1
|
Chalepaki AM, Gkoris M, Chondrou I, Kourti M, Georgakopoulos-Soares I, Zaravinos A. A multi-omics analysis of effector and resting treg cells in pan-cancer. Comput Biol Med 2025; 189:110021. [PMID: 40088713 DOI: 10.1016/j.compbiomed.2025.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Regulatory T cells (Tregs) are critical for maintaining the stability of the immune system and facilitating tumor escape through various mechanisms. Resting T cells are involved in cell-mediated immunity and remain in a resting state until stimulated, while effector T cells promote immune responses. Here, we investigated the roles of two gene signatures, one for resting Tregs (FOXP3 and IL2RA) and another for effector Tregs (FOXP3, CTLA-4, CCR8 and TNFRSF9) in pan-cancer. Using data from The Cancer Genome Atlas (TCGA), The Cancer Proteome Atlas (TCPA) and Gene Expression Omnibus (GEO), we focused on the expression profile of the two signatures, the existence of single nucleotide variants (SNVs) and copy number variants (CNVs), methylation, infiltration of immune cells in the tumor and sensitivity to different drugs. Our analysis revealed that both signatures are differentially expressed across different cancer types, and correlate with patient survival. Furthermore, both types of Tregs influence important pathways in cancer development and progression, like apoptosis, epithelial-to-mesenchymal transition (EMT) and the DNA damage pathway. Moreover, a positive correlation was highlighted between the expression of gene markers in both resting and effector Tregs and immune cell infiltration in adrenocortical carcinoma, while mutations in both signatures correlated with enrichment of specific immune cells, mainly in skin melanoma and endometrial cancer. In addition, we reveal the existence of widespread CNVs and hypomethylation affecting both Treg signatures in most cancer types. Last, we identified a few correlations between the expression of CCR8 and TNFRSF9 and sensitivity to several drugs, including COL-3, Chlorambucil and GSK1070916, in pan-cancer. Overall, these findings highlight new evidence that both Treg signatures are crucial regulators of cancer progression, providing potential clinical outcomes for cancer therapy.
Collapse
Affiliation(s)
- Anna-Maria Chalepaki
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Marios Gkoris
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Irene Chondrou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| |
Collapse
|
2
|
Maffeo B, Cilloni D. The Ubiquitin-Conjugating Enzyme E2 O (UBE2O) and Its Therapeutic Potential in Human Leukemias and Solid Tumors. Cancers (Basel) 2024; 16:3064. [PMID: 39272922 PMCID: PMC11394522 DOI: 10.3390/cancers16173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Protein degradation is a biological phenomenon essential for cellular homeostasis and survival. Selective protein degradation is performed by the ubiquitination system which selectively targets proteins that need to be eliminated and leads them to proteasome degradation. In this narrative review, we focus on the ubiquitin-conjugating enzyme E2 O (UBE2O) and highlight the role of UBE2O in many biological and physiological processes. We further discuss UBE2O's implications in various human diseases, particularly in leukemias and solid cancers. Ultimately, our review aims to highlight the potential role of UBE2O as a therapeutic target and offers new perspectives for developing targeted treatments for human cancers.
Collapse
Affiliation(s)
- Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
3
|
Singh K, Showalter CA, Manring HR, Haque SJ, Chakravarti A. "Oh, Dear We Are in Tribble": An Overview of the Oncogenic Functions of Tribbles 1. Cancers (Basel) 2024; 16:1889. [PMID: 38791967 PMCID: PMC11120034 DOI: 10.3390/cancers16101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pseudokinases are catalytically inactive proteins in the human genome that lack the ability to transfer phosphate from ATP to their substrates. The Tribbles family of pseudokinases contains three members: Tribbles 1, 2, and 3. Tribbles 1 has recently gained importance because of its involvement in various diseases, including cancer. It acts as a scaffolding protein that brings about the degradation of its substrate proteins, such as C/EBPα/β, MLXIPL, and RAR/RXRα, among others, via the ubiquitin proteasome system. It also serves as an adapter protein, which sequesters different protein molecules and activates their downstream signaling, leading to processes, such as cell survival, cell proliferation, and lipid metabolism. It has been implicated in cancers such as AML, prostate cancer, breast cancer, CRC, HCC, and glioma, where it activates oncogenic signaling pathways such as PI3K-AKT and MAPK and inhibits the anti-tumor function of p53. TRIB1 also causes treatment resistance in cancers such as NSCLC, breast cancer, glioma, and promyelocytic leukemia. All these effects make TRIB1 a potential drug target. However, the lack of a catalytic domain renders TRIB1 "undruggable", but knowledge about its structure, conformational changes during substrate binding, and substrate binding sites provides an opportunity to design small-molecule inhibitors against specific TRIB1 interactions.
Collapse
Affiliation(s)
| | | | | | | | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Luz IS, Takaya R, Ribeiro DG, Castro MS, Fontes W. Proteomics: Unraveling the Cross Talk Between Innate Immunity and Disease Pathophysiology, Diagnostics, and Treatment Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:221-242. [PMID: 38409424 DOI: 10.1007/978-3-031-50624-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.
Collapse
Affiliation(s)
- Isabelle Souza Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Raquel Takaya
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
5
|
Shechter S, Ya'ar Bar S, Khattib H, Gage MJ, Avni D. Riok1, A Novel Potential Target in MSI-High p53 Mutant Colorectal Cancer Cells. Molecules 2023; 28:molecules28114452. [PMID: 37298928 DOI: 10.3390/molecules28114452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The vulnerabilities of cancer cells constitute a promising strategy for drug therapeutics. This paper integrates proteomics, bioinformatics, and cell genotype together with in vitro cell proliferation assays to identify key biological processes and potential novel kinases that could account, at least in part, for the clinical differences observed in colorectal cancer (CRC) patients. This study started by focusing on CRC cell lines stratified by their microsatellite (MS) state and p53 genotype. It shows that cell-cycle checkpoint, metabolism of proteins and RNA, signal transduction, and WNT signaling processes are significantly more active in MSI-High p53-WT cell lines. Conversely, MSI-High cell lines with a mutant (Mut) p53 gene showed hyperactivation of cell signaling, DNA repair, and immune-system processes. Several kinases were linked to these phenotypes, from which RIOK1 was selected for additional exploration. We also included the KRAS genotype in our analysis. Our results showed that RIOK1's inhibition in CRC MSI-High cell lines was dependent on both the p53 and KRAS genotypes. Explicitly, Nintedanib showed relatively low cytotoxicity in MSI-High with both mutant p53 and KRAS (HCT-15) but no inhibition in p53 and KRAS WT (SW48) MSI-High cells. This trend was flipped in CRC MSI-High bearing opposite p53-KRAS genotypes (e.g., p53-Mut KRAS-WT or p53-WT KRAS-Mut), where observed cytotoxicity was more extensive compared to the p53-KRAS WT-WT or Mut-Mut cells, with HCT 116 (KRAS-Mut and p53-WT) being the most sensitive to RIOK1 inhibition. These results highlight the potential of our in silico computational approach to identify novel kinases in CRC sub-MSI-High populations as well as the importance of clinical genomics in determining drug potency.
Collapse
Affiliation(s)
- Sharon Shechter
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854-2874, USA
| | - Sapir Ya'ar Bar
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| | - Hamdan Khattib
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854-2874, USA
| | - Dorit Avni
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| |
Collapse
|
6
|
In-Depth Analysis of the N-Glycome of Colorectal Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24054842. [PMID: 36902272 PMCID: PMC10003090 DOI: 10.3390/ijms24054842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer deaths worldwide. A well-known hallmark of cancer is altered glycosylation. Analyzing the N-glycosylation of CRC cell lines may provide potential therapeutic or diagnostic targets. In this study, an in-depth N-glycomic analysis of 25 CRC cell lines was conducted using porous graphitized carbon nano-liquid chromatography coupled to electrospray ionization mass spectrometry. This method allows for the separation of isomers and performs structural characterization, revealing profound N-glycomic diversity among the studied CRC cell lines with the elucidation of a number of 139 N-glycans. A high degree of similarity between the two N-glycan datasets measured on the two different platforms (porous graphitized carbon nano-liquid chromatography electrospray ionization tandem mass spectrometry (PGC-nano-LC-ESI-MS) and matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS)) was discovered. Furthermore, we studied the associations between glycosylation features, glycosyltransferases (GTs), and transcription factors (TFs). While no significant correlations between the glycosylation features and GTs were found, the association between TF CDX1 and (s)Le antigen expression and relevant GTs FUT3/6 suggests that CDX1 contributes to the expression of the (s)Le antigen through the regulation of FUT3/6. Our study provides a comprehensive characterization of the N-glycome of CRC cell lines, which may contribute to the future discovery of novel glyco-biomarkers of CRC.
Collapse
|
7
|
Gagliardi A, Francescato G, Ferrero G, Birolo G, Tarallo S, Francavilla A, Piaggeschi G, Di Battista C, Gallo G, Realis Luc A, Sacerdote C, Matullo G, Vineis P, Naccarati A, Pardini B. The 8q24 region hosts miRNAs altered in biospecimens of colorectal and bladder cancer patients. Cancer Med 2023; 12:5859-5873. [PMID: 36366788 PMCID: PMC10028171 DOI: 10.1002/cam4.5375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The 8q24 locus is enriched in cancer-associated polymorphisms and, despite containing relatively few protein-coding genes, it hosts the MYC oncogene and other genetic elements connected to tumorigenesis, including microRNAs (miRNAs). Research on miRNAs may provide insights into the transcriptomic regulation of this multiple cancer-associated region. MATERIAL AND METHODS We profiled all miRNAs located in the 8q24 region in 120 colorectal cancer (CRC) patients and 80 controls. miRNA profiling was performed on cancer/non-malignant adjacent mucosa, stool, and plasma extracellular vesicles (EVs), and the results validated with The Cancer Genome Atlas (TCGA) data. To verify if the 8q24-annotated miRNAs altered in CRC were dysregulated in other cancers and biofluids, we evaluated their levels in bladder cancer (BC) cases from the TCGA dataset and in urine and plasma EVs from a set of BC cases and healthy controls. RESULTS Among the detected mature miRNAs in the region, 12 were altered between CRC and adjacent mucosa (adj. p < 0.05). Five and four miRNAs were confirmed as dysregulated in the CRC and BC TCGA dataset, respectively. A co-expression analysis of tumor/adjacent tissue data from the CRC group revealed a correlation between the dysregulated miRNAs and CRC-related genes (PVT1 and MYC) annotated in 8q24 region. miR-30d-5p and miR-151a-3p, altered in CRC tissue, were also dysregulated in stool of CRC patients and urine of BC cases, respectively. Functional enrichment of dysregulated miRNA target genes highlighted terms related to TP53-mediated cell cycle control. CONCLUSIONS Altered expression of 8q24-annotated miRNAs may be relevant for the initiation and/or progression of cancer.
Collapse
Affiliation(s)
- Amedeo Gagliardi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Department of Computer ScienceUniversity of TurinTurinItaly
| | - Giulia Francescato
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Giulio Ferrero
- Department of Computer ScienceUniversity of TurinTurinItaly
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | | | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Candiolo Cancer Institute, FPO‐IRCCSCandiolo, TurinItaly
| | | | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
| | - Gaetano Gallo
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los JerónimosGuadalupe, MurciaSpain
- Department of Colorectal SurgeryClinica S. RitaVercelliItaly
- Department of Surgical ScienceSapienza University of RomeRomeItaly
| | | | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Center for Cancer Prevention (CPO‐Piemonte)TurinItaly
| | | | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- MRC Center for Environment and Health, Imperial CollegeLondonUK
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Candiolo Cancer Institute, FPO‐IRCCSCandiolo, TurinItaly
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Candiolo Cancer Institute, FPO‐IRCCSCandiolo, TurinItaly
| |
Collapse
|
8
|
Zafari N, Bathaei P, Velayati M, Khojasteh-Leylakoohi F, Khazaei M, Fiuji H, Nassiri M, Hassanian SM, Ferns GA, Nazari E, Avan A. Integrated analysis of multi-omics data for the discovery of biomarkers and therapeutic targets for colorectal cancer. Comput Biol Med 2023; 155:106639. [PMID: 36805214 DOI: 10.1016/j.compbiomed.2023.106639] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
The considerable burden of colorectal cancer and the rising trend in young adults emphasize the necessity of understanding its underlying mechanisms, providing new diagnostic and prognostic markers, and improving therapeutic approaches. Precision medicine is a new trend all over the world and identification of novel biomarkers and therapeutic targets is a step forward towards this trend. In this context, multi-omics data and integrated analysis are being investigated to develop personalized medicine in the management of colorectal cancer. Given the large amount of data from multi-omics approach, data integration and analysis is a great challenge. In this Review, we summarize how statistical and machine learning techniques are applied to analyze multi-omics data and how it contributes to the discovery of useful diagnostic and prognostic biomarkers and therapeutic targets. Moreover, we discuss the importance of these biomarkers and therapeutic targets in the clinical management of colorectal cancer in the future. Taken together, integrated analysis of multi-omics data has great potential for finding novel diagnostic and prognostic biomarkers and therapeutic targets, however, there are still challenges to overcome in future studies.
Collapse
Affiliation(s)
- Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parsa Bathaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Velayati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Khojasteh-Leylakoohi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Elham Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Yang L, Wang H, Lu W, Yang G, Lin Z, Chen R, Li H. Quantitative proteomic analysis of oxaliplatin induced peripheral neurotoxicity. J Proteomics 2022; 266:104682. [PMID: 35830924 DOI: 10.1016/j.jprot.2022.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Oxaliplatin (OXA)-induced peripheral neurotoxicity (OIPN) is a high-incidence and dose-dependent adverse reaction during OXA treatment. Its underlying mechanisms remain unclear, and no effective treatment or prevention therapies are currently available. Here, we employed a data independent acquisition (DIA)-based quantitative proteomic strategy to investigate the global proteome alterations in the dorsal root ganglion (DRG) tissues from mice injected with OXA for different periods. We identified 1128 differentially regulated proteins that were divided into six subclusters according to their alteration trends. Interestingly, these proteins were involved in cellular processes such as cell cycle, ribosomal stress, metabolism, and ion transport. In addition, OXA administration induced abundance changes of ion channels and proteins associated with mitochondrial function and reactive oxygen species production. Furthermore, we investigated the effects of diroximel fumarate (DRF), an FDA-approved oral fumarate drug for the treatment of relapsing forms of multiple sclerosis. Our findings showed that DRF could effectively ameliorate symptoms of OIPN and reduce the level of oxidative stress in mice. Taken together, our study systematically mapped the proteome alteration associated with the neural toxicity of OXA, and the findings could be leveraged to better understand the mechanisms of OIPN and to develop more effect treatment therapies. SIGNIFICANCE: Oxaliplatin (OXA)-induced peripheral neurotoxicity (OIPN) is a high-incidence and dose-dependent adverse reaction with unclear mechanism. Here we employed a data independent acquisition (DIA)-based quantitative proteomic strategy to explore the proteome changes in dorsal root ganglion (DRG) tissues from mice treated by OXA. The findings provided novel insights regarding the mechanisms of OIPN. For example, our data showed that OXA induced a broad disturbance in metabolism, particularly in glycolysis and amino acid metabolism. Additionally, we observed abundance changes of many ion channels and proteins associated with mitochondrial function and reactive oxygen species production. Furthermore, this study provided the first evidence for the possibility of repositioning diroximel fumarate (DRF) for treating OIPN.
Collapse
Affiliation(s)
- Linlin Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hua Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wanting Lu
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Gangqi Yang
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Hongyan Li
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China.
| |
Collapse
|
10
|
Ramasubramanian A, Paramasivam A, Ramani P. FASTK family of genes linked to cancer. Bioinformation 2022; 18:206-213. [PMID: 36518140 PMCID: PMC9722426 DOI: 10.6026/97320630018206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2024] Open
Abstract
Fas Activated Serine/Threonine Kinase (FASTK) family is a protein family encoded in the nuclear genome that spans the mitochondria and executes numerous functions, and consists of FASTK, the founding member along with 5 homologous proteins FASTKD1-5. Up regulation of FASTK family members have not only been implicated in tumour progression and invasion but also in increased resistance to chemotherapy proven by their knockdown leading to increased sensitivity to drugs. Thus, this review reports the implication of FASTK proteins in cancer and hence provides a scope to emphasise the role of these proteins in Oral Cancer.
Collapse
Affiliation(s)
- Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Poonamallee High Road, Chennai, Tamilnadu - 600077, India
| | - A Paramasivam
- Department of Dental Research Cell- Blue Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Poonamallee High Road, Chennai, Tamilnadu - 600077, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Poonamallee High Road, Chennai, Tamilnadu - 600077, India
| |
Collapse
|
11
|
Danger R, Feseha Y, Brouard S. The Pseudokinase TRIB1 in Immune Cells and Associated Disorders. Cancers (Basel) 2022; 14:cancers14041011. [PMID: 35205759 PMCID: PMC8869936 DOI: 10.3390/cancers14041011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary TRIB1 is at the center of major cell signaling pathways. In this review, we describe its role in immune cells and highlight TRIB1 interacting partners which suggests cell-specific functions and that TRIB1 is involved in cellular homeostasis and also in different cancers and immune-related disorders. Abstract Research advances in Tribbles homolog (TRIB) genes have established the consensus that this protein family plays roles in diverse biological conditions and regulates intracellular signaling networks and several human diseases. In this review, we focus on one member of the family, TRIB1, and its role at the crossroads of immune signaling. TRIB1 directly interacts with transcription factors such as FOXP3 and C/EBPα, with several signaling molecules such as MEK1 and MALT1 and directly acts on key cell signaling pathways such as the MAPK and NF-κB pathways. Altogether, these interactions emphasize that TRIB1 is at the center of major cell signaling pathways while TRIB1 has cell-specific roles, potentially depending on the expressing cells and binding partners. In this review, we describe its roles in immune cells and highlight the interacting partners explaining these functions which suggests TRIB1 as a precise mediator of cellular homeostasis as well as in different cancers and immune-related disorders.
Collapse
Affiliation(s)
- Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, F-44000 Nantes, France; (R.D.); (Y.F.)
| | - Yodit Feseha
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, F-44000 Nantes, France; (R.D.); (Y.F.)
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, F-44000 Nantes, France; (R.D.); (Y.F.)
- LabEx IGO “Immunotherapy, Graft, Oncology”, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-240-087-842
| |
Collapse
|
12
|
Wang G, Wang F, Meng Z, Wang N, Zhou C, Zhang J, Zhao L, Wang G, Shan B. Uncovering potential genes in colorectal cancer based on integrated and DNA methylation analysis in the gene expression omnibus database. BMC Cancer 2022; 22:138. [PMID: 35114976 PMCID: PMC8815138 DOI: 10.1186/s12885-022-09185-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Background Colorectal cancer (CRC) is major cancer-related death. The aim of this study was to identify differentially expressed and differentially methylated genes, contributing to explore the molecular mechanism of CRC. Methods Firstly, the data of gene transcriptome and genome-wide DNA methylation expression were downloaded from the Gene Expression Omnibus database. Secondly, functional analysis of differentially expressed and differentially methylated genes was performed, followed by protein-protein interaction (PPI) analysis. Thirdly, the Cancer Genome Atlas (TCGA) dataset and in vitro experiment was used to validate the expression of selected differentially expressed and differentially methylated genes. Finally, diagnosis and prognosis analysis of selected differentially expressed and differentially methylated genes was performed. Results Up to 1958 differentially expressed (1025 up-regulated and 993 down-regulated) genes and 858 differentially methylated (800 hypermethylated and 58 hypomethylated) genes were identified. Interestingly, some genes, such as GFRA2 and MDFI, were differentially expressed-methylated genes. Purine metabolism (involved IMPDH1), cell adhesion molecules and PI3K-Akt signaling pathway were significantly enriched signaling pathways. GFRA2, FOXQ1, CDH3, CLDN1, SCGN, BEST4, CXCL12, CA7, SHMT2, TRIP13, MDFI and IMPDH1 had a diagnostic value for CRC. In addition, BEST4, SHMT2 and TRIP13 were significantly associated with patients’ survival. Conclusions The identified altered genes may be involved in tumorigenesis of CRC. In addition, BEST4, SHMT2 and TRIP13 may be considered as diagnosis and prognostic biomarkers for CRC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09185-0.
Collapse
Affiliation(s)
- Guanglin Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feifei Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zesong Meng
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Wang
- Institute of Tumor, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Zhang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Scientific Research Center, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050010, Hebei Province, China
| | - Guiying Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Scientific Research Center, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050010, Hebei Province, China.
| |
Collapse
|
13
|
Rodrigues MA, Gomes DA, Cosme AL, Sanches MD, Resende V, Cassali GD. Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) is overexpressed in cholangiocarcinoma and its expression correlates with S100 calcium-binding protein A4 (S100A4). Biomed Pharmacother 2022; 145:112403. [PMID: 34798470 PMCID: PMC8678364 DOI: 10.1016/j.biopha.2021.112403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most malignant neoplasm in the liver that arises from the biliary tree. CCA is associated with a poor prognosis, and the key players involved in its pathogenesis are still not well understood. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), can mediate intracellular calcium (Ca2+) signaling pathways via inositol 1,4,5-trisphosphate (InsP3), activating inositol 1,4,5-trisphosphate receptors (ITPRs) and regulating tumor growth. ITPR isoform 3 (ITPR3) is the main intracellular Ca2+ release channel in cholangiocytes. The effects of intracellular Ca2+ are mediated by calcium-binding proteins such as Calmodulin and S100 calcium-binding protein A4 (S100A4). However, the clinicopathological and biological significance of EGFR, ITPR3 and S100A4 in CCA remains unclear. Thus, the present work investigates the immunoexpression of these three proteins in 59 CCAs from patients who underwent curative surgical treatment and correlates the data with clinicopathological features and survival. High ITPR3 expression was correlated with CA 19-9 levels, TNM stage and lymph node metastasis (N). Furthermore, ITPR3 expression was increased in distal CCA compared to control bile ducts and intrahepatic and perihilar CCAs. These observations were confirmed by proteomic analysis. ITPR3 and S100A4 clinical scores were significantly correlated. Furthermore, it was demonstrated that EGF induces calcium signaling in a cholangiocarcinoma cell line and ITPR3 colocalizes with nonmuscle myosin IIA (NMIIA). In summary, ITPR3 overexpression could contribute to CCA progression and it may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Michele A. Rodrigues
- Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, CEP: 31270-901, Brazil
| | - Dawidson A. Gomes
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, CEP: 31270-901, Brazil
| | - Ana Luiza Cosme
- School of Medicine, Department of Surgery, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil
| | - Marcelo Dias Sanches
- School of Medicine, Department of Surgery, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil.,Hepatopancreatobiliary Division, Clinical Hospital, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 110, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil
| | - Vivian Resende
- School of Medicine, Department of Surgery, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil.,Hepatopancreatobiliary Division, Clinical Hospital, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 110, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil
| | - Geovanni D. Cassali
- Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, CEP: 31270-901, Brazil.,Corresponding author: Department of General Pathology, Instituto de Ciências Biológicas, Bloco C3, Sala 102, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Belo Horizonte–MG, Brazil 31270-901. Tel: +55 31 34092891.
| |
Collapse
|
14
|
Zhang X, Zhang B, Zhang C, Sun G, Sun X. Current Progress in Delineating the Roles of Pseudokinase TRIB1 in Controlling Human Diseases. J Cancer 2021; 12:6012-6020. [PMID: 34539875 PMCID: PMC8425202 DOI: 10.7150/jca.51627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Tribbles homolog 1 (TRIB1) is a member of the tribbles family of pseudoprotein kinases and is widely expressed in numerous tissues, such as bone marrow, skeletal muscle, liver, heart, and adipose tissue. It is closely associated with acute myeloid leukemia, prostate cancer, and tumor drug resistance, and can interfere with the hematopoietic stem cell cycle, promote tumor cell proliferation, and inhibit apoptosis. Recent studies have shown that TRIB1 can regulate acute and chronic inflammation by affecting the secretion of inflammatory factors, which is closely related to the occurrence of hyperlipidemia and cardiovascular diseases. Given the important biological functions of TRIB1, the reviews published till now are not sufficiently comprehensive. Therefore, this paper reviews the progress in TRIB1 research aimed at exploring its roles in cancer, hyperlipidemia, and cardiovascular disease, and providing a theoretical basis for further studies on the biological roles of TRIB1.
Collapse
Affiliation(s)
- Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| |
Collapse
|
15
|
Sompel K, Elango A, Smith AJ, Tennis MA. Cancer chemoprevention through Frizzled receptors and EMT. Discov Oncol 2021; 12:32. [PMID: 34604862 PMCID: PMC8429367 DOI: 10.1007/s12672-021-00429-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Frizzled (FZD) transmembrane receptors are well known for their role in β-catenin signaling and development and now understanding of their role in the context of cancer is growing. FZDs are often associated with the process of epithelial to mesenchymal transition (EMT) through β-catenin, but some also influence EMT through non-canonical pathways. With ten different FZDs, there is a wide range of activity from oncogenic to tumor suppressive depending on the tissue context. Alterations in FZD signaling can occur during development of premalignant lesions, supporting their potential as targets of chemoprevention agents. Agonizing or antagonizing FZD activity may affect EMT, which is a key process in lesion progression often targeted by chemoprevention agents. Recent studies identified a specific FZD as important for activity of an EMT inhibiting chemopreventive agent and other studies have highlighted the previously unrecognized potential for targeting small molecules to FZD receptors. This work demonstrates the value of investigating FZDs in chemoprevention and here we provide a review of FZDs in cancer EMT and their potential as chemoprevention targets.
Collapse
Affiliation(s)
- K. Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. Elango
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. J. Smith
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - M. A. Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| |
Collapse
|
16
|
Kim JH, Yang HJ, Lee CH, Jeon YS, Park JJ, Lee KW, Kim JH, Park SY, Song SJ, Kim YH, Moon AR, Lee JH, Song YS. The Positive Correlations between the Expression of Histopathological Ubiquitin-Conjugating Enzyme 2O Staining and Prostate Cancer Advancement. Pharmaceuticals (Basel) 2021; 14:ph14080778. [PMID: 34451875 PMCID: PMC8398491 DOI: 10.3390/ph14080778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The mTOR signaling pathway is inactivated by AMPK’s tumor-suppressing function. It is recognized that ubiquitin conjugating enzyme 2O (UBE2O), which directly targets AMPK for ubiquitination and degradation, is intensified in human cancers. Methods: This study investigated the clinical data about prostate cancer. Examination was also carried out into tissue microarrays (TMA) of human prostate cancer (n = 382) and adjacent non-neoplastic tissues around prostate cancer (n = 61). The TMA slides were incubated with antibodies against UBE2O, and the cores were scored by the pathologist blind to cancer results. Results: Very strong positive correlations were identified between the expression of UBE2O staining and high PSA and pathological stage of prostate cancer. Cox’s proportional hazard analysis established correlations between the following: (1) positive surgical margin and biochemical recurrence free survival, (2) PSA grade and clinical recurrence free survival, (3) regional lymph node positive and clinical recurrence free survival, (4) adjuvant treatment and overall survival, and (5) pathological T stage and overall survival. Conclusion: There is a positive correlation between the expression of UBE2O staining and prognosis for prostate cancer. Thus, a prostate cancer prognosis can be assessed with the expression of UBE2O staining.
Collapse
Affiliation(s)
- Jae-Heon Kim
- Department of Urology, Soonchunhyang University School of Medicine, Seoul 04404, Korea; (J.-H.K.); (J.-J.P.)
- Department of Microbiology, Soonchunhyang University School of Medicine, Seoul 04404, Korea
| | - Hee-Jo Yang
- Department of Urology, Soonchunhyang University School of Medicine, Cheonan 31151, Korea; (H.-J.Y.); (C.-H.L.); (Y.-S.J.)
| | - Chang-Ho Lee
- Department of Urology, Soonchunhyang University School of Medicine, Cheonan 31151, Korea; (H.-J.Y.); (C.-H.L.); (Y.-S.J.)
| | - Youn-Soo Jeon
- Department of Urology, Soonchunhyang University School of Medicine, Cheonan 31151, Korea; (H.-J.Y.); (C.-H.L.); (Y.-S.J.)
| | - Jae-Joon Park
- Department of Urology, Soonchunhyang University School of Medicine, Seoul 04404, Korea; (J.-H.K.); (J.-J.P.)
| | - Kwang-Woo Lee
- Department of Urology, Soonchunhyang University School of Medicine, Bucheon 14584, Korea;
| | - Jae-Ho Kim
- Department of Urology, Soonchunhyang University School of Medicine, Gumi 39371, Korea;
| | - Su-Yeon Park
- Department of Data Innovation, Soonchunhyang University Seoul Hospital, Seoul 04404, Korea;
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Korea
| | - Su-Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea;
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Yon-Hee Kim
- Department of Pathology, Soonchunhyang University School of Medicine, Seoul 04404, Korea;
| | - Ah-Rim Moon
- Department of Pathology, Soonchunhyang University School of Medicine, Bucheon 14584, Korea;
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University School of Medicine, Cheonan 31151, Korea
- Correspondence: (J.-H.L.); (Y.-S.S.); Tel.: +82-51-570-3580 (J.-H.L.); +82-2-709-9375 (Y.-S.S.)
| | - Yun-Seob Song
- Department of Urology, Soonchunhyang University School of Medicine, Seoul 04404, Korea; (J.-H.K.); (J.-J.P.)
- Correspondence: (J.-H.L.); (Y.-S.S.); Tel.: +82-51-570-3580 (J.-H.L.); +82-2-709-9375 (Y.-S.S.)
| |
Collapse
|
17
|
Sun Z, Liu Y, Ouyang Q, Liu Z, Liu Y. Research progress of omics technology in the field of tumor resistance: From single -omics to multi -omics combination application. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:620-627. [PMID: 34275931 PMCID: PMC10930197 DOI: 10.11817/j.issn.1672-7347.2021.200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 11/03/2022]
Abstract
Drug resistance is the main obstacle in the treatment of many cancers. It is of great clinical significance to study the mechanism of drug resistance and find new targets. Multi-omics mainly includes genomics, epigenomics, transcriptomics, proteomics, metabolomics, and radiomics. In recent years, the research of tumor resistance has made rapid development, which has significantly accelerated the discovery of new targets.
Collapse
Affiliation(s)
- Ze'en Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Qianying Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| |
Collapse
|
18
|
Ferreira BI, Santos B, Link W, De Sousa-Coelho AL. Tribbles Pseudokinases in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112825. [PMID: 34198908 PMCID: PMC8201230 DOI: 10.3390/cancers13112825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
The Tribbles family of pseudokinases controls a wide number of processes during cancer on-set and progression. However, the exact contribution of each of the three family members is still to be defined. Their function appears to be context-dependent as they can act as oncogenes or tumor suppressor genes. They act as scaffolds modulating the activity of several signaling pathways involved in different cellular processes. In this review, we discuss the state-of-knowledge for TRIB1, TRIB2 and TRIB3 in the development and progression of colorectal cancer. We take a perspective look at the role of Tribbles proteins as potential biomarkers and therapeutic targets. Specifically, we chronologically systematized all available articles since 2003 until 2020, for which Tribbles were associated with colorectal cancer human samples or cell lines. Herein, we discuss: (1) Tribbles amplification and overexpression; (2) the clinical significance of Tribbles overexpression; (3) upstream Tribbles gene and protein expression regulation; (4) Tribbles pharmacological modulation; (5) genetic modulation of Tribbles; and (6) downstream mechanisms regulated by Tribbles; establishing a comprehensive timeline, essential to better consolidate the current knowledge of Tribbles' role in colorectal cancer.
Collapse
Affiliation(s)
- Bibiana I. Ferreira
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bruno Santos
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Serviço de Anatomia Patológica, Centro Hospital Universitário do Algarve (CHUA), 8000-386 Faro, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Correspondence: (W.L.); (A.L.D.S.-C.)
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (W.L.); (A.L.D.S.-C.)
| |
Collapse
|
19
|
Inukai R, Mori K, Kuwata K, Suzuki C, Maki M, Takahara T, Shibata H. The Novel ALG-2 Target Protein CDIP1 Promotes Cell Death by Interacting with ESCRT-I and VAPA/B. Int J Mol Sci 2021; 22:ijms22031175. [PMID: 33503978 PMCID: PMC7865452 DOI: 10.3390/ijms22031175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.
Collapse
Affiliation(s)
- Ryuta Inukai
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Kanako Mori
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Chihiro Suzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Terunao Takahara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
- Correspondence:
| |
Collapse
|
20
|
Chen X, Zhang S, Liu C, Li G, Lu S, Wang Y, Zhang X, Huang D, Qiu Y, Liu Y. UBE2O Promotes Progression and Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:6191-6202. [PMID: 32636643 PMCID: PMC7334014 DOI: 10.2147/ott.s253861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background UBE2O, as a member of the ubiquitin-conjugating enzyme family, is abnormally expressed and exhibits abnormal functions in human malignancies. However, the function of UBE2O in head and neck squamous cell carcinoma (HNSCC) remains unknown. Therefore, our study aims to investigate the role of UBE2O in HNSCC progression and the underlying mechanisms. Methods The expression of UBE2O in HNSCC patients was investigated with data from the Cancer Genome Atlas (TCGA) and from a separate primary tumor cohort. The function of UBE2O in HNSCC cells was studied by cell viability assay, colony formation assay, wound healing assay, and cell migration and invasion chamber assay. The effect of UBE2O on tumor growth in vivo was determined in a subcutaneous xenograft model of HNSCC. Results TCGA data showed that UBE2O mRNA expression was dramatically increased in HNSCC tissues and that patients with high expression of UBE2O transcripts had a worse survival prognosis than patients with low expression of UBE2O transcripts. Gain-of-function and loss-of-function analyses revealed that oncogenic UBE2O enhanced the proliferation, migration and invasion of HNSCC cells in vitro. Further, mechanistic analysis revealed that UBE2O induced the epithelial-mesenchymal transition (EMT) phenotype and also potentiated TGF-β1-induced EMT, and thus leading to an enhanced capacity of migration and invasion in HNSCC. Finally, xenograft models showed that UBE2O knockout obviously inhibited the occurrence of EMT, angiogenesis and tumor growth in HNSCC in vivo. Conclusion Our study indicates that UBE2O acts as an oncogene to promote the malignant progression and EMT of HNSCC.
Collapse
Affiliation(s)
- Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
21
|
Benedetto A, Pezzolato M, Beltramo C, Audino V, Ingravalle F, Pillitteri C, Foschini S, Peletto S, Bozzetta E. Real-time PCR assay for detecting illicit steroid administration in veal calves allows reliable biomarker profiling of formalin-fixed, paraffin-embedded (FFPE) archival tissue samples. Food Chem 2020; 312:126061. [DOI: 10.1016/j.foodchem.2019.126061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022]
|
22
|
Ried T, Meijer GA, Harrison DJ, Grech G, Franch-Expósito S, Briffa R, Carvalho B, Camps J. The landscape of genomic copy number alterations in colorectal cancer and their consequences on gene expression levels and disease outcome. Mol Aspects Med 2019; 69:48-61. [PMID: 31365882 DOI: 10.1016/j.mam.2019.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Aneuploidy, the unbalanced state of the chromosome content, represents a hallmark of most solid tumors, including colorectal cancer. Such aneuploidies result in tumor specific genomic imbalances, which emerge in premalignant precursor lesions. Moreover, increasing levels of chromosomal instability have been observed in adenocarcinomas and are maintained in distant metastases. A number of studies have systematically integrated copy number alterations with gene expression changes in primary carcinomas, cell lines, and experimental models of aneuploidy. In fact, chromosomal aneuploidies target a number of genes conferring a selective advantage for the metabolism of the cancer cell. Copy number alterations not only have a positive correlation with expression changes of the majority of genes on the altered genomic segment, but also have effects on the transcriptional levels of genes genome-wide. Finally, copy number alterations have been associated with disease outcome; nevertheless, the translational applicability in clinical practice requires further studies. Here, we (i) review the spectrum of genetic alterations that lead to colorectal cancer, (ii) describe the most frequent copy number alterations at different stages of colorectal carcinogenesis, (iii) exemplify their positive correlation with gene expression levels, and (iv) discuss copy number alterations that are potentially involved in disease outcome of individual patients.
Collapse
Affiliation(s)
- Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, Bethesda, MD, USA.
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| | - Godfrey Grech
- Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sebastià Franch-Expósito
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain
| | - Romina Briffa
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK; Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain; Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
23
|
Vila IK, Park MK, Setijono SR, Yao Y, Kim H, Badin PM, Choi S, Narkar V, Choi SW, Chung J, Moro C, Song SJ, Song MS. A muscle-specific UBE2O/AMPKα2 axis promotes insulin resistance and metabolic syndrome in obesity. JCI Insight 2019; 4:128269. [PMID: 31292296 DOI: 10.1172/jci.insight.128269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-conjugating enzyme E2O (UBE2O) is expressed preferentially in metabolic tissues, but its role in regulating energy homeostasis has yet to be defined. Here we find that UBE2O is markedly upregulated in obese subjects with type 2 diabetes and show that whole-body disruption of Ube2o in mouse models in vivo results in improved metabolic profiles and resistance to high-fat diet-induced (HFD-induced) obesity and metabolic syndrome. With no difference in nutrient intake, Ube2o-/- mice were leaner and expended more energy than WT mice. In addition, hyperinsulinemic-euglycemic clamp studies revealed that Ube2o-/- mice were profoundly insulin sensitive. Through phenotype analysis of HFD mice with muscle-, fat-, or liver-specific knockout of Ube2o, we further identified UBE2O as an essential regulator of glucose and lipid metabolism programs in skeletal muscle, but not in adipose or liver tissue. Mechanistically, UBE2O acted as a ubiquitin ligase and targeted AMPKα2 for ubiquitin-dependent degradation in skeletal muscle; further, muscle-specific heterozygous knockout of Prkaa2 ablated UBE2O-controlled metabolic processes. These results identify the UBE2O/AMPKα2 axis as both a potent regulator of metabolic homeostasis in skeletal muscle and a therapeutic target in the treatment of diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mi Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hyejin Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pierre-Marie Badin
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sekyu Choi
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Vihang Narkar
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sung-Woo Choi
- Department of Orthopedic Surgery, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Cedric Moro
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, UMR 1048, Inserm, Toulouse, France
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
24
|
Kassab MA, Yu X. The role of dePARylation in DNA damage repair and cancer suppression. DNA Repair (Amst) 2019; 76:20-29. [PMID: 30807923 DOI: 10.1016/j.dnarep.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational modification regulating various biological pathways including DNA damage repair (DDR). Rapid turnover of PARylation is critically important for an optimal DNA damage response and maintaining genomic stability. Recent studies show that PARylation is tightly regulated by a group of enzymes that can erase the ADP-ribose (ADPR) groups from target proteins. The aim of this review is to present a comprehensive understanding of dePARylation enzymes, their substrates and roles in DDR. Special attention will be laid on the role of these proteins in the development of cancer and their feasibility in anticancer therapeutics.
Collapse
Affiliation(s)
- Muzaffer Ahmad Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
25
|
Lo Re O, Mazza T, Vinciguerra M. Mono-ADP-Ribosylhydrolase MACROD2 Is Dispensable for Murine Responses to Metabolic and Genotoxic Insults. Front Genet 2018; 9:654. [PMID: 30619475 PMCID: PMC6305994 DOI: 10.3389/fgene.2018.00654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
ADP-ribosylation is an important post-translational protein modification that regulates diverse biological processes, controlled by dedicated transferases, and hydrolases. Disruption in the gene encoding for MACROD2, a mono-ADP-ribosylhydrolase, has been associated to the Kabuki syndrome, a pediatric congenital disorder characterized by facial anomalies, and mental retardation. Non-coding and structural mutations/variations in MACROD2 have been associated to psychiatric disorders, to obesity, and to cancer. Mechanistically, it has been recently shown that frequent deletions of the MACROD2 alter DNA repair and sensitivity to DNA damage, resulting in chromosome instability, and colorectal tumorigenesis. Whether MACROD2 deletion sensitizes the organism to metabolic and tumorigenic stressors, in absence of other genetic drivers, is unclear. As MACROD2 is ubiquitously expressed in mice, here we generated constitutively whole-body knock-out mice for MACROD2, starting from mouse embryonic stem (ES) cells deleted for the gene using the VelociGene® technology, belonging to the Knockout Mouse Project (KOMP) repository, a NIH initiative. MACROD2 knock-out mice were viable and healthy, indistinguishable from wild type littermates. High-fat diet administration induced obesity, and glucose/insulin intolerance in mice independent of MACROD2 gene deletion. Moreover, sub-lethal irradiation did not indicate a survival or lethality bias in MACROD2 knock-out mice compared to wild type littermates. Altogether, our data point against a sufficient role of MACROD2 deletion in aggravating high-fat induced obesity and DNA damage-associated lethality, in absence of other genetic drivers.
Collapse
Affiliation(s)
- Oriana Lo Re
- International Clinical Research Center, St Anne's University Hospital, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tommaso Mazza
- Bioinformatics Unit, Casa Sollievo della Sofferenza (IRCCS), San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czechia.,Institute for Liver and Digestive Health, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
26
|
Fujita Y, Taguri M, Yamazaki K, Tsurutani J, Sakai K, Tsushima T, Nagase M, Tamagawa H, Ueda S, Tamura T, Tsuji Y, Murata K, Taira K, Denda T, Moriwaki T, Funai S, Nakajima TE, Muro K, Tsuji A, Yoshida M, Suyama K, Kurimoto T, Sugimoto N, Baba E, Seki N, Sato M, Shimura T, Boku N, Hyodo I, Yamanaka T, Nishio K. aCGH Analysis of Predictive Biomarkers for Response to Bevacizumab plus Oxaliplatin- or Irinotecan-Based Chemotherapy in Patients with Metastatic Colorectal Cancer. Oncologist 2018; 24:327-337. [PMID: 30425180 DOI: 10.1634/theoncologist.2018-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The randomized phase III study (WJOG4407G) showed equivalent efficacy between FOLFOX and FOLFIRI in combination with bevacizumab as the first-line treatment for metastatic colorectal cancer (mCRC). We studied whole genome copy number profiles using array-based comparative genomic hybridization (aCGH) analysis of tumor tissue samples obtained in this study. The aim of this study was to identify gene copy number alterations that could aid in selecting either FOLFOX or FOLFIRI in combination with bevacizumab for patients with mCRC. MATERIALS AND METHODS DNA was purified from 154 pretreatment formalin-fixed paraffin-embedded tissue samples (75 from the FOLFOX arm and 79 from the FOLFIRI arm) of 395 patients enrolled in the WJOG4407G trial and analyzed by aCGH. Genomic regions greater than 1.2-fold were regarded as copy number gain (CNG). RESULTS Patient characteristics between the treatment arms were well balanced except for tumor laterality (left side; 64% in FOLFOX arm and 80% in FOLFIRI arm, p = .07). FOLFIRI showed a trend toward better response rate (RR), progression-free survival (PFS) and overall survival (OS) than FOLFOX in the patients with CNG of chromosome 8q24.1 (Fisher's exact test, p = .134 for RR; interaction test, p = .102 for PFS and p = .003 for OS) and 8q24.2 (Fisher's exact test, p = .179 for RR; interaction test, p = .144 for PFS and p = .002 for OS). CONCLUSION Chromosome 8q24.1-q24.2 may contain genes that could potentially serve as predictive markers for selecting either FOLFOX or FOLFIRI in combination with bevacizumab for treatment of patients with mCRC. IMPLICATIONS FOR PRACTICE Bevacizumab has been used as a standard first-line treatment for patients with metastatic colorectal cancer (mCRC) in combination with either oxaliplatin-based or irinotecan-based chemotherapy. Until now, there has been no predictive marker to choose between the two combination chemotherapies. This array-based comparative genomic hybridization analysis revealed that the difference in therapeutic effect between the two combination chemotherapies is prominent in patients with mCRC with gene copy number gain in chromosome 8p24.1-p24.2. Such patients showed more favorable response and survival when treated with irinotecan-based combination chemotherapy. Overlapping genes commonly found in this region may be predictive biomarkers of the efficacy of the combination chemotherapy with bevacizumab.
Collapse
Affiliation(s)
- Yoshihiko Fujita
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masataka Taguri
- Department of Biostatistics, Yokohama City University School of Medicine, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Junji Tsurutani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takahiro Tsushima
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Michitaka Nagase
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroshi Tamagawa
- Department of Surgery, Osaka General Medical Center, Osaka, Japan
| | - Shinya Ueda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takao Tamura
- Department of Medical Oncology, Nara Hospital Kindai University Faculty of Medicine, Ikoma, Japan
| | - Yasushi Tsuji
- Department of Medical Oncology, Tonan Hospital, Sapporo, Japan
| | - Kohei Murata
- Department of Surgery, Suita Municipal Hospital, Suita, Japan
| | - Koichi Taira
- Department of Clinical Oncology, Osaka City General Hospital, Osaka, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | | | - Sadao Funai
- Department of Surgery, Sakai Hospital Kindai University Faculty of Medicine, Sakai, Japan
| | - Takako Eguchi Nakajima
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Akihito Tsuji
- Department of Medical Oncology, Kochi Health Sciences Center, Kochi, Japan
| | - Motoki Yoshida
- Division of Cancer Chemotherapy Center, Osaka Medical College Hospital, Takatsuki, Japan
| | - Koichi Suyama
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Takuya Kurimoto
- Department of Gastrointestinal Oncology, Nagoya Kyoritsu Hospital, Nagoya, Japan
| | - Naotoshi Sugimoto
- Department of Clinical Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Eishi Baba
- Department of Comprehensive Clinical Oncology, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Nobuhiko Seki
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Mikio Sato
- Department of Gastroenterology and Hepatology, Ryugasaki Saiseikai Hospital, Ryugasaki, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Narikazu Boku
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Ichinosuke Hyodo
- Division of Gastroenterology, University of Tsukuba, Tsukuba, Japan
| | - Takeharu Yamanaka
- Department of Biostatistics, Yokohama City University School of Medicine, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
27
|
Lambert A, Salleron J, Lion M, Rouyer M, Lozano N, Leroux A, Merlin JL, Harlé A. Comparison of Three Real-Time PCR Assays for the Detection of PIK3CA Somatic Mutations in Formalin-Fixed Paraffin Embedded Tissues of Patients with Breast Carcinomas. Pathol Oncol Res 2018; 25:1117-1123. [PMID: 30426328 DOI: 10.1007/s12253-018-0538-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/09/2018] [Indexed: 01/27/2023]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. Mutations of the PIK3CA gene are found in approximately 25% of breast carcinomas and are reported as activators of the PI3K/AKT/mTOR pathway. This study aims to compare three assays for the somatic mutation detection of PIK3CA gene in FFPE tissues of patients with breast cancer. We compared Cobas® PIK3CA Mutation Test (Roche Diagnostics, Meylan, France), PCR amplification-refractory mutation system Scorpions® (ARMS) and High-Resolution Melting PCR assay (HRM) for the detection of PIK3CA mutations. Discrepant samples were assessed using Next Generation Sequencing (NGS). 46 FFPE breast carcinomas samples of patients treated for breast cancer have been assessed for PIK3CA mutations using the three PCR assays. Among the 46 samples, 17 (37.8%), 13 (28.36%) and 19 (41.3%) had a PIK3CA mutation, with Cobas®, ARMS and HRM assays respectively. Three different mutations of PIK3CA have been detected for one sample. Calculated kappa were 0.95[0.86;1] between Cobas® and HRM, 0.75[0.55;0.95] between Cobas® and ARMS and 0.72[0.51;0.92] between HRM and ARMS. Five samples were found with discrepant results. Our study shows that the Cobas® assay is suitable for PIK3CA mutation assessment in patients with breast cancer. HRM assay is also suitable for PIK3CA mutation assessment but requires a mutation characterization with a specific assay.
Collapse
Affiliation(s)
- A Lambert
- Département d'Oncologie Médicale, Institut de Cancérologie de Lorraine, 54519, Vandoeuvre les Nancy, France
| | - J Salleron
- Département de Biostatistiques, Institut de Cancérologie de Lorraine, 54519, Vandoeuvre les Nancy, France
| | - M Lion
- CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, 54500, Vandoeuvre-lès-Nancy Cedex, France
| | - M Rouyer
- CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, 54500, Vandoeuvre-lès-Nancy Cedex, France
| | - N Lozano
- CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, 54500, Vandoeuvre-lès-Nancy Cedex, France
| | - A Leroux
- CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, 54500, Vandoeuvre-lès-Nancy Cedex, France
| | - J L Merlin
- CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, 54500, Vandoeuvre-lès-Nancy Cedex, France
| | - Alexandre Harlé
- CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, 54500, Vandoeuvre-lès-Nancy Cedex, France.
| |
Collapse
|
28
|
Faraco CCF, Faria JAQA, Kunrath-Lima M, Miranda MCD, de Melo MIA, Ferreira ADF, Rodrigues MA, Gomes DA. Translocation of Epidermal Growth Factor (EGF) to the nucleus has distinct kinetics between adipose tissue-derived mesenchymal stem cells and a mesenchymal cancer cell lineage. J Struct Biol 2017; 202:61-69. [PMID: 29277356 DOI: 10.1016/j.jsb.2017.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023]
Abstract
Nuclear Epidermal Growth Factor Receptor (EGFR) has been associated with worse prognosis and treatment resistance for several cancer types. After Epidermal Growth Factor (EGF) binding, the ligand-receptor complex can translocate to the nucleus where it functions in oncological processes. By three-dimensional quantification analysis of super-resolution microscopy images, we verified the translocation kinetics of fluorescent conjugated EGF to the nucleus in two mesenchymal cell types: human adipose tissue-derived stem cells (hASC) and SK-HEP-1 tumor cells. The number of EGF clusters in the nucleus does not change after 10 min of stimulation with EGF in both cells. The total volume occupied by EGF clusters in the nucleus of hASC also does not change after 10 min of stimulation with EGF. However, the total volume of EGF clusters increases only after 20 min in SK-HEP-1 cells nuclei. In these cells the nuclear volume occupied by EGF is 3.2 times higher than in hASC after 20 min of stimulation, indicating that translocation kinetics of EGF differs between these two cell types. After stimulation, EGF clusters assemble in larger clusters in the cell nucleus in both cell types, which suggests specific sub-nuclear localizations of the receptor. Super-resolution microscopy images show that EGF clusters are widespread in the nucleoplasm, and can be localized in nuclear envelope invaginations, and in the nucleoli. The quantitative study of EGF-EGFR complex translocation to the nucleus may help to unravel its roles in health and pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Camila Cristina Fraga Faraco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Marianna Kunrath-Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrea da Fonseca Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michele Angela Rodrigues
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
29
|
Cholpraipimolrat W, Suriyo T, Rangkadilok N, Nookabkaew S, Satayavivad J. Hijiki and sodium arsenite stimulate growth of human colorectal adenocarcinoma cells through ERK1/2 activation. Food Chem Toxicol 2017; 110:33-41. [DOI: 10.1016/j.fct.2017.09.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 11/28/2022]
|
30
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
31
|
Ozdian T, Holub D, Maceckova Z, Varanasi L, Rylova G, Rehulka J, Vaclavkova J, Slavik H, Moudry P, Znojek P, Stankova J, de Sanctis JB, Hajduch M, Dzubak P. Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells. J Proteomics 2017; 162:73-85. [DOI: 10.1016/j.jprot.2017.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
|
32
|
Jahid S, Sun J, Gelincik O, Blecua P, Edelmann W, Kucherlapati R, Zhou K, Jasin M, Gümüş ZH, Lipkin SM. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair. Oncotarget 2017; 8:71574-71586. [PMID: 29069730 PMCID: PMC5641073 DOI: 10.18632/oncotarget.17776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/24/2017] [Indexed: 01/15/2023] Open
Abstract
Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression.
Collapse
Affiliation(s)
- Sohail Jahid
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| | - Jian Sun
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| | - Ozkan Gelincik
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| | - Pedro Blecua
- Division of Clinical Genetics, Memorial Sloan Kettering Cancer Center, 10065, NY, USA
| | - Winfried Edelmann
- Department of Cell Biology and Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, 10461, NY, USA
| | - Raju Kucherlapati
- Department of Genetics, Harvard Medical School, 02115, Boston, MA, USA
| | - Kathy Zhou
- Department of Biostatistics and Epidemiology, Weill Cornell Medical College, 10021, NY, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 10065, NY, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 10029, NY, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 10029, NY, USA
| | - Steven M Lipkin
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| |
Collapse
|
33
|
Xu K, Zhang YY, Han B, Bai Y, Xiong Y, Song Y, Zhou LM. Suppression subtractive hybridization identified differentially expressed genes in colorectal cancer: microRNA-451a as a novel colorectal cancer–related gene. Tumour Biol 2017; 39:1010428317705504. [PMID: 28468585 DOI: 10.1177/1010428317705504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate differentially expressed genes regulated by microRNA-451a in colorectal cancer. We detected expression of microRNA-451a in colorectal cancer samples and normal pericarcinous tissues from 68 colorectal cancer patients and the correlation between microRNA-451a and clinical features of these patients. Then, the expression of microRNA-451a in HCT116, SW620, HT29, SW480, and DLD cells was also measured. The suppression subtractive hybridization method was used with two HCT116 cell lines with overexpressing or underexpressing microRNA-451a, respectively. The most highly increased genes were screened. Their functions were predicted by gene ontology analysis. The expression ratio of microRNA-451a in colorectal cancer to pericarcinous tissues was 0.37. Expression of microRNA-451a was decreased in HCT116, SW620, HT29, SW480, and DLD cells. In our suppression subtractive hybridization library, expression of seven genes was the most highly increased when underexpressing microRNA-451a. They were BCAP31, EEF1A1, CDC20, WDR6, TUFM, RPL13, and RPL7A. Expression of DKK1, PSME1, NDUFA3, and GNB2 was most highly increased when overexpressing microRNA-451a. Gene ontology analysis showed that the main functions of these genes were associated with translational elongation, protein localization to the endoplasmic reticulum, translation, poly(A) RNA binding, negative regulations of Wnt signaling pathway, and so on. MicroRNA-451a was demonstrated to be downregulated in colorectal cancer patient tissues whose target genes were analyzed and functions were predicted by suppression subtractive hybridization.
Collapse
Affiliation(s)
- Ke Xu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuan-Yuan Zhang
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Bin Han
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yang Bai
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yao Xiong
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yi Song
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Li-Ming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
- 985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
34
|
Vila IK, Yao Y, Kim G, Xia W, Kim H, Kim SJ, Park MK, Hwang JP, González-Billalabeitia E, Hung MC, Song SJ, Song MS. A UBE2O-AMPKα2 Axis that Promotes Tumor Initiation and Progression Offers Opportunities for Therapy. Cancer Cell 2017; 31:208-224. [PMID: 28162974 PMCID: PMC5463996 DOI: 10.1016/j.ccell.2017.01.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
Abstract
UBE2O is localized in the 17q25 locus, which is known to be amplified in human cancers, but its role in tumorigenesis remains undefined. Here we show that Ube2o deletion in MMTV-PyVT or TRAMP mice profoundly impairs tumor initiation, growth, and metastasis, while switching off the metabolic reprogramming of tumor cells. Mechanistically, UBE2O specifically targets AMPKα2 for ubiquitination and degradation, and thereby promotes activation of the mTOR-HIF1α pathway. Notably, inactivation of AMPKα2, but not AMPKα1, abrogates the tumor attenuation caused by UBE2O loss, while treatment with rapamycin or inhibition of HIF1α ablates UBE2O-dependent tumor biology. Finally, pharmacological blockade of UBE2O inhibits tumorigenesis through the restoration of AMPKα2, suggesting the UBE2O-AMPKα2 axis as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Goeun Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyejin Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sun-Joong Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mi-Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James P Hwang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea.
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Golia B, Moeller GK, Jankevicius G, Schmidt A, Hegele A, Preißer J, Tran ML, Imhof A, Timinszky G. ATM induces MacroD2 nuclear export upon DNA damage. Nucleic Acids Res 2017; 45:244-254. [PMID: 28069995 PMCID: PMC5224513 DOI: 10.1093/nar/gkw904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/08/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
ADP-ribosylation is a dynamic post-translation modification that regulates the early phase of various DNA repair pathways by recruiting repair factors to chromatin. ADP-ribosylation levels are defined by the activities of specific transferases and hydrolases. However, except for the transferase PARP1/ARDT1 little is known about regulation of these enzymes. We found that MacroD2, a mono-ADP-ribosylhydrolase, is exported from the nucleus upon DNA damage, and that this nuclear export is induced by ATM activity. We show that the export is dependent on the phosphorylation of two SQ/TQ motifs, suggesting a novel direct interaction between ATM and ADP-ribosylation. Lastly, we show that MacroD2 nuclear export temporally restricts its recruitment to DNA lesions, which may decrease the net ADP-ribosylhydrolase activity at the site of DNA damage. Together, our results identify a novel feedback regulation between two crucial DNA damage-induced signaling pathways: ADP-ribosylation and ATM activation.
Collapse
Affiliation(s)
- Barbara Golia
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Giuliana Katharina Moeller
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Gytis Jankevicius
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Andreas Schmidt
- Zentrallabor für Proteinanalytik (Protein Analysis Unit), Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Anna Hegele
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Julia Preißer
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Mai Ly Tran
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Axel Imhof
- Zentrallabor für Proteinanalytik (Protein Analysis Unit), Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Gyula Timinszky
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
36
|
Barresi V, Castorina S, Musso N, Capizzi C, Luca T, Privitera G, Condorelli DF. Chromosomal instability analysis and regional tumor heterogeneity in colon cancer. Cancer Genet 2016; 210:9-21. [PMID: 28212810 DOI: 10.1016/j.cancergen.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/11/2016] [Accepted: 11/14/2016] [Indexed: 01/24/2023]
Abstract
Chromosomal instability (CIN) is classically defined as an increase in the rate at which numerical or structural chromosomal aberrations are acquired in a cancer cell. The number of somatic copy number abnormalities (CNAs) revealed by high resolution genomic array can be considered as a surrogate marker for CIN, but several points, related to sample processing and data analysis, need to be standardized. In this work we analyzed 51 CRC samples and matched normal mucosae by whole genome SNP arrays and compared different bioinformatics tools in order to identify broad (>25% of a chromosomal arm) and focal somatic copy number abnormalities (BCNAs and FCNAs respectively). In 15 tumors, two samples, separated by at least 1 cm, were taken from the same tumor mass (double-sampling pairs) in order to evaluate differences in detection of chromosomal abnormalities between distant regions of the same tumor and their influence on CIN quantitative and qualitative analysis. Our data show a high degree of correlation of the quantitative CIN index (somatic BCNA number) between distant tumor regions. On the contrary, a lower correlation is observed in terms of chromosomal distribution of BCNAs, as summarized by a simplified cytogenetic table. Quantitative or qualitative analysis of FCNAs, including homozygous deletions and high level amplifications, did not add further information on the CIN status. The use of the index "somatic BCNA number" can be proposed for a robust classification of tumors as CIN positive or negative even in the presence of a significant tumor regional heterogeneity.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy; Laboratory of Complex Systems, Scuola Superiore di Catania, University of Catania, Italy
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, University of Catania, Italy; Fondazione Mediterranea G.B. Morgagni, Catania, Italy
| | - Nicolò Musso
- Laboratory of Complex Systems, Scuola Superiore di Catania, University of Catania, Italy
| | - Carmela Capizzi
- Laboratory of Complex Systems, Scuola Superiore di Catania, University of Catania, Italy
| | - Tonia Luca
- Fondazione Mediterranea G.B. Morgagni, Catania, Italy
| | | | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy; Laboratory of Complex Systems, Scuola Superiore di Catania, University of Catania, Italy.
| |
Collapse
|
37
|
Maki M, Takahara T, Shibata H. Multifaceted Roles of ALG-2 in Ca(2+)-Regulated Membrane Trafficking. Int J Mol Sci 2016; 17:ijms17091401. [PMID: 27571067 PMCID: PMC5037681 DOI: 10.3390/ijms17091401] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
ALG-2 (gene name: PDCD6) is a penta-EF-hand Ca2+-binding protein and interacts with a variety of proteins in a Ca2+-dependent fashion. ALG-2 recognizes different types of identified motifs in Pro-rich regions by using different hydrophobic pockets, but other unknown modes of binding are also used for non-Pro-rich proteins. Most ALG-2-interacting proteins associate directly or indirectly with the plasma membrane or organelle membranes involving the endosomal sorting complex required for transport (ESCRT) system, coat protein complex II (COPII)-dependent ER-to-Golgi vesicular transport, and signal transduction from membrane receptors to downstream players. Binding of ALG-2 to targets may induce conformational change of the proteins. The ALG-2 dimer may also function as a Ca2+-dependent adaptor to bridge different partners and connect the subnetwork of interacting proteins.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
38
|
Xue Y, Wilcox WR. Changing paradigm of cancer therapy: precision medicine by next-generation sequencing. Cancer Biol Med 2016; 13:12-8. [PMID: 27144059 PMCID: PMC4850120 DOI: 10.28092/j.issn.2095-3941.2016.0003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Precision medicine aims to identify the right drug, for the right patient, at the right dose, at the right time, which is particularly important in cancer therapy. Problems such as the variability of treatment response and resistance to medication have been long-standing challenges in oncology, especially for development of new medications. Solid tumors, unlike hematologic malignancies or brain tumors, are remarkably diverse in their cellular origins and developmental timing. The ability of next-generation sequencing (NGS) to analyze the comprehensive landscape of genetic alterations brings promises to diseases that have a highly complex and heterogeneous genetic composition such as cancer. Here we provide an overview of how NGS is able to facilitate precision medicine and change the paradigm of cancer therapy, especially for solid tumors, through technical advancements, molecular diagnosis, response monitoring and clinical trials.
Collapse
Affiliation(s)
- Yuan Xue
- Fulgent Diagnostics, Temple City, CA 91780, USA
| | - William R Wilcox
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
39
|
Soubeyrand S, Martinuk A, Lau P, McPherson R. TRIB1 Is Regulated Post-Transcriptionally by Proteasomal and Non-Proteasomal Pathways. PLoS One 2016; 11:e0152346. [PMID: 27019349 PMCID: PMC4809572 DOI: 10.1371/journal.pone.0152346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
The TRIB1 gene has been associated with multiple malignancies, plasma triglycerides and coronary artery disease (CAD). Despite the clinical significance of this pseudo-kinase, there is little information on the regulation of TRIB1. Previous studies reported TRIB1 mRNA to be unstable, hinting that TRIB1 might be subject to post-transcriptional regulation. This work explores TRIB1 regulation, focusing on its post-transcriptional aspects. In 3 distinct model systems (HEK293T, HeLa and arterial smooth muscle cells) TRIB1 was undetectable as assessed by western blot. Using recombinant TRIB1 as a proxy, we demonstrate TRIB1 to be highly unstable at the protein and RNA levels. By contrast, recombinant TRIB1 was stable in cellular extracts. Blocking proteasome function led to increased protein steady state levels but failed to rescue protein instability, demonstrating that the 2 processes are uncoupled. Unlike as shown for TRIB2, CUL1 and TRCPβ did not play a role in mediating TRIB1 instability although TRCPβ suppression increased TRIB1 expression. Lastly, we demonstrate that protein instability is independent of TRIB1 subcellular localization. Following the identification of TRIB1 nuclear localization signal, a cytosolic form was engineered. Despite being confined to the cytosol, TRIB1 remained unstable, suggesting that instability occurs at a stage that precedes its nuclear translocation and downstream nuclear function. These results uncover possible avenues of intervention to regulate TRIB1 function by identifying two distinct regulatory axes that control TRIB1 at the post-transcriptional level.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
- * E-mail: (RM); (SS)
| | - Amy Martinuk
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
- * E-mail: (RM); (SS)
| |
Collapse
|