1
|
Dai Q, Xu T, Li Y, Sun Y, Lin Y, Yahagi T, Perez M, Qian PY, Qiu JW. Comparative Population Genetics of Two Alvinocaridid Shrimp Species in Chemosynthetic Ecosystems of the Western Pacific. Integr Zool 2025. [PMID: 39870578 DOI: 10.1111/1749-4877.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025]
Abstract
Deep-sea shrimps from the family Alvinocarididae are prominent inhabitants of chemosynthesis-based habitats worldwide. However, their genetic diversity and population connectivity remain poorly understood due to limited sampling. To fill these knowledge gaps, we compared the population genetics of two vent- and seep-dwelling alvinocaridid species with overlapped geographic ranges between the South China Sea and the Manus Basin. Alvinocaris longirostris has a wider distribution, ranging from 35°N to 3°S and at depths of 930 to 1736 m, while Alvinocaris kexueae is more restricted, found between 16°N and 3°S at depths of 1300 to 1910 m. Our analysis, based on the mitochondrial cytochrome c oxidase subunit 1 gene, revealed that A. longirostris had lower genetic diversity and minimal genetic differentiation across eight disjoint vent and seep populations. In contrast, the narrower-distributed A. kexueae exhibited higher genetic diversity and significant genetic differentiation, with stronger gene flow observed from its Haima seep population to the Manus Basin vent population. In addition, both species appear to have experienced population expansion in their recent evolutionary history. These results suggest that A. longirostris and A. kexueae may possess distinct life-history traits that contribute to their differing distribution ranges in the Western Pacific.
Collapse
Affiliation(s)
- Qi Dai
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yixuan Li
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yitao Lin
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Takuya Yahagi
- Department of Marine Ecosystem Science, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Maeva Perez
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
2
|
Guéganton M, Methou P, Aubé J, Noël C, Rouxel O, Cueff‐Gauchard V, Gayet N, Durand L, Pradillon F, Cambon‐Bonavita M. Symbiont Acquisition Strategies in Post-Settlement Stages of Two Co-Occurring Deep-Sea Rimicaris Shrimp. Ecol Evol 2024; 14:e70369. [PMID: 39568770 PMCID: PMC11576329 DOI: 10.1002/ece3.70369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024] Open
Abstract
At deep-sea hydrothermal vents, deprived of light, most living communities are fueled by chemosynthetic microorganisms. These can form symbiotic associations with metazoan hosts, which are then called holobionts. Among these, two endemic co-occurring shrimp of the Mid-Atlantic Ridge (MAR), Rimicaris exoculata and Rimicaris chacei are colonized by dense and diversified chemosynthetic symbiotic communities in their cephalothoracic cavity and their digestive system. Although both shrimp harbor similar communities, they exhibit widely different population densities, distribution patterns at small scale and diet, as well as differences in post-settlement morphological modifications leading to the adult stage. These contrasting biological traits may be linked to their symbiotic development success. Consequently, key questions related to the acquisition of the symbiotic communities and the development of the three symbiotic organs are still open. Here we examined symbiotic development in juveniles of R. exoculata and R. chacei from TAG and Snake Pit using 16S metabarcoding to identify which symbiotic lineages are present at each juvenile stage. In addition, we highlighted the abundance and distribution of microorganisms at each stage using Fluorescence in situ Hybridization (FISH) and Scanning Electron Microscopy (SEM). For the first time, Candidatus Microvillispirillaceae family with Candidatus Rimicarispirillum spp. (midgut tube), Candidatus Foregutplasma rimicarensis and Candidatus BG2-rimicarensis (foregut) were identified in late juvenile stages. However, these lineages were absent in early juvenile stages, which coincides for the midgut tube with our observations of an immature tissue, devoid of microvilli. Conversely, symbiotic lineages from the cephalothoracic cavity were present from the earliest juvenile stages of both species and their overall diversities were similar to those of adults. These results suggest different symbiont acquisition dynamics between the cephalothoracic cavity and the digestive system, which may also involve distinct transmission mechanisms.
Collapse
Affiliation(s)
- Marion Guéganton
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Pierre Methou
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Johanne Aubé
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Cyril Noël
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l'IfremerPlouzanéFrance
| | - Ouafae Rouxel
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Valérie Cueff‐Gauchard
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Nicolas Gayet
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Lucile Durand
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Florence Pradillon
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | | |
Collapse
|
3
|
Soundharapandiyan N, Rajaretinam RK, Wilson Alphonse CR. Exploring the mitochondrial genome of Caridina pseudogracilirostris: a comparative analysis within the Atyidae Family. Mol Biol Rep 2023; 50:8121-8131. [PMID: 37552391 DOI: 10.1007/s11033-023-08700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Caridina pseudogracilirostris is a highly adaptive estuarine species found in brackish waters and marshes along the southwestern and southern coastal regions of India. METHODS AND RESULTS The whole mitochondrial genome of C. pseudogracilirostris is 15,451 bp in length with 59.3% AT content and encodes 37 genes, including 22 tRNAs, 13 protein-coding genes, and two rRNAs, which are arranged in a distinctive pattern similar to most crustaceans. ML and BI methods were used for phylogenetic analysis of C. pseudogracilirostris clustered with other Caridina species, supporting the monophyly of the Caridina genus within the Atyidae family. The fully annotated mitochondrial genome of C. pseudogracilirostris was submitted to GenBank under accession number OQ534868.1. CONCLUSIONS We are the first to report on the C. pseudogracilirostris whole mitochondrial genome, which provides a valuable resource for future research on genetics, evolution, phylogenetics, etc., among Caridina species and other species. The phylogenetic investigation supports the monophyly of the Caridina genus within the Atyidae family and emphasizes the value of mitochondrial genome data in determining the evolutionary relationships among crustaceans.
Collapse
Affiliation(s)
- Nandhagopal Soundharapandiyan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Rajesh Kannan Rajaretinam
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
- School of Biological and Life Sciences, Galgotias University, Sector, 17-A, Yamuna Expressway, Gautam Buddha Nagar, National Capital Region, Greater Noida, UP, 203201, India.
| | - Carlton Ranjith Wilson Alphonse
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| |
Collapse
|
4
|
Luo JC, Zhang J, Sun L. A g-Type Lysozyme from Deep-Sea Hydrothermal Vent Shrimp Kills Selectively Gram-Negative Bacteria. Molecules 2021; 26:molecules26247624. [PMID: 34946706 PMCID: PMC8707215 DOI: 10.3390/molecules26247624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022] Open
Abstract
Lysozyme is a key effector molecule of the innate immune system in both vertebrate and invertebrate. It is classified into six types, one of which is the goose-type (g-type). To date, no study on g-type lysozyme in crustacean has been documented. Here, we report the identification and characterization of a g-type lysozyme (named LysG1) from the shrimp inhabiting a deep-sea hydrothermal vent in Manus Basin. LysG1 possesses conserved structural features of g-type lysozymes. The recombinant LysG1 (rLysG1) exhibited no muramidase activity and killed selectively Gram-negative bacteria in a manner that depended on temperature, pH, and metal ions. rLysG1 bound target bacteria via interaction with bacterial cell wall components, notably lipopolysaccharide (LPS), and induced cellular membrane permeabilization, which eventually caused cell lysis. The endotoxin-binding capacity enabled rLysG1 to alleviate the inflammatory response induced by LPS. Mutation analysis showed that the bacterial binding and killing activities of rLysG1 required the integrity of the conserved α3 and 4 helixes of the protein. Together, these results provide the first insight into the activity and working mechanism of g-type lysozyme in crustacean and deep-sea organisms.
Collapse
Affiliation(s)
- Jing-Chang Luo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai 264005, China;
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-8289-8829
| |
Collapse
|
5
|
A Mysterious World Revealed: Larval-Adult Matching of Deep-Sea Shrimps from the Gulf of Mexico. DIVERSITY 2021. [DOI: 10.3390/d13100457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The identification of deep-sea (>200 m) pelagic larvae is extremely challenging due to the morphological diversity across ontogeny and duration of larval phases. Within Decapoda, developmental stages often differ conspicuously from their adult form, representing a bizarre and mysterious world still left to be discovered. The difficulties with sampling and rearing deep-sea larvae, combined with the lack of taxonomic expertise, argues for the use of molecular methods to aid in identification. Here, we use DNA barcoding combined with morphological methods, to match larval stages with their adult counterpart from the northern Gulf of Mexico and adjacent waters. For DNA barcoding, we targeted the mitochondrial ribosomal large subunit 16S (16S) and the protein coding cytochrome oxidase subunit 1 (COI). These data were combined with previous sequences to generate phylogenetic trees that were used to identify 12 unknown larval and two juvenile species from the infraorder Caridea and the suborder Dendrobranchiata. Once identified, we provide taxonomic descriptions and illustrations alongside the current state of knowledge for all families. For many groups, larval descriptions are missing or non-existent, so this study represents a first step of many to advance deep-sea larval diversity.
Collapse
|
6
|
Wang Y, Zhang J, Sun Y, Sun L. A Crustin from Hydrothermal Vent Shrimp: Antimicrobial Activity and Mechanism. Mar Drugs 2021; 19:176. [PMID: 33807037 PMCID: PMC8005205 DOI: 10.3390/md19030176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Crustin is a type of antimicrobial peptide and plays an important role in the innate immunity of arthropods. We report here the identification and characterization of a crustin (named Crus1) from the shrimp Rimicaris sp. inhabiting the deep-sea hydrothermal vent in Manus Basin (Papua New Guinea). Crus1 shares the highest identity (51.76%) with a Type I crustin of Penaeus vannamei and possesses a whey acidic protein (WAP) domain, which contains eight cysteine residues that form the conserved 'four-disulfide core' structure. Recombinant Crus1 (rCrus1) bound to peptidoglycan and lipoteichoic acid, and effectively killed Gram-positive bacteria in a manner that was dependent on pH, temperature, and disulfide linkage. rCrus1 induced membrane leakage and structure damage in the target bacteria, but had no effect on bacterial protoplasts. Serine substitution of each of the 8 Cys residues in the WAP domain did not affect the bacterial binding capacity but completely abolished the bactericidal activity of rCrus1. These results provide new insights into the characteristic and mechanism of the antimicrobial activity of deep sea crustins.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- School of Ocean, Yantai University, Yantai 264005, China
| | - Yuanyuan Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Le Bloa S, Boidin-Wichlacz C, Cueff-Gauchard V, Rosa RD, Cuvillier-Hot V, Durand L, Methou P, Pradillon F, Cambon-Bonavita MA, Tasiemski A. Antimicrobial Peptides and Ectosymbiotic Relationships: Involvement of a Novel Type IIa Crustin in the Life Cycle of a Deep-Sea Vent Shrimp. Front Immunol 2020; 11:1511. [PMID: 32765521 PMCID: PMC7381244 DOI: 10.3389/fimmu.2020.01511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023] Open
Abstract
The symbiotic shrimp Rimicaris exoculata dominates the macrofauna inhabiting the active smokers of the deep-sea mid Atlantic ridge vent fields. We investigated the nature of the host mechanisms controlling the vital and highly specialized ectosymbiotic community confined into its cephalothoracic cavity. R. exoculata belongs to the Pleocyemata, crustacean brooding eggs, usually producing Type I crustins. Unexpectedly, a novel anti-Gram-positive type II crustin was molecularly identified in R. exoculata. Re-crustin is mainly produced by the appendages and the inner surfaces of the cephalothoracic cavity, embedding target epibionts. Symbiosis acquisition and regulating mechanisms are still poorly understood. Yet, symbiotic communities were identified at different steps of the life cycle such as brooding stage, juvenile recruitment and molt cycle, all of which may be crucial for symbiotic acquisition and control. Here, we show a spatio-temporal correlation between the production of Re-crustin and the main ectosymbiosis-related life-cycle events. Overall, our results highlight (i) a novel and unusual AMP sequence from an extremophile organism and (ii) the potential role of AMPs in the establishment of vital ectosymbiosis along the life cycle of deep-sea invertebrates.
Collapse
Affiliation(s)
- Simon Le Bloa
- Ifremer, Univ. Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Plouzané, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Valérie Cueff-Gauchard
- Ifremer, Univ. Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Plouzané, France
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Lucile Durand
- Ifremer, Univ. Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Plouzané, France
| | - Pierre Methou
- Ifremer, Univ. Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Plouzané, France
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Florence Pradillon
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Marie-Anne Cambon-Bonavita
- Ifremer, Univ. Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Plouzané, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| |
Collapse
|
8
|
Bartilotti C, Dos Santos A. The secret life of deep-sea shrimps: ecological and evolutionary clues from the larval description of Systellaspis debilis (Caridea: Oplophoridae). PeerJ 2019; 7:e7334. [PMID: 31579560 PMCID: PMC6754724 DOI: 10.7717/peerj.7334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/21/2019] [Indexed: 11/24/2022] Open
Abstract
Currently there are 21 shrimp species in the northeastern Atlantic and Mediterranean Sea which are considered to belong to the superfamily Oplophoroidea, but the larval development is unknown for most of them. The complete larval development of Systellaspis debilis (Milne-Edwards, 1881), here described and illustrated, is the first one to have been successfully reared in the laboratory, consisting of four zoeal and one decapodid stages. The zoeae were found to be fully lecithotrophic, which together with the females’ lower fecundity, are probably evolutionary consequences of the species mesopelagic habitat.
Collapse
|
9
|
Machon J, Lucas P, Ravaux J, Zbinden M. Comparison of Chemoreceptive Abilities of the Hydrothermal Shrimp Mirocaris fortunata and the Coastal Shrimp Palaemon elegans. Chem Senses 2019; 43:489-501. [PMID: 29931242 DOI: 10.1093/chemse/bjy041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemoreception might play an important role for endemic shrimp that inhabit deep and dark hydrothermal vents to find food sources and to locate active edifices that release specific chemicals. We compared the chemosensory abilities of the hydrothermal shrimp Mirocaris fortunata and the coastal related species, Palaemon elegans. The detection of diverse ecologically relevant chemical stimuli by the antennal appendages was measured with electroantennography. The 2 species can detect food-related odor and sulfide, a short-distance stimulus, via both their antennae and antennules. Neither iron nor manganese, considered as long-distance stimuli, was detected by the antennal appendages. Investigation of the ultrastructure of aesthetasc sensilla revealed no specific features of the hydrothermal species regarding innervation by olfactory sensory neurons. Pore-like structures occurring in the aesthetasc cuticle and dense bacterial covering seem to be unique to hydrothermal species, but their potential link to chemoreception remains elusive.
Collapse
Affiliation(s)
- Julia Machon
- Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, IRD, UCBN, UAG, Unité de Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Equipe Adaptations aux Milieux Extrêmes, Bâtiment A, Paris, France
| | - Philippe Lucas
- Department of Sensory Ecology, INRA, iEES-Paris, Route de Saint-Cyr, Versailles, France
| | - Juliette Ravaux
- Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, IRD, UCBN, UAG, Unité de Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Equipe Adaptations aux Milieux Extrêmes, Bâtiment A, Paris, France
| | - Magali Zbinden
- Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, IRD, UCBN, UAG, Unité de Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Equipe Adaptations aux Milieux Extrêmes, Bâtiment A, Paris, France
| |
Collapse
|
10
|
Methou P, Hernández-Ávila I, Aube J, Cueff-Gauchard V, Gayet N, Amand L, Shillito B, Pradillon F, Cambon-Bonavita MA. Is It First the Egg or the Shrimp? - Diversity and Variation in Microbial Communities Colonizing Broods of the Vent Shrimp Rimicaris exoculata During Embryonic Development. Front Microbiol 2019; 10:808. [PMID: 31057515 PMCID: PMC6478704 DOI: 10.3389/fmicb.2019.00808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/29/2019] [Indexed: 12/26/2022] Open
Abstract
Rimicaris exoculata is one of the most well-known and emblematic species of endemic vent fauna. Like many other species from these ecosystems, Rimicaris shrimps host important communities of chemosynthetic bacteria living in symbiosis with their host inside the cephalothorax and gut. For many of these symbiotic partners, the mode of transmission remains to be elucidated and the starting point of the symbiotic relationship is not yet defined, but could begin with the egg. In this study, we explored the proliferation of microbial communities on R. exoculata broods through embryonic development using a combination of NGS sequencing and microscopy approaches. Variations in abundance and diversity of egg microbial communities were analyzed in broods at different developmental stages and collected from mothers at two distinct vent fields on the Mid-Atlantic Ridge (TAG and Snake Pit). We also assessed the specificity of the egg microbiome by comparing communities developing on egg surfaces with those developing on the cuticle of pleopods, which are thought to be exposed to similar environmental conditions because the brood is held under the female's abdomen. In terms of abundance, bacterial colonization clearly increases with both egg developmental stage and the position of the egg within the brood: those closest to the exterior having a higher bacterial coverage. Bacterial biomass increase also accompanies an increase of mineral precipitations and thus clearly relates to the degree of exposure to vent fluids. In terms of diversity, most bacterial lineages were found in all samples and were also those found in the cephalothorax of adults. However, significant variation occurs in the relative abundance of these lineages, most of this variation being explained by body surface (egg vs. pleopod), vent field, and developmental stage. The occurrence of symbiont-related lineages of Epsilonbacteraeota, Gammaproteobacteria, Zetaproteobacteria, and Mollicutes provide a basis for discussion on both the acquisition of symbionts and the potential roles of these bacterial communities during egg development.
Collapse
Affiliation(s)
- Pierre Methou
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Ivan Hernández-Ávila
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Johanne Aube
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Nicolas Gayet
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Louis Amand
- Unité Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Eq. Adaptations aux Milieux Extrêmes (BOREA), CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Bruce Shillito
- Unité Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Eq. Adaptations aux Milieux Extrêmes (BOREA), CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Florence Pradillon
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | | |
Collapse
|
11
|
Gu HJ, Sun QL, Jiang S, Zhang J, Sun L. First characterization of an anti-lipopolysaccharide factor (ALF) from hydrothermal vent shrimp: Insights into the immune function of deep-sea crustacean ALF. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:382-395. [PMID: 29572135 DOI: 10.1016/j.dci.2018.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Anti-lipopolysaccharide factor (ALF) is a type of antimicrobial peptides (AMPs) with a vital role in antimicrobial defense. Although a large amount of ALFs have been identified from neritic and fresh water crustacean species, no functional investigation of ALFs from deep-sea animals have been documented. In the present study, we characterized the immune function of an ALF molecule (named RspALF1) from the shrimp Rimicaris sp. residing in the deep-sea hydrothermal vent in Desmos, Manus Basin. RspALF1 shares 51.5%-62.4% overall sequence identities with known shrimp ALFs and contains the conserved LPS binding domain (LBD). Both recombinant RspALF1 (rRspALF1) and the LBD-derived peptide (ALF1P1) bound to the cell wall components of Gram-negative and Gram-positive bacteria and killed a wide range of bacteria, especially those from deep-sea hydrothermal field, by damaging bacterial cellular structures. The bactericidal activities of rRspALF1 and ALF1P1 were optimal and stably maintained from 4 °C to 37 °C, which is comparable to the ambient temperature range of the habitat of Rimicaris sp. In addition to bacteria, rRspALF1 and ALF1P1 also exhibited anti-fungal activity. rRspALF1 and ALF1P1 exhibited high killing efficiencies, which, in terms of MIC values, were ranged between 0.25 μM and 4 μM for bacteria and 4 μM-8 μM for fungi. When introduced in vivo, both rRspALF1 and ALF1P1 effectively inhibited bacterial infection in shrimp and reduced the dissemination of bacterial and viral pathogens in fish. Together, these results provide the first insight into the biological property of deep-sea ALF and indicate that RspALF1 very likely plays a significant role in immune defense by functioning as a highly effective antimicrobial with a broad target range.
Collapse
Affiliation(s)
- Han-Jie Gu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Lei Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
12
|
Sun S, Hui M, Wang M, Sha Z. The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): Insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:42-52. [PMID: 29145028 DOI: 10.1016/j.cbd.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023]
Abstract
Deep-sea hydrothermal vent is one of the most extreme environments on Earth with low oxygen and high levels of toxins. Decapod species from the family Alvinocarididae have colonized and successfully adapted to this extremely harsh environment. Mitochondria plays a vital role in oxygen usage and energy metabolism, thus it may be under selection in the adaptive evolution of the hydrothermal vent shrimps. In this study, the mitochondrial genome (mitogenome) of alvinocaridid shrimp Shinkaicaris leurokolos (Kikuchi & Hashimoto, 2000) was determined through Illumina sequencing. The mitogenome of S. leurokolos was 15,903bp in length, containing 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. The gene order and orientation were identical to those of sequenced alvinocaridids. It has the longest concatenated sequences of protein-coding genes, tRNAs and shortest pooled rRNAs among the alvinocaridids. The control regions (CRs) of alvinocaridid were significantly longer (p<0.01) than those of the other caridaen. The alignment of the alvinocaridid CRs revealed two conserved sequence blocks (CSBs), and each of the CSBs included a noncanonical open reading frame (ORF), which may be involved in adjusting mitochondrial energy metabolism to adapt to the hydrothermal environment. Phylogenetic analysis supported that the deep-sea hydrothermal vent shrimps may have originated from those living in shallow area. Positive selection analysis reveals the evidence of adaptive change in the mitogenome of Alvinocarididae. Thirty potentially important adaptive residues were identified, which were located in atp6, cox1, cox3, cytb and nad1-5. This study explores the mitochondrial genetic basis of hydrothermal vent adaptation in alvinocaridid for the first time, and provides valuable clues regarding the adaptation.
Collapse
Affiliation(s)
- Shao'e Sun
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China
| | - Ming Hui
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China
| | - Minxiao Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China
| | - Zhongli Sha
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Liao Y, De Grave S, Ho TW, Ip BH, Tsang LM, Chan TY, Chu KH. Molecular phylogeny of Pasiphaeidae (Crustacea, Decapoda, Caridea) reveals systematic incongruence of the current classification. Mol Phylogenet Evol 2017; 115:171-180. [DOI: 10.1016/j.ympev.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|
14
|
Zhang J, Sun QL, Luan ZD, Lian C, Sun L. Comparative transcriptome analysis of Rimicaris sp. reveals novel molecular features associated with survival in deep-sea hydrothermal vent. Sci Rep 2017; 7:2000. [PMID: 28515421 PMCID: PMC5435735 DOI: 10.1038/s41598-017-02073-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Shrimp of the family Alvinocarididae are the predominant megafauna of deep-sea hydrothermal vents. However, genome information on this family is currently unavailable. In the present study, by employing Illumina sequencing, we performed the first de novo transcriptome analysis of the gills of the shrimp Rimicaris sp. from the hydrothermal vent in Desmos, Manus Basin. The analysis was conducted in a comparative manner with the shrimp taken directly from the vent (GR samples) and the shrimp that had been maintained for ten days under normal laboratory condition (mGR samples). Among the 128,938 unigenes identified, a large number of differentially expressed genes (DEGs) between the GR and mGR samples were detected, including 2365 and 1607 genes significantly upregulated and downregulated, respectively, in GR. The DEGs covered diverse functional categories. Most of the DEGs associated with immunity were downregulated in GR, while most of the DEGs associated with sulfur metabolism and detoxification were upregulated in GR. These results provide the first comprehensive transcriptomic resource for hydrothermal vent Rimicaris and revealed varied categories of genes likely involved in deep-sea survival.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qing-Lei Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhen-Dong Luan
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Lian
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|