 DOI: 10.1021/acs.jproteome.1c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important component of ionizing radiation (IR) exposure after a radiological incident may include low-dose rate (LDR) exposures either externally or internally, such as from 137Cs deposition. In this study, a novel irradiation system, VAriable Dose-rate External 137Cs irradiatoR (VADER), was used to expose male and female mice to a variable LDR irradiation over a 30 d time span to simulate fall-out-type exposures in addition to biofluid collection from a reference dose rate (0.8 Gy/min). Radiation markers were identified by untargeted metabolomics and random forests. Mice exposed to LDR exposures were successfully identified from control groups based on their urine and serum metabolite profiles. In addition to metabolites commonly perturbed after IR exposure, we identified and validated a novel metabolite (hexosamine-valine-isoleucine-OH) that increased up to 150-fold after LDR and 80-fold after conventional exposures in urine. A multiplex panel consisting of hexosamine-valine-isoleucine-OH with other urinary metabolites (N6,N6,N6-trimethyllysine, carnitine, 1-methylnicotinamide, and α-ketoglutaric acid) achieved robust classification performance using receiver operating characteristic curve analysis, irrespective of the dose rate or sex. These results show that in terms of biodosimetry, dysregulated energy metabolism is associated with IR exposure for both LDR and conventional IR exposures. These mass spectrometry data have been deposited to the NIH data repository via Metabolomics Workbench with study IDs ST001790, ST001791, ST001792, ST001793, and ST001806.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Evagelia C Laiakis
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Michael Girgis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Guy Y Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10032, United States.,Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shad R Morton
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Albert J Fornace
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
5
|
Laggner M, Gugerell A, Copic D, Jeitler M, Springer M, Peterbauer A, Kremslehner C, Filzwieser-Narzt M, Gruber F, Madlener S, Erb M, Widder J, Lechner W, Georg D, Mildner M, Ankersmit HJ. Comparing the efficacy of γ- and electron-irradiation of PBMCs to promote secretion of paracrine, regenerative factors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:14-27. [PMID: 33768126 PMCID: PMC7960502 DOI: 10.1016/j.omtm.2021.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Cell-free secretomes represent a promising new therapeutic avenue in regenerative medicine, and γ-irradiation of human peripheral blood mononuclear cells (PBMCs) has been shown to promote the release of paracrine factors with high regenerative potential. Recently, the use of alternative irradiation sources, such as artificially generated β- or electron-irradiation, is encouraged by authorities. Since the effect of the less hazardous electron-radiation on the production and functions of paracrine factors has not been tested so far, we compared the effects of γ- and electron-irradiation on PBMCs and determined the efficacy of both radiation sources for producing regenerative secretomes. Exposure to 60 Gy γ-rays from a radioactive nuclide and 60 Gy electron-irradiation provided by a linear accelerator comparably induced cell death and DNA damage. The transcriptional landscapes of PBMCs exposed to either radiation source shared a high degree of similarity. Secretion patterns of proteins, lipids, and extracellular vesicles displayed similar profiles after γ- and electron-irradiation. Lastly, we detected comparable biological activities in functional assays reflecting the regenerative potential of the secretomes. Taken together, we were able to demonstrate that electron-irradiation is an effective, alternative radiation source for producing therapeutic, cell-free secretomes. Our study paves the way for future clinical trials employing secretomes generated with electron-irradiation in tissue-regenerative medicine.
Collapse
Affiliation(s)
- Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| | - Alfred Gugerell
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| | - Dragan Copic
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| | - Markus Jeitler
- Core Facility Genomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Springer
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| | - Anja Peterbauer
- Austrian Red Cross Blood Transfusion Service of Upper Austria, 4020 Linz, Austria
| | - Christopher Kremslehner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, 1090 Vienna, Austria
| | - Manuel Filzwieser-Narzt
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, 1090 Vienna, Austria
| | - Sibylle Madlener
- Molecular Neuro-Oncology, Department of Pediatrics and Adolescent Medicine, and Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria.,Comprehensive Cancer Center of the Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Erb
- SYNLAB Analytics and Services Switzerland AG, 4127 Birsfelden, Switzerland
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Lechner
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| |
Collapse
|
6
|
Garty G, Xu Y, Johnson GW, Smilenov LB, Joseph SK, Pujol-Canadell M, Turner HC, Ghandhi SA, Wang Q, Shih R, Morton RC, Cuniberti DE, Morton SR, Bueno-Beti C, Morgan TL, Caracappa PF, Laiakis EC, Fornace AJ, Amundson SA, Brenner DJ. VADER: a variable dose-rate external 137Cs irradiator for internal emitter and low dose rate studies. Sci Rep 2020; 10:19899. [PMID: 33199728 PMCID: PMC7670416 DOI: 10.1038/s41598-020-76941-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022] Open
Abstract
In the long term, 137Cs is probably the most biologically important agent released in many accidental (or malicious) radiation disasters. It can enter the food chain, and be consumed, or, if present in the environment (e.g. from fallout), can provide external irradiation over prolonged times. In either case, due to the high penetration of the energetic γ rays emitted by 137Cs, the individual will be exposed to a low dose rate, uniform, whole body, irradiation. The VADER (VAriable Dose-rate External 137Cs irradiatoR) allows modeling these exposures, bypassing many of the problems inherent in internal emitter studies. Making use of discarded 137Cs brachytherapy seeds, the VADER can provide varying low dose rate irradiations at dose rates of 0.1 to 1.2 Gy/day. The VADER includes a mouse "hotel", designed to allow long term simultaneous residency of up to 15 mice. Two source platters containing ~ 250 mCi each of 137Cs brachytherapy seeds are mounted above and below the "hotel" and can be moved under computer control to provide constant low dose rate or a varying dose rate mimicking 137Cs biokinetics in mouse or man. We present the VADER design and characterization of its performance over 18 months of use.
Collapse
Affiliation(s)
- Guy Garty
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA.
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA.
| | - Yanping Xu
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
| | - Gary W Johnson
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Lubomir B Smilenov
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Simon K Joseph
- David A. Gardner PET Imaging Research Center, Columbia University, New York, NY, 10032, USA
| | | | - Helen C Turner
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Qi Wang
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Rompin Shih
- Department of Radiation Oncology, Columbia University, New York, NY, 10032, USA
| | - Robert C Morton
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - David E Cuniberti
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Shad R Morton
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Carlos Bueno-Beti
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Thomas L Morgan
- Environmental Health and Safety, Columbia University, New York, NY, 10032, USA
| | - Peter F Caracappa
- Environmental Health and Safety, Columbia University, New York, NY, 10032, USA
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC, 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC, 20057, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
7
|
Shuryak I, Ghandhi SA, Turner HC, Weber W, Melo D, Amundson SA, Brenner DJ. Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure from 137Cs. Part 2: Integration of Gamma-H2AX and Gene Expression Biomarkers for Retrospective Radiation Biodosimetry. Radiat Res 2020; 196:491-500. [PMID: 33064820 PMCID: PMC8944909 DOI: 10.1667/rade-20-00042.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/13/2020] [Indexed: 11/03/2022]
Abstract
Inhalation and ingestion of 137Cs and other long-lived radionuclides can occur after large-scale accidental or malicious radioactive contamination incidents, resulting in a complex temporal pattern of radiation dose/dose rate, influenced by radionuclide pharmacokinetics and chemical properties. High-throughput radiation biodosimetry techniques for such internal exposure are needed to assess potential risks of short-term toxicity and delayed effects (e.g., carcinogenesis) for exposed individuals. Previously, we used γ-H2AX to reconstruct injected 137Cs activity in experimentally-exposed mice, and converted activity values into radiation doses based on time since injection and 137Cs-elimination kinetics. In the current study, we sought to assess the feasibility and possible advantages of combining γ-H2AX with transcriptomics to improve 137Cs activity reconstructions. We selected five genes (Atf5, Hist2h2aa2, Olfr358, Psrc1, Hist2h2ac) with strong statistically-significant Spearman's correlations with injected activity and stable expression over time after 137Cs injection. The geometric mean of log-transformed signals of these five genes, combined with γ-H2AX fluorescence, were used as predictors in a nonlinear model for reconstructing injected 137Cs activity. The coefficient of determination (R2) comparing actual and reconstructed activities was 0.91 and root mean squared error (RMSE) was 0.95 MBq. These metrics remained stable when the model was fitted to a randomly-selected half of the data and tested on the other half, repeated 100 times. Model performance was significantly better when compared to our previous analysis using γ-H2AX alone, and when compared to an analysis where genes are used without γ-H2AX, suggesting that integrating γ-H2AX with gene expression provides an important advantage. Our findings show a proof of principle that integration of radiation-responsive biomarkers from different fields is promising for radiation biodosimetry of internal emitters.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, New Mexico, 87108
| | | | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
8
|
Ghandhi SA, Sima C, Weber WM, Melo DR, Rudqvist N, Morton SR, Turner HC, Amundson SA. Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure to 137Cs. Part 1: Global Transcriptomic Responses in Blood. Radiat Res 2020; 196:478-490. [PMID: 32931585 PMCID: PMC8864709 DOI: 10.1667/rade-20-00041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/18/2020] [Indexed: 11/03/2022]
Abstract
Internal contamination by radionuclides may constitute a major source of exposure and biological damage after radiation accidents and potentially in a dirty bomb or improvised nuclear device scenario. We injected male C57BL/6 mice with radiolabeled cesium chloride solution (137CsCl) to evaluate the biological effects of varying cumulative doses and dose rates in a two-week study. Injection activities of 137CsCl were 5.71, 6.78, 7.67 and 9.29 MBq, calculated to achieve a target dose of 4 Gy at days 14, 7, 5 and 3, respectively. We collected whole blood samples at days 2, 3, 5, 7 and 14 so that we can publish the issue in Decemberfrom all injection groups and measured gene expression using Agilent Mouse Whole Genome microarrays. We identified both dose-rate-independent and dose-rate-dependent gene expression responses in the time series. Gene Ontology analysis indicated a rapid and persistent immune response to the chronic low-dose-rate irradiation, consistent with depletion of radiosensitive B cells. Pathways impacting platelet aggregation and TP53 signaling appeared activated, but not consistently at all times in the study. Clustering of genes by pattern and identification of dose-rate-independent and -dependent genes provided insight into possible drivers of the dynamic transcriptome response in vivo, and also indicated that TP53 signaling may be upstream of very different transcript response patterns. This characterization of the biological response of blood cells to internal radiation at varying doses and dose rates is an important step in understanding the effects of internal contamination after a nuclear event.
Collapse
Affiliation(s)
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77845
| | - Waylon M. Weber
- The Lovelace Biomedical Research Institute, Albuquerque, New Mexico 87108
| | - Dunstana R. Melo
- The Lovelace Biomedical Research Institute, Albuquerque, New Mexico 87108
| | - Nils Rudqvist
- Columbia University Irving Medical Center, New York, New York 10032
| | - Shad R. Morton
- Columbia University Irving Medical Center, New York, New York 10032
| | - Helen C. Turner
- Columbia University Irving Medical Center, New York, New York 10032
| | | |
Collapse
|
9
|
Serum Metabolomic Alterations Associated with Cesium-137 Internal Emitter Delivered in Various Dose Rates. Metabolites 2020; 10:metabo10070270. [PMID: 32629836 PMCID: PMC7407308 DOI: 10.3390/metabo10070270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Our laboratory and others have use radiation metabolomics to assess responses in order to develop biomarkers reflecting exposure and level of injury. To expand the types of exposure and compare to previously published results, metabolomic analysis has been carried out using serum samples from mice exposed to 137Cs internal emitters. Animals were injected intraperitoneally with 137CsCl solutions of varying radioactivity, and the absorbed doses were calculated. To determine the dose rate effect, serum samples were collected at 2, 3, 5, 7, and 14 days after injection. Based on the time for each group receiving the cumulative dose of 4 Gy, the dose rate for each group was determined. The dose rates analyzed were 0.16 Gy/day (low), 0.69 Gy/day (medium), and 1.25 Gy/day (high). The results indicated that at a cumulative dose of 4 Gy, the low dose rate group had the least number of statistically significantly differential spectral features. Some identified metabolites showed common changes for different dose rates. For example, significantly altered levels of oleamide and sphingosine 1-phosphate were seen in all three groups. On the other hand, the intensity of three amino acids, Isoleucine, Phenylalanine and Arginine, significantly decreased only in the medium dose rate group. These findings have the potential to be used in assessing the exposure and the biological effects of internal emitters.
Collapse
|
10
|
Wang Q, Pujol-Canadell M, Taveras M, Garty G, Perrier J, Bueno-Beti C, Shuryak I, Brenner DJ, Turner HC. DNA damage response in peripheral mouse blood leukocytes in vivo after variable, low-dose rate exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:89-98. [PMID: 31897603 PMCID: PMC7441378 DOI: 10.1007/s00411-019-00825-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/08/2019] [Indexed: 05/03/2023]
Abstract
Environmental contamination and ingestion of the radionuclide Cesium-137 (137Cs) is a large concern in fallout from a nuclear reactor accident or improvised nuclear device, and highlights the need to develop biological assays for low-dose rate, internal emitter radiation. To mimic low-dose rates attributable to fallout, we have developed a VAriable Dose-rate External 137Cs irradiatoR (VADER), which can provide arbitrarily varying and progressive low-dose rate irradiations in the range of 0.1-1.2 Gy/day, while circumventing the complexities of dealing with radioactively contaminated biomaterials. We investigated the kinetics of mouse peripheral leukocytes DNA damage response in vivo after variable, low-dose rate 137Cs exposure. C57BL/6 mice were placed in the VADER over 7 days with total accumulated dose up to 2.7 Gy. Peripheral blood response including the leukocyte depletion, apoptosis as well as its signal protein p53 and DNA repair biomarker γ-H2AX was measured. The results illustrated that blood leukocyte numbers had significantly dropped by day 7. P53 levels peaked at day 2 (total dose = 0.91 Gy) and then declined; whereas, γ-H2AX fluorescence intensity (MFI) and foci number generally increased with accumulated dose and peaked at day 5 (total dose = 2.08 Gy). ROC curve analysis for γ-H2AX provided a good discrimination of accumulated dose < 2 Gy and ≥ 2 Gy, highlighting the potential of γ-H2AX MFI as a biomarker for dosimetry in a protracted, environmental exposure scenario.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jay Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Carlos Bueno-Beti
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
11
|
Kultova G, Tichy A, Rehulkova H, Myslivcova-Fucikova A. The hunt for radiation biomarkers: current situation. Int J Radiat Biol 2020; 96:370-382. [PMID: 31829779 DOI: 10.1080/09553002.2020.1704909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose: The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide a rapid assessment of the doses received by individuals using high-throughput technologies. There is also a great interest in developing new biomarkers of dose exposure, which could be used in large molecular epidemiological studies in order to correlate estimated doses received and health effects. The goal of this review was to summarize current literature focused on biological dosimetry, namely radiation-responsive biomarkers.Methods: The studies involved in this review were thoroughly selected according to the determined criteria and PRISMA guidelines.Results: We described briefly recent advances in radiation genomics and metabolomics, giving particular emphasis to proteomic analysis. The majority of studies were performed on animal models (rats, mice, and non-human primates). They have provided much beneficial information, but the most relevant tests have been done on human (oncological) patients. By inspecting the radiaiton biodosimetry literate of the last 10 years, we identified a panel of candidate markers for each -omic approach involved.Conslusions: We reviewed different methodological approaches and various biological materials, which can be exploited for dose-effect prediction. The protein biomarkers from human plasma are ideal for this specific purpose. From a plethora of candidate markers, FDXR is a very promising transcriptomic candidate, and importantly this biomarker was also confirmed by some studies at protein level in humans.
Collapse
Affiliation(s)
- Gabriela Kultova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.,Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Helena Rehulkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alena Myslivcova-Fucikova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Turner HC, Lee Y, Weber W, Melo D, Kowell A, Ghandhi SA, Amundson SA, Brenner DJ, Shuryak I. Effect of dose and dose rate on temporal γ-H2AX kinetics in mouse blood and spleen mononuclear cells in vivo following Cesium-137 administration. BMC Mol Cell Biol 2019; 20:13. [PMID: 31138230 PMCID: PMC6540459 DOI: 10.1186/s12860-019-0195-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Background Cesium-137 (137Cs) is one of the major and most clinically relevant radionuclides of concern in a radiological dispersal device, “dirty bomb” scenario as well as in nuclear accidents and detonations. In this exposure scenario, a significant amount of soluble radionuclide(s) may be dispersed into the atmosphere as a component of fallout. The objectives of the present study were to investigate the effect of protracted 137Cs radionuclide exposures on DNA damage in mouse blood and spleen mononuclear cells (MNCs) in vivo using the γ-H2AX biomarker, and to develop a mathematical formalism for these processes. Results C57BL/6 mice were injected with a range of 137CsCl activities (5.74, 6.66, 7.65 and 9.28 MBq) to achieve total-body committed doses of ~ 4 Gy at Days 3, 5, 7, and 14. Close to 50% of 137Cs was excreted by day 5, leading to a slower rate of decay for the remaining time of the study; 137Cs excretion kinetics were independent of activity level within the tested range, and the absorbed radiation dose was determined by injected activity and time after injection. Measurements of γ-H2AX fluorescence in blood and spleen MNCs at each time point were used to develop a new biodosimetric mathematical formalism to estimate injected activity based on γ-H2AX fluorescence and time after injection. The formalism performed reasonably well on blood data at 2–5 days after injection: Pearson and Spearman’s correlation coefficients between actual and predicted activity values were 0.857 (p = 0.00659) and 0.929 (p = 0.00223), respectively. Conclusions Despite the complicated nature of the studied biological system and the time-dependent changes in radiation dose and dose rate due to radionuclide excretion and other processes, we have used the γ-H2AX repair kinetics to develop a mathematical formalism, which can relatively accurately predict injected 137Cs activity 2–5 days after initial exposure. To determine the assay’s usefulness to predict retrospective absorbed dose for medical triage, further studies are required to validate the sensitivity and accuracy of the γ-H2AX response after protracted exposures. Electronic supplementary material The online version of this article (10.1186/s12860-019-0195-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, NM, 87108, USA
| | | | - Aimee Kowell
- Lovelace Biomedical, Albuquerque, NM, 87108, USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
13
|
Garty G, Turner HC, Salerno A, Bertucci A, Zhang J, Chen Y, Dutta A, Sharma P, Bian D, Taveras M, Wang H, Bhatla A, Balajee A, Bigelow AW, Repin M, Lyulko OV, Simaan N, Yao YL, Brenner DJ. THE DECADE OF THE RABiT (2005-15). RADIATION PROTECTION DOSIMETRY 2016; 172:201-206. [PMID: 27412510 PMCID: PMC5225976 DOI: 10.1093/rpd/ncw172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with 'off the shelf' systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell::explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies.
Collapse
Affiliation(s)
- G Garty
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - H C Turner
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - A Salerno
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Pratt & Whitney Canada Corp., 1000 Marie-Victorin, Longueil, QC, Canada J4G 1A1
| | - A Bertucci
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - J Zhang
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Auris Surgical Robotics Inc., 125 Shoreway Rd, San Carlos, CA 94070, USA
| | - Y Chen
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - A Dutta
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
- Present address: BioReliance Corp., 9630 Medical Center Dr, Rockville, MD 20850, USA
| | - P Sharma
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - D Bian
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - M Taveras
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - H Wang
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: General Motors Co., 30500 Mound Road, Warren, MI 48090, USA
| | - A Bhatla
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Curiosity Lab Inc., 54 Mallard Pl. Secaucus, NJ, 07094, USA
| | - A Balajee
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
- Present address: Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Building SC-10, 1299, Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - A W Bigelow
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - M Repin
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - O V Lyulko
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - N Simaan
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Department of Mechanical Engineering, Vanderbuilt University, PMB 351592, Nashville, TN, 37235, USA
| | - Y L Yao
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - D J Brenner
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|