1
|
Meng L, Pan Y, Yonezawa R, Yang K, Bailey-Kobayashi N, Hashimoto N, Maeyama K, Yoshitake K, Kinoshita S, Yoshida T, Nagai K, Watabe S, Asakawa S. Identification and comparison of exosomal and non-exosomal microRNAs in mantle tissue of Pinctada fucata (Akoya pearl oyster). Int J Biol Macromol 2025; 309:142991. [PMID: 40210052 DOI: 10.1016/j.ijbiomac.2025.142991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
MicroRNAs (miRNA) are a class of endogenous non-coding small RNA molecules that are widely found in tissues, biological fluids, and vesicles such as exosomes. Exosomes are extracellular vesicles released from multivesicular bodies of various cell types. They are involved in intercellular communication and transport and immune regulation and may serve as potential biomarkers for diagnosis and monitoring. The function of exosomal miRNAs and their potential applications as biomarkers are a topic of interest. However, identification and comparison of miRNA expression in different biological sample types have rarely been studied. Therefore, in this study, the miRNA profiles of tissue- and tissue-derived exosomes of Pinctada fucata were characterized and compared to screen for differentially expressed miRNAs. The miRNAs functioned within tissues and were also packaged into exosomes. Simultaneously, some miRNAs were preferentially exported to exosomes for their biological functions. Functional analyses suggested that the predicted genes targeted by these differentially expressed miRNAs were extensively involved in intracellular vesicle trafficking and vesicle-mediated substrate transport. Overall, our findings provide insights into the roles of tissue-derived miRNAs and circulating exosomal miRNAs in cell communication and gene regulation. Moreover, this study serves as an additional reference for sample type selection for P. fucata small RNA analysis.
Collapse
Affiliation(s)
- Lingxin Meng
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yida Pan
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Ryo Yonezawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan; Signal Peptidome Research Laboratory, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Kaiqiao Yang
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | - Naoki Hashimoto
- Pearl Research Institute, MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie 516-8581, Japan
| | - Kazutoshi Yoshitake
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Shigeharu Kinoshita
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, TOAGOSEI CO., LTD., Tsukuba, Ibaraki 300-2611, Japan
| | - Kiyohito Nagai
- Pearl Research Institute, MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan; Signal Peptidome Research Laboratory, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
2
|
He C, Sun Y, Duan X, Wang W, Zhang C, Zhang H, Zheng H. The physiological and transcriptional differences between golden and brown noble scallops Chlamys nobilis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101498. [PMID: 40199050 DOI: 10.1016/j.cbd.2025.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Mollusks are the second Phylum in the Kingdom Animalia, which provide not only high-quality protein but also serves as a viewing function for humans due to the polymorphism in shell colors. However, the mechanisms of the differences in shell colors, especially on scallops, have rarely been studied. In this study, the shell and mantle of two different shell colors (golden and brown) of the noble scallops Chlamys nobilis were analyzed, including their microstructure, pigment content, and gene expression. The results showed that the golden scallop shell is golden from the outside to the inside, while the prismatic and nacreous layers in the brown scallop are lighter in color than the periostracum. Unlike the golden scallop, there was a layer of melanin vesicles at the edge of the brown scallop mantle. The total carotenoids content (TCC) in the mantle and shell of the golden scallop was significantly higher than that of the brown scallops (P < 0.05), but the melanin content was significantly lower than that of the brown scallop (P < 0.05). Candidate genes such as BCDO1, CYP5A, CYP2J, CYBA, EP300, and GNAO were screened from the differentially expressed genes (DEGs), and their differential expression may explain the differences in melanin and carotenoid content between the golden and brown scallops. These findings will help to understand the color polymorphism of noble scallops and provide a basis for further research on the inheritance of noble scallops.
Collapse
Affiliation(s)
- Cheng He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Yizhou Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Xixi Duan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Weili Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Chuanxu Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Hongkuan Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| |
Collapse
|
3
|
Jiang K, Yu H, Kong L, Liu S, Du S, Li Q. DOPA Decarboxylase (DDC) in Pacific Oysters: Characterization and Role in Tyrosine Metabolism and Melanogenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:59. [PMID: 40035897 DOI: 10.1007/s10126-025-10439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
DOPA decarboxylase (DDC) plays a crucial role in the physiological functions of animals by participating in the dopaminergic system. However, the functions of DDC in shellfish remain poorly understood. The Pacific oyster (Crassostrea gigas) is an extensively cultivated shellfish. In this study, we characterized a DDC gene, designated CgDDC, from C. gigas. The CgDDC gene encodes a protein that contains a Pyridoxal_deC domain, which features specific binding sites for pyridoxal-5'-phosphate (PLP) and L-DOPA. CgDDC exhibits a significantly higher expression level in the black shell oyster strain than the white strain. In vitro enzymatic reaction assays demonstrated that CgDDC catalyzes the conversion of L-DOPA to dopamine. In vivo experiments revealed that inhibiting CgDDC activity reduced the expression of genes associated with tyrosine metabolism. Furthermore, the knockdown of CgDDC caused a decline in cAMP level and reduced transcription of genes involved in the cAMP-mediated melanogenesis. Additionally, treatment with L-α-DOPA inhibited CgDDC enzyme activity and cAMP-mediated melanogenesis; however, dopamine supplementation countered this inhibition, maintaining gene expression and melanin content at baseline levels. Collectively, our findings suggest that CgDDC is intricately involved in regulating tyrosine metabolism and melanogenesis in C. gigas.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
4
|
Godoy-Diaz C, Llanos-Azócar K, Ruiz-Tagle GJ, Toro JE, Oyarzún PA, Valdés JA. Understanding Mantle Edge Pigmentation Through Comprehensive Transcriptomic Profiling of the Chilean Oyster ( Ostrea chilensis). BIOLOGY 2025; 14:145. [PMID: 40001912 PMCID: PMC11852028 DOI: 10.3390/biology14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
The Chilean oyster (Ostrea chilensis) is a flat oyster native to Chile and New Zealand. Over-exploitation has led to local extinctions in some areas. Two phenotypes, distinguished by dark or white mantle edge pigmentation, have been identified, with the dark-edged mantle oysters being more commercially valuable due to perceived quality. In this study, transcriptomic data were obtained from the mantles of both phenotypes. Total RNA was extracted of adult Chilean Oyster mantle, and samples were sequenced using HiSeq X Illumina technology. A total of 935,620,583 paired-end reads were de novo assembled, 50,908 transcripts produced, and a reference transcriptome created with 37.92% GC content and an N50 of 1929 bp. Functional annotation showed a total of 51,315 GO terms, with 21,322 annotations on Biological Process, 14,578 annotations on Molecular Functions, and 15,415 annotations on Cellular Component. The RNA-seq analysis revealed 746 differentially expressed transcripts, 573 up-regulated and 173 transcripts down-regulated, between dark- and white-mantle edge Chilean Oyster. KEGG enrichment analysis revealed notable differences in the expression profiles allowing the detection of differential expressed transcripts associated with specific pathways such as Ribosome, Citrate cycle, and Protein processing in endoplasmic reticulum. Other interesting differentially represented pathways include Tyrosine metabolism, Tryptophan metabolism, cAMP signaling pathway, ABC transporters, Notch signaling pathway, Endocytosis, and Calcium signaling pathway. This dataset provides a valuable molecular resource for O. chilensis and the understanding of the molecular mechanisms involved in mantle edge pigmentation.
Collapse
Affiliation(s)
- Camila Godoy-Diaz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Katalina Llanos-Azócar
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Gonzalo J. Ruiz-Tagle
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Valparaíso 2340000, Chile
| | - Jorge E. Toro
- Instituto de Ciencias Marinas y Limnológicas (ICML), Universidad Austral de Chile, Independencia 631, Valdivia 5090000, Chile
| | - Pablo A. Oyarzún
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Valparaíso 2340000, Chile
| | - Juan A. Valdés
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Valparaíso 2340000, Chile
| |
Collapse
|
5
|
Wang W, Ma Z, Li W, Xue Y, Moss AS, Wu M. Impact of β-Carotene Enrichment on Carotenoid Composition and Gene Expression in Artemia Metanauplii. Metabolites 2024; 14:676. [PMID: 39728457 DOI: 10.3390/metabo14120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Carotenoids play essential nutritional and physiological roles in aquatic animals. Since aquatic species cannot synthesize carotenoids de novo, they must obtain these compounds from their diet to meet the physiological and adaptive requirements needed in specific aquaculture stages and conditions. Carotenoid supplementation in Artemia represents a promising strategy to enhance pigmentation, health, and growth in aquaculture species, particularly in larvae and other early developmental stages. METHODS In this study, a β-carotene enrichment process was applied to Artemia metanauplii to investigate the biological fate and potential effects of β-carotene. RESULTS The results indicated significant β-carotene uptake by Artemia, with peak levels observed at 12 h. Alongside β-carotene, two xanthophylls-canthaxanthin and echinenone-were detected in Artemia, each exhibiting distinct patterns during the enrichment and subsequent depletion phases. The transcriptome analysis identified 2705 differentially expressed genes (DEGs), offering valuable insights into gene functions associated with carotenoid absorption, metabolism, and antioxidant mechanisms. The findings suggest that β-carotene enrichment enhances metabolic activity and energy pathways, supporting the physiological functions of Artemia. Notably, unlike other crustaceans, Artemia lack certain enzymes necessary for converting β-carotene into astaxanthin, restricting them to producing keto-carotenoids like canthaxanthin. Furthermore, the study highlights the upregulation of genes encoding lipid transport proteins, such as CD36 and ABC transporters, which may contribute to carotenoid absorption in Artemia. Additional functional insights are provided by the gene BCO2, which regulates pigmentation by preventing excessive carotenoid accumulation, along with ketolase and hydroxylase enzymes in carotenoid metabolic pathways. CONCLUSIONS This research advances our understanding of carotenoid metabolism in crustaceans, with potential implications for aquaculture nutrition and feed formulation.
Collapse
Affiliation(s)
- Weilong Wang
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai 201306, China
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201308, China
| | - Zhuojun Ma
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai 201306, China
| | - Weiquan Li
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai 201306, China
| | - Yucai Xue
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai 201306, China
| | - Amina S Moss
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Meiqin Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Li Q, Yu H, Li Q. Dual sgRNA-directed tyrosinases knockout using CRISPR/Cas9 technology in Pacific oyster (Crassostrea gigas) reveals their roles in early shell calcification. Gene 2024; 927:148748. [PMID: 38969245 DOI: 10.1016/j.gene.2024.148748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Biomineralization processes in bivalves, particularly the initial production of molecular components (such as matrix deposition and calcification) in the early stages of shell development are highly complex and well-organized. This study investigated the temporal dynamics of organic matrix and calcium carbonate (CaCO3) deposition in Pacific oysters (Crassostrea gigas) across various development stages. The shell-field initiated matrix secretion during the gastrula stage. Subsequent larval development triggered central shell-field calcification, accompanied by expansion of the calcium ring from its interior to the periphery. Notably, the expression patterns of CgTyrp-2 and CgTyr closely correlated with matrix deposition and calcification during early developmental stages, with peak expression occurring in oyster's gastrula and D-veliger stages. Subsequently, the CRISPR/Cas9 system was utilized to knock out CgTyrp-2 and CgTyr with more distinct phenotypic alterations observed when both genes were concurrently knocked out. The relative gene expression was analyzed post-knockout, indicating that the knockout of CgTyr or CgTyrp-2 led to reduced expression of CgChs1, along with increased expression of CgChit4. Furthermore, when dual-sgRNAs were employed to knockout CgTyrp-2, a large deletion (2 kb) within the CgTyrp-2 gene was identified. In summary, early shell formation in C. gigas is the result of a complex interplay of multiple molecular components with CgTyrp-2 and CgTyr playing key roles in regulating CaCO3 deposition.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Hu B, Yu H, Du S, Li Q. Protoporphyrin IX metabolism mediated via translocator protein (CgTspO) involved in orange shell coloration of pacific oyster (Crassostrea gigas). Int J Biol Macromol 2024; 276:134020. [PMID: 39038584 DOI: 10.1016/j.ijbiomac.2024.134020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Mollusc shell color polymorphism is influenced by various factors. Pigments secreted in vivo by animals play a critical role in shell coloration. Among the different shell-color hues, orange pigmentation has been partially attributed to porphyrins. However, the detailed causal relationship between porphyrins and orange-shell phenotype in molluscs remains largely unexplored. The various strains of Pacific oyster (Crassostrea gigas) with different shell color provide useful models to study the molecular regulation of mollusc coloration. Accordingly, oysters with orange and gold-shells, exhibiting distinct porphyrin distributions, were selected for analysis of total metabolites and gene expression profile through mantle metabolomic and transcriptomic studies. Translocator protein (TspO) and protoporphyrin IX (PPIX) were identified as potential factors influencing oyster shell-color. The concentration of PPIX was measured using HPLC, while expression profiling of CgTspO was analyzed by qPCR, in situ hybridization, Western blotting, and immunofluorescence techniques. Moreover, the roles of CgTspO in regulating PPIX metabolism and affecting the orange-shell-coloration were investigated in vitro and in vivo. These studies indicate that PPIX and its associated metabolic protein, CgTspO may serve as new regulators of orange-shell-coloration in C. gigas. Data of this study offer new insights into oyster shell coloration and enhancing understandings of mollusc shell color polymorphism.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Zhang Y, Geng S, Yu G, Hong Y, Hu B. Research progress on formation mechanism of pearl. Heliyon 2024; 10:e35015. [PMID: 39170518 PMCID: PMC11336291 DOI: 10.1016/j.heliyon.2024.e35015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Pearls are deeply cherished for their rich color and gorgeous luster, and their quality directly affects their value. Currently, the evaluation of pearl quality is mainly based on four aspects: color, shape, size and smoothness. The quality of pearls is influenced by a variety of factors, categorized into internal factors, such as the structural composition of the nacreous layer and genetic factors of the mussels, and external factors, including the aquaculture environment. Existing research results indicates that genetic factors are the dominant factor controlling the pearl quality. However, the macromolecules such as metal ions, organic pigments and various physical and chemical factors in the aquaculture water environment will also significantly impact pearl quality. Among these, matrix proteins are organic macromolecules found in the nacreous layer that play an important role in pearl quality. They participate in the deposition of calcium carbonate and the construction of the organic framework, affecting the pearls' size and shape. The color of pearls is influenced by the deposition of metal ions, the transport of organic pigments and the regulation of microstructure.
Collapse
Affiliation(s)
- Yingyu Zhang
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shiyu Geng
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guilan Yu
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yijiang Hong
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| | - Beijuan Hu
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
9
|
Chen S, Nie H, Huo Z, Yan X. Comprehensive analysis of differentially expressed mRNA, lncRNA and miRNA, and their ceRNA networks in the regulation of shell color in the Manila clam (Ruditapes philippinarum). Int J Biol Macromol 2024; 256:128404. [PMID: 38016607 DOI: 10.1016/j.ijbiomac.2023.128404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The regulatory mechanism of ceRNA network plays an important role in molecular function and biological processes, however, the molecular mechanism in the shell color of Ruditapes philippinarum has not yet been reported. In this study, we performed transcriptome sequencing on the mantle of R. philippinarum with different shell colors, and screened for mRNA, miRNA, and lncRNA. A total of 61 mRNAs, 3725 lncRNAs and 90 miRNAs were obtained from all the shell color comparison groups (all mRNAs, lncRNAs and miRNAs P < 0.05), and 7 mRNAs, 8 lncRNAs, and 4 miRNAs of the porphyrin pathway and melanin pathway were screened for competitive endogenous RNA (ceRNA) network construction. The results indicate that the ceRNA network composed of mRNA and lncRNA, centered around efu-miR-101, mle-bantam-3p, egr-miR-9-5p, and sma-miR-75p, may play a crucial regulatory role in shell color formation. This study reveals for the first time the mechanism of ceRNA regulatory networks in the shell color of R. philippinarum and providing important reference data for molecular breeding of shell color in R. philippinarum.
Collapse
Affiliation(s)
- Sitong Chen
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
10
|
Liu Y, Wang Z, Guo C, Li S, Li Y, Huang R, Deng Y. Transcriptome and exosome proteome analyses provide insights into the mantle exosome involved in nacre color formation of pearl oyster Pinctada fucata martensii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101151. [PMID: 37913699 DOI: 10.1016/j.cbd.2023.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Color polymorphisms in molluscan shells play an important economic in the aquaculture industry. Among bivalves, shell color diversity can reflect properties such as growth rate and tolerance. In pearl oysters, the nacre color of the donor is closely related to the pearl color. Numerous genes and proteins involved in nacre color formation have been identified within the exosomes of the mantle. In this study, we analyzed the carotenoids present in the mantle of gold- and silver-lipped pearl oysters, identifying capsanthin and xanthophyll as crucial pigments contributing to coloration. Transcriptome analysis of the mantle revealed several differentially expressed genes (DEGs) involved in color formation, including ferric-chelate reductase, mantle genes, and larval shell matrix proteins. We also isolated and identified exosomes from the mantles of both gold- and silver-lipped strains of the pearl oyster Pinctada fucata martensii, revealing the extracellular transition mechanism of coloration-related proteins. From these exosomes, we obtained a total of 1223 proteins, with 126 differentially expressed proteins (DEPs) identified. These proteins include those associated with carotenoid metabolism and Fe(III) metabolism, such as apolipoproteins, scavenger receptor proteins, β,β-carotene-15,15'-dioxygenase, ferritin, and ferritin heavy chains. This study may provide a new perspective on the nacre color formation process and the pathways involved in deposition within the pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Yong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziman Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengao Guo
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siyao Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youxi Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ronglian Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang 524088, China.
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China
| |
Collapse
|
11
|
Li Y, Mokrani A, Fu H, Shi C, Li Q, Liu S. Development of Nanopore sequencing-based full-length transcriptome database toward functional genome annotation of the Pacific oyster, Crassostrea gigas. Genomics 2023; 115:110697. [PMID: 37567397 DOI: 10.1016/j.ygeno.2023.110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The Pacific oyster (Crassostrea gigas) is a widely cultivated shellfish in the world, while its transcriptome diversity remains less unexplored due to the limitation of short reads. In this study, we used Oxford Nanopore sequencing to develop the full-length transcriptome database of C. gigas. We identified 77,920 full-length transcripts from 21,523 genes, and uncovered 9668 alternative splicing events and 87,468 alternative polyadenylation sites. Notably, a total of 16,721 novel transcripts were annotated in this work. Furthermore, integrative analysis of 25 publicly available RNA-seq datasets revealed the transcriptome diversity involved in post-transcriptional regulation in C. gigas. We further developed a Drupal based webserver, Cgtdb, which can be used for transcriptome visualization, sequence alignment, and functional genome annotation analyses. This work provides valuable resources and a useful tool for integrative analysis of various transcriptome datasets in C. gigas, which will serve as an essential reference for functional annotation of the oyster genome.
Collapse
Affiliation(s)
- Yin Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ahmed Mokrani
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Huiru Fu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chenyu Shi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
12
|
Li Z, Xu C, Yu H, Kong L, Liu S, Li Q. Effects of Dietary Cystine and Tyrosine Supplementation on Melanin Synthesis in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:537-547. [PMID: 37369882 DOI: 10.1007/s10126-023-10223-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Melanogenesis is a multistep process to produce melanin for dark pigmentation in skin coloration. Previous studies in vertebrates demonstrated that cystine and tyrosine amino acids are involved in the melanin synthesis. However, very little is known about the melanogenesis in bivalve. In this study, cystine supplementation for 30 days significantly upregulated the expression of CgB-aat1, CgCbs and CgTyr and pheomelanin content in the Pacific oyster Crassostrea gigas. Transmission electron microscope (TEM) results revealed more melanosomes in the connective tissue and melanin granules were secreted in epithelium of mantle. In contrast, tyrosine supplementation had no clear effect on melanogenesis except the gene expression changes of CgB-aat1 and CgCbs. In addition, prolonged supplementation of cystine or tyrosine for 60 days had a negative impact on melanogenesis. Indeed, after 60 days, expression of most of the melanin synthesis-related genes under study was decreased, and melanin content was significantly reduced, indicating that cystine and tyrosine might inhibit production of eumelanin and pheomelanin, respectively. In addition, in vitro analysis using primary cell culture from mantle tissue indicated that incubation with cystine, tyrosine, or B-AAT1 polypeptide, CBS/TYR recombinant proteins induced the increase of CgB-aat1 and CgCbs expression in a dose-dependent manner, suggesting the presence of a regulatory network in response to cystine and tyrosine amino acids intakes in pheomelanin synthesis-related gene expression. Taken together, these data indicate that cystine-CgB-aat1-CgCbs-CgTyr axis is a potential regulator of the pheomelanin biosynthesis pathway, and thus plays an important role in the mantle pigmentation in C. gigas. This work provides a new clue for selective cultivation of oyster strains with specific shell colors in bivalve breeding.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
13
|
Li M, Tang J, Yuan M, Huang B, Liu Y, Wei L, Han Y, Zhang X, Wang X, Yu G, Sang X, Fan N, Cai S, Zheng Y, Zhang M, Wang X. Outer fold is sole effective tissue among three mantle folds with regard to oyster shell colour. Int J Biol Macromol 2023; 241:124655. [PMID: 37121412 DOI: 10.1016/j.ijbiomac.2023.124655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Molluscs constitute the second largest phylum of animals in the world, and shell colour is one of their most important phenotypic characteristics. In this study, we found among three folds on the mantle edge of oyster, only the outer fold had the same colour as the shell. Transcriptome and mantle cutting experiment indicated that the outer fold may be mainly reflected in chitin framework formation and biomineralisation. There were obvious differences in SEM structure and protein composition between the black and white shell periostraca. The black shell periostraca had more proteins related to melanin biosynthesis and chitin binding. Additionally, we identified an uncharacterized protein gene (named as CgCBP) ultra-highly expressed only in the black outer fold and confirmed its function of chitin-binding and CaCO3 precipitation promoting. RNAi also indicated that CgCBP knockdown could change the structure of shell periostracum and reduce shell pigmentation. All these results suggest that the mantle outer fold plays multiple key roles in shell periostraca bioprocessing, and shell periostracum structure affected by chitin-binding protein is functionally correlated with shell pigmentation. The investigation of oyster shell periostracum structure and shell colour will provide a better understanding in pigmentation during biological mineralisation in molluscs.
Collapse
Affiliation(s)
- Mai Li
- School of Agriculture, Ludong University, Yantai, China
| | - Juyan Tang
- School of Agriculture, Ludong University, Yantai, China
| | | | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Guoxu Yu
- Changdao National Marine Park Management Center, Yantai, China
| | - Xiuxiu Sang
- School of Agriculture, Ludong University, Yantai, China
| | - Nini Fan
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Shuai Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
14
|
Transcription factor CgPOU3F4-like regulates expression of pheomelanin synthesis related gene CgB-aat1 in the Pacific oyster (Crassostrea gigas). Gene 2023; 861:147258. [PMID: 36754175 DOI: 10.1016/j.gene.2023.147258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
Previous study has found that b (0, +) -type amino acid transporter 1 (CgB-aat1) plays an essential role on mantle pigmentation in the Pacific oyster Crassostrea gigas. However, the molecular regulation of CgB-aat1 gene expression remains unclear. Herein, three POU domain family members, CgPOU2F1, CgPOU3F4-like and CgPOU4F3-X1 were characterized and they all had POUs and HOX domains, respectively, which were important in transcriptional regulation. CgPOU3F4-like gene expression was the highest in mantle edge. Subsequently, the dual-luciferase reporter result showed that the core regulatory region of CgB-aat1 gene was from -632 to -350 bp of promoter. In transient co-transfection assays, the strongest activity was activated only by CgPOU3F4-like, suggesting CgPOU3F4-like was a valid transcriptional activator of CgB-aat1 gene promoter. And the structural integrity of CgPOU3F4-like was essential for its activation function. In addition, site directed mutagenesis assay was applied to detect three key binding sites between CgPOU3F4-like and core region of CgB-aat1 gene promoter, and this interaction was verified by ChIP test. Furthermore, CgPOU3F4-like knockdown by RNA interference led to obvious decreases in CgB-aat1 and cystathionine beta-synthase (CgCbs) expressions at both mRNA and protein levels. Collectively, these results indicate that CgPOU3F4-like positively regulate CgB-aat1 gene expression and it may be a critical upstream transcriptional regulation factor in pheomelanin synthesis in C. gigas.
Collapse
|
15
|
Stenger P, Ky C, Vidal‐Dupiol J, Planes S, Reisser C. Identifying genes associated with genetic control of color polymorphism in the pearl oyster Pinctada margaritifera var. cumingii (Linnaeus 1758) using a comparative whole genome pool-sequencing approach. Evol Appl 2023; 16:408-427. [PMID: 36793698 PMCID: PMC9923487 DOI: 10.1111/eva.13464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
For hundreds of years, the color diversity of Mollusca shells has been a topic of interest for humanity. However, the genetic control underlying color expression is still poorly understood in mollusks. The pearl oyster Pinctada margaritifera is increasingly becoming a biological model to study this process due to its ability to produce a large range of colors. Previous breeding experiments demonstrated that color phenotypes were partly under genetic control, and while a few genes were found in comparative transcriptomics and epigenetic experiments, genetic variants associated with the phenotypes have not yet been investigated. Here, we used a pooled-sequencing approach on 172 individuals to investigate color-associated variants on three color phenotypes of economic interest for pearl farming, in three wild and one hatchery populations. While our results uncovered SNPs targeting pigment-related genes already identified in previous studies, such as PBGD, tyrosinases, GST, or FECH, we also identified new color-related genes occurring in the same pathways, like CYP4F8, CYP3A4, and CYP2R1. Moreover, we identified new genes involved in novel pathways unknown to be involved in shell coloration for P. margaritifera, like the carotenoid pathway, BCO1. These findings are essential to possibly implement future breeding programs focused on individual selection for specific color production in pearl oysters and improve the footprint of perliculture on the Polynesian lagoon by producing less but with a better quality.
Collapse
Affiliation(s)
| | - Chin‐Long Ky
- Ifremer, IRD, Institut Louis‐MalardéUniv Polynésie française, EIOVairaoFrance
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via DomitiaMontpellierFrance
| | - Jeremie Vidal‐Dupiol
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via DomitiaMontpellierFrance
| | - Serge Planes
- PSL Research University, EPHE‐UPVD‐CNRS, USR 3278 CRIOBE, Labex Corail, Université de PerpignanPerpignan CedexFrance
| | - Céline Reisser
- Ifremer, IRD, Institut Louis‐MalardéUniv Polynésie française, EIOVairaoFrance
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRDMontpellierFrance
| |
Collapse
|
16
|
Wang YQ, Liu Q, Zhou Y, Chen L, Yang YM, Shi X, Power DM, Li YF. Stage-Specific Transcriptomes of the Mussel Mytilus coruscus Reveals the Developmental Program for the Planktonic to Benthic Transition. Genes (Basel) 2023; 14:genes14020287. [PMID: 36833215 PMCID: PMC9957406 DOI: 10.3390/genes14020287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Many marine invertebrate larvae undergo complex morphological and physiological changes during the planktonic-benthic transition (a.k.a. metamorphosis). In this study, transcriptome analysis of different developmental stages was used to uncover the molecular mechanisms underpinning larval settlement and metamorphosis of the mussel, Mytilus coruscus. Analysis of highly upregulated differentially expressed genes (DEGs) at the pediveliger stage revealed enrichment of immune-related genes. The results may indicate that larvae co-opt molecules of the immune system to sense and respond to external chemical cues and neuroendocrine signaling pathways forecast and trigger the response. The upregulation of adhesive protein genes linked to byssal thread secretion indicates the anchoring capacity required for larval settlement arises prior to metamorphosis. The results of gene expression support a role for the immune and neuroendocrine systems in mussel metamorphosis and provide the basis for future studies to disentangle gene networks and the biology of this important lifecycle transformation.
Collapse
Affiliation(s)
- Yu-Qing Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qi Liu
- Aquatic Technology Promotion Station, Sanmen Rural Bureau, Taizhou 317199, China
| | - Yan Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lizhi Chen
- Aquatic Technology Promotion Station, Sanmen Rural Bureau, Taizhou 317199, China
| | - Yue-Ming Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xue Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deborah M. Power
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Comparative Endocrinology and Integrative Biology, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (D.M.P.); (Y.-F.L.)
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (D.M.P.); (Y.-F.L.)
| |
Collapse
|
17
|
He X, Wu F, Wang L, Li L, Zhang G. Integrated application of transcriptomics and metabolomics provides insights into condition index difference mechanisms in the Pacific oyster (Crassostrea gigas). Genomics 2022; 114:110413. [PMID: 35716821 DOI: 10.1016/j.ygeno.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/04/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022]
Abstract
The condition index (CI) is an economically important tool for assessing the quality of oysters, such as the Pacific oyster Crassostrea gigas. However, little is known about the mechanisms that underlie differences in CI between different C. gigas populations. In this study, we integrated transcriptomic and metabolomic profiling to investigate the mechanisms that underlie the differences between high- and low-CI groups in one- and two-year-old populations of C. gigas. The results indicate that differences in CI were associated with the regulation of growth-related genes, the FoxO signaling pathway, and the complex regulation of carbohydrate, lipid, amino acid, and energy metabolism. Moreover, the mechanisms underlying these differences differed between the populations. This study is the first to elucidate the molecular and chemical mechanisms associated with CI, and the results will be helpful for breeding higher quality oysters.
Collapse
Affiliation(s)
- Xin He
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100039, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Luping Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| |
Collapse
|
18
|
De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis. Gene 2022; 806:145929. [PMID: 34461150 DOI: 10.1016/j.gene.2021.145929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
The body color of Neocaridina denticulate sinensis is a compelling phenotypic trait, in which a cascade of carotenoid metabolic processes plays an important role. The study was conducted to compare the transcriptome of cephalothoraxes among three pigmentation phenotypes (red, blue, and chocolate) of N. denticulate sinensis. The purpose of this study was to explore the candidate genes associated with different colors of N. denticulate sinensis. Nine cDNA libraries in three groups were constructed from the cephalothoraxes of shrimps. After assembly, 75022 unigenes were obtained in total with an average length of 1026 bp and N50 length of 1876 bp. There were 45977, 25284, 23605, 21913 unigenes annotated in the Nr, Swissprot, KOG, and KEGG databases, respectively. Differential expression analysis revealed that there were 829, 554, and 3194 differentially expressed genes (DEGs) in RD vs BL, RD vs CH, and BL vs CH, respectively. These DEGs may play roles in the absorption, transport, and metabolism of carotenoids. We also emphasized that electron transfer across the inner mitochondrial membrane (IMM) was a key process in pigment metabolism. In addition, a total of 6328 simple sequence repeats (SSRs) were also detected in N. denticulate sinensis. The results laid a solid foundation for further research on the molecular mechanism of integument pigmentation in the crustacean and contributed to developing more attractive aquatic animals.
Collapse
|
19
|
Zhu Y, Li Q, Yu H, Liu S, Kong L. Shell Biosynthesis and Pigmentation as Revealed by the Expression of Tyrosinase and Tyrosinase-like Protein Genes in Pacific Oyster (Crassostrea gigas) with Different Shell Colors. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:777-789. [PMID: 34490547 DOI: 10.1007/s10126-021-10063-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The widely recognized color polymorphisms of molluscan shell have been appreciated for hundreds of years by collectors and scientists, while molecular mechanisms underlying shell pigmentation are still poorly understood. Tyrosinase is a key rate-limiting enzyme for the biosynthesis of melanin. Here, we performed an extensive multi-omics data mining and identified two tyrosinase genes, including tyrosinase and tyrosinase-like protein 2 (Tyr and Typ-2 respectively), in the Pacific oyster Crassostrea gigas, and investigated the expression patterns of tyrosinase during adults and embryogenesis in black and white shell color C. gigas. Tissue expression analysis showed that two tyrosinase genes were both specifically expressed in the mantle, and the expression levels of Tyr and Typ-2 in the edge mantle were significantly higher than that in the central mantle. Besides, Tyr and Typ-2 genes were black shell-specific compared with white shell oysters. In situ hybridization showed that strong signals for Tyr were detected in the inner surface of the outer fold, whereas positive signals for Typ-2 were mainly localized in the outer surface of the outer fold. In the embryos and larvae, the high expression of Tyr mRNA was detected in eyed-larvae, while Typ-2 mRNA was mainly expressed at the trochophore and early D-veliger. Furthermore, the tyrosinase activity in the edge mantle was significantly higher than that in the central mantle. These findings indicated that Tyr gene may be involved in shell pigmentation, and Typ-2 is more likely to play critical roles not only in the formation of shell prismatic layer but also in shell pigmentation. In particular, Typ-2 gene was likely to involve in the initial non-calcified shell of trochophores. The work provides valuable information for the molecular mechanism study of shell formation and pigmentation in C. gigas.
Collapse
Affiliation(s)
- Yijing Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
20
|
Li Z, Li Q, Liu S, Han Z, Kong L, Yu H. Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:417-429. [PMID: 33929611 DOI: 10.1007/s10126-021-10034-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Molluscan shell color polymorphism is important in genetic breeding, while the molecular information mechanism for shell coloring is unclear. Here, high-throughput RNA sequencing was used to compare expression profiles of coding and non-coding RNAs (ncRNAs) from Pacific oyster Crassostrea gigas with orange and black shell, which were from an F2 family constructed by crossing an orange shell male with a black shell female. First, 458, 13, and 8 differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, respectively. Functional analysis suggested that the DEGs were significantly enriched in 9 pathways including tyrosine metabolism and oxidative phosphorylation pathways. Several genes related to melanin synthesis and biomineralization expressed higher whereas genes associated with carotenoid pigmentation or metabolism expressed lower in orange shell oyster. Then, based on the ncRNA analysis, 163 and 20 genes were targeted by 13 and 8 differentially expressed lncRNAs (DELs) and miRNAs (DEMs), severally. Potential DELs-DEMs-DEGs interactions were also examined. Seven DEMs-DEGs pairs were detected, in which tyrosinase-like protein 1 was targeted by lgi-miR-133-3p and lgi-miR-252a and cytochrome P450 was targeted by dme-miRNA-1-3p. These results revealed that melanin synthesis-related genes and miRNAs-mRNA interactions functioned on orange shell coloration, which shed light on the molecular regulation of shell coloration in marine shellfish.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ziqiang Han
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
21
|
He X, Wu F, Zhang L, Li L, Zhang G. Comparative and evolutionary analyses reveal conservation and divergence of the notch pathway in lophotrochozoa. Sci Rep 2021; 11:11378. [PMID: 34059772 PMCID: PMC8166818 DOI: 10.1038/s41598-021-90800-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Lophotrochozoan species exhibit wide morphological diversity; however, the molecular basis underlying this diversity remains unclear. Here, we explored the evolution of Notch pathway genes across 37 metazoan species via phylogenetic and molecular evolutionary studies with emphasis on the lophotrochozoans. We displayed the components of Notch pathway in metazoans and found that Delta and Hes/Hey-related genes, as well as their functional domains, are duplicated in lophotrochozoans. Comparative transcriptomics analyses allow us to pinpoint sequence divergence of multigene families in the Notch signalling pathway. We identified the duplication mechanism of a mollusc-specific gene, Delta2, and found it displayed complementary expression throughout development. Furthermore, we found the functional diversification not only in expanded genes in the Notch pathway (Delta and Hes/Hey-related genes), but also in evolutionary conservative genes (Notch, Presenilin, and Su(H)). Together, this comprehensive study demonstrates conservation and divergence within the Notch pathway, reveals evolutionary relationships among metazoans, and provides evidence for the occurrence of developmental diversity in lophotrochozoans, as well as a basis for future gene function studies.
Collapse
Affiliation(s)
- Xin He
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| |
Collapse
|
22
|
Yu F, Lu Y, Zhong Z, Qu B, Wang M, Yu X, Chen J. Mitf Involved in Innate Immunity by Activating Tyrosinase-Mediated Melanin Synthesis in Pteria penguin. Front Immunol 2021; 12:626493. [PMID: 34093521 PMCID: PMC8173187 DOI: 10.3389/fimmu.2021.626493] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is an important transcription factor that plays a key role in melanogenesis, cell proliferation, survival and immune defense in vertebrate. However, its function and function mechanism in bivalve are still rarely known. In this research, first, a Mitf gene was characterized from Pteria penguin (P. penguin). The PpMitf contained an open reading frame of 1,350 bp, encoding a peptide of 449 deduced amino acids with a highly conserved basic helix-loop-helix-leucine zipper (bHLH-LZ) domain. The PpMITF shared 55.7% identity with amino acid sequence of Crassostrea gigas (C. gigas). Tissue distribution analysis revealed that PpMitf was highly expressed in mantle and hemocytes, which were important tissues for color formation and innate immunity. Second, the functions of PpMitf in melanin synthesis and innate immunity were identified. The PpMitf silencing significantly decreased the tyrosinase activity and melanin content, indicating PpMitf involved in melanin synthesis of P. penguin. Meanwhile, the PpMitf silencing clearly down-regulated the expression of PpBcl2 (B cell lymphoma/leukemia-2 gene) and antibacterial activity of hemolymph supernatant, indicating that PpMitf involved in innate immunity of P. penguin. Third, the function mechanism of PpMitf in immunity was analyzed. The promoter sequence analysis of tyrosinase (Tyr) revealed two highly conserved E-box elements, which were specifically recognized by HLH-LZ of MITF. The luciferase activities analysis showed that Mitf could activate the E-box in Tyr promoter through highly conserved bHLH-LZ domain, and demonstrated that PpMitf involved in melanin synthesis and innate immunity by regulating tyrosinase expression. Finally, melanin from P. penguin, the final production of Mitf-Tyr-melanin pathway, was confirmed to have direct antibacterial activity. The results collectively demonstrated that PpMitf played a key role in innate immunity through activating tyrosinase-mediated melanin synthesis in P. penguin.
Collapse
Affiliation(s)
- Feifei Yu
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Yishan Lu
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zhiming Zhong
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Bingliang Qu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Meifang Wang
- Ocean College, South China Agriculture University, Guangzhou, China
| | - Xiangyong Yu
- Ocean College, South China Agriculture University, Guangzhou, China
| | - Jiayu Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
23
|
Ding J, Wen Q, Huo Z, Nie H, Qin Y, Yan X. Identification of shell-color-related microRNAs in the Manila clam Ruditapes philippinarum using high-throughput sequencing of small RNA transcriptomes. Sci Rep 2021; 11:8044. [PMID: 33850162 PMCID: PMC8044141 DOI: 10.1038/s41598-021-86727-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 12/02/2022] Open
Abstract
Shell-color polymorphism is a common phenomenon in several mollusk species and has been associated with thermal capacity, developmental stability, shell strength, and immunity. Shell-color polymorphism has been related to the differential expression of genes in several signal transduction pathways; however, the functions of micro-RNAs (miRNAs) in shell-color formation remain unclear. In the present study, we compared high-quality, small-RNA transcriptomes in three strains of the Manila clam Ruditapes philippinarum with specific shell-color patterns, artificially selected for six generations. Totals of 114 known and 208 novel miRNAs were identified by high-throughput sequencing, of which nine known and one novel miRNA were verified by stem-loop quantitative real time-polymerase chain reaction. Predicted miRNA targets were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. miR-137 and miR-216b and the Hedgehog signaling pathway and Wnt signaling pathway were identified as being potentially involved in pigment formation and regulation in R. philippinarum. These results may help to clarify the role of miRNAs in shell coloration and shed light on the mechanisms regulating color formation in bivalve shells.
Collapse
Affiliation(s)
- Jianfeng Ding
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Qiang Wen
- Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Hongtao Nie
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Yanjie Qin
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Xiwu Yan
- Dalian Ocean University, Dalian, 116023, China.
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China.
| |
Collapse
|
24
|
Peñaloza C, Gutierrez AP, Eöry L, Wang S, Guo X, Archibald AL, Bean TP, Houston RD. A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. Gigascience 2021; 10:giab020. [PMID: 33764468 PMCID: PMC7992393 DOI: 10.1093/gigascience/giab020] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Pacific oyster (Crassostrea gigas) is a bivalve mollusc with vital roles in coastal ecosystems and aquaculture globally. While extensive genomic tools are available for C. gigas, highly contiguous reference genomes are required to support both fundamental and applied research. Herein we report the creation and annotation of a chromosome-level assembly for C. gigas. FINDINGS High-coverage long- and short-read sequence data generated on Pacific Biosciences and Illumina platforms were used to generate an initial assembly, which was then scaffolded into 10 pseudo-chromosomes using both Hi-C sequencing and a high-density linkage map. The assembly has a scaffold N50 of 58.4 Mb and a contig N50 of 1.8 Mb, representing a step advance on the previously published C. gigas assembly. Annotation based on Pacific Biosciences Iso-Seq and Illumina RNA-Seq resulted in identification of ∼30,000 putative protein-coding genes. Annotation of putative repeat elements highlighted an enrichment of Helitron rolling-circle transposable elements, suggesting their potential role in shaping the evolution of the C. gigas genome. CONCLUSIONS This new chromosome-level assembly will be an enabling resource for genetics and genomics studies to support fundamental insight into bivalve biology, as well as for selective breeding of C. gigas in aquaculture.
Collapse
Affiliation(s)
- Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Alejandro P Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Lél Eöry
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Shan Wang
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
25
|
Hu B, Li Q, Yu H, Du S. Identification and characterization of key haem pathway genes associated with the synthesis of porphyrin in Pacific oyster (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110595. [PMID: 33753220 DOI: 10.1016/j.cbpb.2021.110595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Molluscs exhibit diverse shell colors. The molecular regulation of shell coloration is however not well understood. To investigate the connection of shell coloration with pigment synthesis, we analyzed the distribution of porphyrins, a widespread group of pigments in nature, in four Pacific oyster strains of different shell colors including black, orange, golden, and white. The porphyrin distribution was analyzed in oyster mantles and shells by fluorescence imaging and UV spectrophotometer. The results showed that red fluorescence emitted by porphyrins under the UV light was detected only on the nacre of the orange-shell strain and mantles of orange, black and white-shell strains. Extracts from newly deposit shell, nacre and mantle tissue from orange-shell specimens showed peaks in UV-vis spectra that are characteristic of porphyrins, but these were not observed for the other shell-color strains. In addition, genes of the haem synthetic pathway were isolated and characterized. Phylogenetic analysis of CgALAS, CgALAD, CgPBGD, CgUROS, and CgUROD provide further evidence for a conserved genetic pathway of haem synthesis during evolution. Differential expression of the haem genes expressed in mantle tissues support these findings and are consistent with porphyrins being produced by the orange strain only. Tissue in situ hybridization demonstrated the expression of these candidate genes at the outer fold of C. gigas mantles where shell is deposited. Our studies provide a better understanding of shell pigmentation in C. gigas and candidate genes for future mechanistic analysis of shell color formation in molluscs.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Molecular Pathways and Pigments Underlying the Colors of the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus 1758). Genes (Basel) 2021; 12:genes12030421. [PMID: 33804186 PMCID: PMC7998362 DOI: 10.3390/genes12030421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
The shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster Pinctada margaritifera—the species displaying the broadest range of colors. Three inner shell colors were investigated—red, yellow, and green. To maximize phenotypic homogeneity, a controlled population approach combined with common garden conditioning was used. Comparative analysis of transcriptomes (RNA-seq) of P. margaritifera with different shell colors revealed the central role of the heme pathway, which is involved in the production of red (uroporphyrin and derivates), yellow (bilirubin), and green (biliverdin and cobalamin forms) pigments. In addition, the Raper–Mason, and purine metabolism pathways were shown to produce yellow pigments (pheomelanin and xanthine) and the black pigment eumelanin. The presence of these pigments in pigmented shell was validated by Raman spectroscopy. This method also highlighted that all the identified pathways and pigments are expressed ubiquitously and that the dominant color of the shell is due to the preferential expression of one pathway compared with another. These pathways could likely be extrapolated to many other organisms presenting broad chromatic variation.
Collapse
|
27
|
Liu J, Sun X, Nie H, Kifat J, Li J, Huo Z, Bi J, Yan X. Genome-wide identification and expression profiling of TYR gene family in Ruditapes philippinarum under the challenge of Vibrio anguillarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100788. [PMID: 33516925 DOI: 10.1016/j.cbd.2020.100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
Tyrosinase (EC1.14.18.1, TYR) is also called phenol oxidase, is not only involved in pigmentation but also plays an important role in modulating innate immunity in invertebrates. Tyrosinase is a copper containing metalloenzyme. The tyrosinase protein has two copper binding sites and three conserved histidines. In this study, 21 tyrosinase genes (RpTYR) were obtained from the whole genome of Ruditapes philippinarum. Their open reading frames were from 951 to 5424 aa, the range of predicted relative molecular weight from 36.72 to 203.81 kDa, and the range of isoelectric point from 4.72 to 9.88. Transcriptome analysis showed that RpTYR gene was expressed specifically in different developmental stages, adult tissues, four strains and two groups with different shell colors. Besides, the expression profiles of 21 RpTYRs were investigated against the immune response of R. philippinarum to a Vibrio challenge. The qPCR results showed that RpTYRs were involved in the immune response of R. philippinarum after Vibrio anguillarum challenge. This study provides preliminary evidence that the tyrosinases genes are involved in the immune defense and the potential immune function of R. philippinarum. Overall, these findings suggested that the expansion of TYR genes may play vital roles in larval development, the formation of shell color pattern, and immune response in R. philippinarum.
Collapse
Affiliation(s)
- Jie Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiaotong Sun
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Jahan Kifat
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Jinlong Li
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Jinhong Bi
- Rongcheng Marine Economic Development Center, 264300 Rongcheng, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| |
Collapse
|
28
|
Integrated analysis of microRNA and mRNA expression profiles in Crassostrea gigas to reveal functional miRNA and miRNA-targets regulating shell pigmentation. Sci Rep 2020; 10:20238. [PMID: 33214602 PMCID: PMC7678851 DOI: 10.1038/s41598-020-77181-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) regulate post-transcription gene expression by targeting genes and play crucial roles in diverse biological processes involving body color formation. However, miRNAs and miRNA-targets underlying shell color polymorphism remain largely unknown in mollusca. Using four shell colors full-sib families of the Pacific oyster Crassostrea gigas, we systematically identified miRNAs and miRNA-targets in the mantles, which organ could produce white, golden, black or partially pigmented shell. RNA sequencing and analysis identified a total of 53 known miRNA and 91 novel miRNAs, 47 of which were detected to differentially express among six pairwise groups. By integrating miRNA and mRNA expression profiles, a total of 870 genes were predicted as targets of differentially expressed miRNAs, mainly involving in biomineralization and pigmentation through functional enrichment. Furthermore, a total of four miRNAs and their target mRNAs were predicted to involve in synthesis of melanin, carotenoid or tetrapyrrole. Of them, lgi-miR-317 and its targets peroxidase and lncRNA TCONS_00951105 are implicated in acting as the competing endogenous RNA to regulate melanogenesis. Our studies revealed the systematic characterization of miRNAs profiles expressed in oyster mantle, which might facilitate understanding the intricate molecular regulation of shell color polymorphism and provide new insights into breeding research in oyster.
Collapse
|
29
|
Auffret P, Le Luyer J, Sham Koua M, Quillien V, Ky CL. Tracing key genes associated with the Pinctada margaritifera albino phenotype from juvenile to cultured pearl harvest stages using multiple whole transcriptome sequencing. BMC Genomics 2020; 21:662. [PMID: 32977773 PMCID: PMC7517651 DOI: 10.1186/s12864-020-07015-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Albino mutations are commonly observed in the animal kingdom, including in bivalves. In the black-lipped pearl oyster Pinctada margaritifera, albino specimens are characterized by total or partial absence of colouration resulting in typical white shell phenotype expression. The relationship of shell colour with resulting cultured pearl colour is of great economic interest in P. margaritifera, on which a pearl industry is based. Hence, the albino phenotype provides a useful way to examine the molecular mechanisms underlying pigmentation. RESULTS Whole transcriptome RNA-sequencing analysis comparing albino and black wild-type phenotypes at three stages over the culture cycle of P. margaritifera revealed a total of 1606, 798 and 187 differentially expressed genes in whole juvenile, adult mantle and pearl sac tissue, respectively. These genes were found to be involved in five main molecular pathways, tightly linked to known pigmentation pathways: melanogenesis, calcium signalling pathway, Notch signalling pathway, pigment transport and biomineralization. Additionally, significant phenotype-associated SNPs were selected (N = 159), including two located in the Pif biomineralization gene, which codes for nacre formation. Interestingly, significantly different transcript splicing was detected between juvenile (N = 1366) and adult mantle tissue (N = 313) in, e.g., the tyrosinase Tyr-1 gene, which showed more complex regulation in mantle, and the Notch1 encoding gene, which was upregulated in albino juveniles. CONCLUSION This multiple RNA-seq approach provided new knowledge about genes associated with the P. margaritifera albino phenotype, highlighting: 1) new molecular pathways, such as the Notch signalling pathway in pigmentation, 2) associated SNP markers with biomineraliszation gene of interest like Pif for marker-assisted selection and prevention of inbreeding, and 3) alternative gene splicing for melanin biosynthesis implicating tyrosinase.
Collapse
Affiliation(s)
- Pauline Auffret
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Jérémy Le Luyer
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Manaarii Sham Koua
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Virgile Quillien
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
- Ifremer, UMR LEMAR UBO CNRS Ifremer IRD 6539, ZI Pointe Diable CS 10070, F-29280 Plouzane, France
| | - Chin-Long Ky
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, F-34090 Montpellier, France
| |
Collapse
|
30
|
Genome-wide identification, characterisation and expression analysis of the ALAS gene in the Yesso scallop (Patinopecten yessoensis) with different shell colours. Gene 2020; 757:144925. [PMID: 32622991 DOI: 10.1016/j.gene.2020.144925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/13/2020] [Accepted: 06/27/2020] [Indexed: 12/19/2022]
Abstract
Porphyrins, one of the most common shell pigments, are by-products of the haem pathway. 5-Aminolaevulinate synthase (ALAS) is the first and rate-limiting enzyme in this pathway and has been well studied in vertebrate species. However, the function of ALAS in shell colouration has been poorly studied in molluscs, which are renowned for their colourful shells. In the present study, an ALAS gene, named PyALAS, was identified through whole-genome scanning in the Yesso scallop (Patinopecten yessoensis), an economically and evolutionarily important bivalve species in which the shell colour represents polymorphism. Two conserved domains were detected in the PyALAS protein sequence, including a Preseq-ALAS domain and a 5-ALAS domain, confirming the identification of PyALAS. Phylogenetic analysis of the ALAS proteins among various invertebrate and vertebrate species revealed a high consistency between the molecular evolution of ALAS and the species taxonomy. PyALAS was ubiquitously expressed in most adult tissues of the Yesso scallop. The left mantle expressed a significantly higher level of PyALAS than the right side in brown scallops, whereas there was no significant difference in white scallops. Significantly different expression levels of PyALAS was also detected between the two different shell colour strains. These data indicate that PyALAS plays an important role in shell colouration in Yesso scallops and the present study provides new insights into the molecular mechanism of shell colouration in molluscs.
Collapse
|
31
|
Johnson KM, Kelly MW. Population epigenetic divergence exceeds genetic divergence in the Eastern oyster Crassostrea virginica in the Northern Gulf of Mexico. Evol Appl 2020; 13:945-959. [PMID: 32431745 PMCID: PMC7232765 DOI: 10.1111/eva.12912] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/23/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Populations may respond to environmental heterogeneity via evolutionary divergence or phenotypic plasticity. While evolutionary divergence occurs through DNA sequence differences among populations, plastic divergence among populations may be generated by changes in the epigenome. Here, we present the results of a genome-wide comparison of DNA methylation patterns and genetic structure among four populations of Eastern oyster (Crassostrea virginica) in the northern Gulf of Mexico. We used a combination of restriction site-associated DNA sequencing (RADseq) and reduced representation bisulfite sequencing (RRBS) to explore population structure, gene-wide averages of F ST, and DNA methylation differences between oysters inhabiting four estuaries with unique salinity profiles. This approach identified significant population structure despite a moderately low F ST (0.02) across the freshwater boundary of the Mississippi river, a finding that may reflect recent efforts to restore oyster stock populations. Divergence between populations in CpG methylation was greater than for divergence in F ST, likely reflecting environmental effects on DNA methylation patterns. Assessment of CpG methylation patterns across all populations identified that only 26% of methylated DNA was intergenic; and, only 17% of all differentially methylated regions (DMRs) were within these same regions. DMRs within gene bodies between sites were associated with genes known to be involved in DNA damage repair, ion transport, and reproductive timing. Finally, when assessing the correlation between genomic variation and DNA methylation between these populations, we observed population-specific DNA methylation profiles that were not directly associated with single nucleotide polymorphisms or broader gene-body mean F ST trends. Our results suggest that C. virginica may use DNA methylation to generate environmentally responsive plastic phenotypes and that there is more divergence in methylation than divergence in allele frequencies.
Collapse
Affiliation(s)
- Kevin M. Johnson
- Department of Biological SciencesLouisiana State UniversityBaton RougeLAUSA
| | - Morgan W. Kelly
- Department of Biological SciencesLouisiana State UniversityBaton RougeLAUSA
| |
Collapse
|
32
|
Hu Z, Song H, Zhou C, Yu ZL, Yang MJ, Zhang T. De novo assembly transcriptome analysis reveals the preliminary molecular mechanism of pigmentation in juveniles of the hard clam Mercenaria mercenaria. Genomics 2020; 112:3636-3647. [PMID: 32353476 DOI: 10.1016/j.ygeno.2020.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
Color plays a vital function in camouflage, sexual selection, immunity, and evolution. Mollusca possess vivid shell colors and pigmentation starts at the juvenile stage. The hard clam Mercenaria mercenaria is a widely cultivated bivalve of high economic value. To explore the molecular mechanism of pigmentation in juvenile clams, here, we performed RNA-Seq analysis on non-pigmented, white, and red M. mercenaria specimens. Clean reads were assembled into 358,285 transcripts and 149,234 unigenes, whose N50 lengths were 2107 bp and 1567 bp, respectively. Differentially expressed genes were identified and analyzed for KEGG enrichment. "Melanoma/Melanogenesis", "ABC transporters", and "Porphyrin and chlorophyll metabolism" pathways appeared to be associated with pigmentation. Pathways related to carotenoid metabolism seemed to also play a vital role in pigmentation in juveniles. Our results provide new insights into the formation of shell color in juvenile hard clams.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
33
|
Nie H, Jiang K, Jiang L, Huo Z, Ding J, Yan X. Transcriptome analysis reveals the pigmentation related genes in four different shell color strains of the Manila clam Ruditapes philippinarum. Genomics 2020; 112:2011-2020. [DOI: 10.1016/j.ygeno.2019.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 01/21/2023]
|
34
|
Zhao Y, Zhu X, Han Z, Zhang Y, Dong T, Li Y, Dong J, Wei H, Li X. Comparative analysis of transcriptomes from different coloration of Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 98:515-521. [PMID: 32001357 DOI: 10.1016/j.fsi.2020.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Chinese mitten crab Eriocheir sinensis is probably the most important freshwater cultured crab in China. A tiny minority of brownish-orange individuals have been discovered in the long period of artificial breeding history of E. sinensiss. Those mutants are usually accompanied with slow growth rate, low molting frequency and poor survival rate, which may be the results of growth defects and immunodeficiency. To better understand the relationship between body color determination and the immune system as well as the related genes expression in E. sinensiss, we performed the whole-body transcriptome analysis in different color of first stage zoea (ZI) larvae using next-generation sequencing (NGS) technology. We randomly assembled 175.40 and 177.52million clean reads from the wild and mutant ZIs, respectively. Finally, we identified 7153 differentially expressed genes (DEGs) (p < 0.05), with 5194 up-regulated and 1959 down-regulated. A total of 13 KEGG pathways related to immune system were detected among 248 pathways. Except the first whole-body RNA sequencing of color-specific transcriptomes for E. sinensis, this study will offer a better understanding of the underlying molecular mechanisms of interaction between color determination and the immune system.
Collapse
Affiliation(s)
- Yingying Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaochen Zhu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhibin Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yazhao Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tengfei Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingdong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hua Wei
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaodong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Panjin Guanghe Crab Industry Co.Ltd., Panjin, 124000, China.
| |
Collapse
|
35
|
Ren G, Chen C, Jin Y, Zhang G, Hu Y, Shen W. A Novel Tyrosinase Gene Plays a Potential Role in Modification the Shell Organic Matrix of the Triangle Mussel Hyriopsis cumingii. Front Physiol 2020; 11:100. [PMID: 32153421 PMCID: PMC7045039 DOI: 10.3389/fphys.2020.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Although tyrosinases have been speculated to participate in the shell formation of mollusks, there is still a lack of experimental evidence to support this assumption. In this study, a novel tyrosinase designated HcTyr2 was isolated and characterized from the freshwater mussel Hyriopsis cumingii. The change in HcTyr2 mRNA expression during the process of embryonic development was detected by real-time quantitative PCR. The result showed that the expression of HcTyr2 mRNA was significantly upregulated at the stages of gastrulae and unmatured glochidia (P < 0.05), suggesting that this gene might fundamentally participate in the biogenesis and growth of the initial shell. Meanwhile, the upregulation of HcTyr2 mRNA at the stages of shell regeneration 24 h and 9 days after shell notching in the mantle edge (P < 0.05) implied that it might play an important role in shell periostracum and nacre formation by mediating the cross-linking of quinoproteins to promote the maturity of organic matrix. Additionally, the knockdown of HcTyr2 mRNA by RNA interference resulted in not only the suppression of periostracum growth but also structural disorder of nacre aragonite tablets, as detected by scanning electron microscopy. These results suggested that HcTyr2 might regulate the growth of shell by its oxidative ability to transform soluble matrix proteins into insoluble matrix proteins, then promoting the maturity of the shell organic framework in H. cumingii. In general, our results suggested the importance of HcTyr2 in the shell formation and regeneration of H. cumingii.
Collapse
Affiliation(s)
- Gang Ren
- School of Life Sciences, Shaoxing University, Shaoxing, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chao Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Yefei Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Genfang Zhang
- College of Agriculture and Bioengineering, Jinhua Polytechnic, Jinhua, China
| | - Yiwei Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenying Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| |
Collapse
|
36
|
Jiang K, Jiang L, Nie H, Huo Z, Yan X. Molecular cloning and expression analysis of tyrosinases ( tyr) in four shell-color strains of Manila clam Ruditapes philippinarum. PeerJ 2020; 8:e8641. [PMID: 32110498 PMCID: PMC7032058 DOI: 10.7717/peerj.8641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022] Open
Abstract
The Manila clam (Ruditapes philippinarum) is an economically important molluscan bivalve with variation in pigmentation frequently observed in the shell. In nature, tyrosinase is widely distributed in invertebrates and vertebrates, and plays a crucial role in a variety of physiological activities. In this study, a tyrosinase gene (tyr 9) was cloned and the expression level of tyr genes (tyr 6, tyr 9, tyr 10, and tyr 11) were investigated in different shell colors. Quantitative real-time PCR showed that tyr genes were significantly expressed in the mantle, a shell formation and pigmentation-related tissue. Moreover, the expression pattern of the tyr genes in the mantle of different shell-color strains was different, suggesting that tyrosinases might be involved in different shell-color formation. In addition, the expression profile of tyr 6, tyr 9, tyr 10, and tyr 11 genes were detected at different early developmental stages and the expression level varied with embryonic and larval growth. RNA interference (RNAi) results showed that the expression level of tyr 9 in the RNAi group was significantly down-regulated compared to control and negative control groups, indicating that Rptyr 9 might participate in shell-color formation. Our results indicated that tyr genes were likely to play vital roles in the formation of shell and shell-color in R. philippinarum.
Collapse
Affiliation(s)
- Kunyin Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Liwen Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
37
|
Nie H, Jiang K, Li N, Jahan K, Jiang L, Huo Z, Yan X. Transcriptome analysis reveals the pigmentation-related genes in two shell color strains of the Manila clam Ruditapes philippinarum. Anim Biotechnol 2020; 32:439-450. [PMID: 31967493 DOI: 10.1080/10495398.2020.1714635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Manila clam, Ruditapes philippinarum, is an ecologically and economically important marine bivalve species. In this study, we conducted transcriptomic sequencing of two different shell color strains (O and Z) before color appearance (uncolored juvenile clam) and pigmented shell color (colored juvenile clam) and investigated the analysis of the differential expression patterns of specific genes associated with pigmentation by RNA-seq and time course qPCR analysis. The transcription level of 16 differentially expressed genes (DEGs) related with shell color was analyzed by qRT-PCR to validate the performance of RNA-seq from Illumina sequence data where most of them were up-regulated. Two genes were down-regulated after the occurrence of zebra clam stripes compared with uncolored zebra clam. The trend of gene expression obtained by qPCR was basically consistent with that of RNA-seq. The synthesis of melanin in bivalves plays potential roles in the pigmentation of the shell and is closely related to the formation of the surface pattern. The porphyrin metabolism combined with tyrosinase and melanogenesis signaling pathway is a novel finding in shell color determination of R. philippinarum. This study sheds light on the pigmentation and coloration mechanism of the Manila clam.
Collapse
Affiliation(s)
- Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Ning Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Kifat Jahan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Liwen Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| |
Collapse
|
38
|
Bonnard M, Boury B, Parrot I. Key Insights, Tools, and Future Prospects on Oyster Shell End-of-Life: A Critical Analysis of Sustainable Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:26-38. [PMID: 31657905 DOI: 10.1021/acs.est.9b03736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oyster farming represents one of the most developed aquaculture activities, producing delicacies unfortunately related to a direct accumulation of waste shells. Facing what is becoming an environmental issue, chemists are currently developing solutions to add value to this wild source of raw material in line with the principles of sustainable chemistry. An argumentative overview of this question is proposed here with a focus on recent data. Starting with a presentation of the environmental impact of oyster farming, existing and promising applications are then classified according to the type of raw materials derived from the oyster shell, namely the natural oyster shell (NOS), the calcined natural oyster shell (CNOS), and biomolecules of the organic matrix extracted from the oyster shell. Their relevance is discussed in regard to their scalability, originality, and sustainability. This review constitutes the first critical compilation on oyster shell applications, with the aim to provide essential elements to better comprehend the recycling of waste oyster shells.
Collapse
Affiliation(s)
- Michel Bonnard
- Institut des Biomolécules Max Mousseron, CNRS, Université Montpellier, ENSCM, Montpellier 34095, France
- Tarbouriech-Médithau, Marseillan 34340, France
| | - Bruno Boury
- Institut Charles Gerhardt, CNRS, Université Montpellier, ENSCM, Montpellier 34095, France
| | - Isabelle Parrot
- Institut des Biomolécules Max Mousseron, CNRS, Université Montpellier, ENSCM, Montpellier 34095, France
| |
Collapse
|
39
|
Mao J, Zhang W, Wang X, Song J, Yin D, Tian Y, Hao Z, Han B, Chang Y. Histological and Expression Differences Among Different Mantle Regions of the Yesso Scallop (Patinopecten yessoensis) Provide Insights into the Molecular Mechanisms of Biomineralization and Pigmentation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:683-696. [PMID: 31385168 DOI: 10.1007/s10126-019-09913-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The molecular mechanisms of shell formation and pigmentation are issues of great interest in molluscan studies due to the unique physical and biological properties of shells. The Yesso scallop, Patinopecten yessoensis, is one of the most important maricultural bivalves in Asian countries, and its shell color shows polymorphism. To gain more information about the underlying mechanisms of shell formation and pigmentation, this study presents the first analyses of histological and transcriptional differences between different mantle regions of the Yesso scallop, which are thought to be responsible for the formation of different shell layers. The results showed major microstructural differences between the edge and central mantles, which were closely associated with their functions. Different biomineralization-related GO functions, which might participate in the formation of different shell layers, were significantly enriched in the different mantle regions, indicating the different molecular functions of the two mantle regions in shell formation. The melanogenesis pathway, which controls melanin biosynthesis, was the most significantly enriched pathway in the DEGs between the two mantle regions, indicating its important role in shell pigmentation. Tyr, the key and rate-limiting gene in melanogenesis, was expressed at a remarkably high level in the central mantle, while the upstream regulatory genes included in melanogenesis were mainly upregulated in the edge mantle, suggesting the different molecular functions of the two mantle regions in shell pigmentation.
Collapse
Affiliation(s)
- Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenjing Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bing Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
40
|
miR-4504 is involved in nacre color formation in Hyriopsis cumingii. Biochem Biophys Res Commun 2019; 517:210-215. [DOI: 10.1016/j.bbrc.2019.07.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
|
41
|
Hu Z, Song H, Yang MJ, Yu ZL, Zhou C, Wang XL, Zhang T. Transcriptome analysis of shell color-related genes in the hard clam Mercenaria mercenaria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100598. [DOI: 10.1016/j.cbd.2019.100598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/31/2023]
|
42
|
Yan X, Nie H, Huo Z, Ding J, Li Z, Yan L, Jiang L, Mu Z, Wang H, Meng X, Chen P, Zhou M, Rbbani MG, Liu G, Li D. Clam Genome Sequence Clarifies the Molecular Basis of Its Benthic Adaptation and Extraordinary Shell Color Diversity. iScience 2019; 19:1225-1237. [PMID: 31574780 PMCID: PMC6831834 DOI: 10.1016/j.isci.2019.08.049] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/05/2019] [Accepted: 08/27/2019] [Indexed: 11/04/2022] Open
Abstract
Ruditapes philippinarum is an economically important bivalve with remarkable diversity in its shell coloration patterns. In this study, we sequenced the whole genome of the Manila clam and investigated the molecular basis of its adaptation to hypoxia, acidification, and parasite stress with transcriptome sequencing and an RNA sequence analysis of different tissues and developmental stages to clarify these major issues. A number of immune-related gene families are expanded in the R. philippinarum genome, such as TEP, C3, C1qDC, Hsp70, SABL, and lysozyme, which are potentially important for its stress resistance and adaptation to a coastal benthic life. The transcriptome analyses demonstrated the dynamic and orchestrated specific expression of numerous innate immune-related genes in response to experimental challenge with pathogens. These findings suggest that the expansion of immune- and stress-related genes may play vital roles in resistance to adverse environments and has a profound effect on the clam's adaptation to benthic life. We present a new genome assembly of the Manila clam Ruditapes philippinarum Analysis of gene family expansions and transcriptome characterization were conducted Tyr and mitf genes were potentially involved in shell color patterns of Manila clam Expansion of GPCRs and immune-related genes were found in R. philippinarum
Collapse
Affiliation(s)
- Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jianfeng Ding
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhenzhen Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Lulu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Liwen Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhengqiang Mu
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Huamin Wang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiangyu Meng
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Peng Chen
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Mengyan Zhou
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Md Golam Rbbani
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Guangjian Liu
- Novogene Bioinformatics Institute, Beijing 100083, China.
| | - Dongdong Li
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
43
|
Feng D, Li Q, Yu H. RNA Interference by Ingested dsRNA-Expressing Bacteria to Study Shell Biosynthesis and Pigmentation in Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:526-536. [PMID: 31093810 DOI: 10.1007/s10126-019-09900-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
RNA interference (RNAi) is an important molecular tool for analysis of gene function in vivo. Although the Pacific oyster Crassostrea gigas is an economically important species with fully sequenced genome, very few mechanistic studies have been carried out due to the lack of molecular techniques to alter gene expression without inducing stress. In this present study, we used unicellular alga Platymonas subcordiformis and Nitzschia closterium f. minutissima as a vector to feed oysters with Escherichia coli strain HT115 engineered to express double-stranded RNAs (dsRNAs) targeting specific genes involved in shell pigmentation. A C. gigas strain with black shell was used to target tyrosinase or peroxidase gene expression by RNAi using the above-mentioned approach. The results showed that feeding oyster with dsRNA of tyrosinase could knock down the expression of corresponding tyrosinase and hinder the developed shell growth. Feeding oyster with dsRNA of peroxidase could knock down the expression of the corresponding peroxidase and result in reduced black pigmentation in the newly developed shell. This non-invasive RNAi study demonstrated that tyrosinase played a vital role in the assembly and maturation of shell matrices and peroxidase was essential for black pigmentation in the shell. Moreover, the RNA interference by ingested dsRNA-expressing bacteria is a relatively simple and effective method for knockdown of a gene expression in adult oysters, thus further advances the use of C. gigas as model organism in functional genomic studies.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
44
|
Lou F, Han Z, Gao T. Transcriptomic Responses of Two Ecologically Divergent Populations of Japanese Mantis Shrimp ( Oratosquilla oratoria) under Thermal Stress. Animals (Basel) 2019; 9:ani9070399. [PMID: 31262058 PMCID: PMC6680513 DOI: 10.3390/ani9070399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Rising ocean temperature would change the seawater chemistry and affect the external and internal physiology of crustaceans due to their lack of certain efficient temperature regulators. In addition, the infraspecific populations of crustaceans might also have different response strategies to the rising of temperature. Therefore, we identified the transcriptomic variations to the same thermal stress between ecologically divergent populations of Oratosquilla oratoria. The aim of this study was to investigate the population-specific function genes and relevant pathways in response to thermal stress in O. oratoria. The results showed that gene-expressed variation was in a population-specific pattern, which indicated that the local environment could lead to the evolvement of changes in gene regulation, ultimately leading to adaptive divergences. Additionally, we found several genes with large pleiotropic effects in the Zhoushan population, which might indicate that the regulation mechanisms of the Zhoushan population were more efficient than those of the Qingdao population under same thermal stress. The results provided some novel insights into the local adaptive differences of the infraspecific populations of O. oratoria and other crustaceans. Abstract Crustaceans are generally considered more sensitive to ocean warming due to their lack of certain efficient regulators. However, the alterations in the physiology and behavior of crustaceans in response to thermal stress differ vastly even among the infraspecific populations of heterogeneous landscapes. Consequently, understanding the impact of temperature fluctuation on crustacean infraspecific populations might be essential for maintaining a sustainable persistence of populations at existing locations. In the present study, we chose the Japanese mantis shrimp (Oratosquilla oratoria) as the representative crustacean population, and conducted transcriptome analyses in two divergent O. oratoria populations (the Zhoushan and Qingdao populations) under same thermal stress (20–28 °C) to identify the population-specific expression response to thermal stress. The results showed significant differences in gene expressions, GO terms and metabolic pathways between the two populations. We hypothesized that intraspecific mutations in the same or different genes might lead to thermal adaptive divergences. Temperature increases from 20–28 °C produced significant enrichment in GO terms and altered the metabolic pathways in the Zhoushan population despite the lack of differentially expressed unigenes. Therefore, several functional genes with large pleiotropic effects may underlie the response to thermal stress in the Zhoushan population. Furthermore, the most significantly enriched biological processes of the Qingdao population were associated with the state or activity of cells and its significant enriched pathways with genetic information processing as well as immune and environmental information processing. In contrast, the differentially regulated unigenes of the Zhoushan population were primarily involved in the regulatory cellular and transcription processes and the most significant pathways found were metabolic and digestive. Consequently, the regulatory mechanisms of the Zhoushan population are probably more efficient than those of the Qingdao population under the same thermal stress.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
- Fishery College, Ocean University of China, Qingdao 266003, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
45
|
Zhang F, Hu B, Fu H, Jiao Z, Li Q, Liu S. Comparative Transcriptome Analysis Reveals Molecular Basis Underlying Fast Growth of the Selectively Bred Pacific Oyster, Crassostrea gigas. Front Genet 2019; 10:610. [PMID: 31316550 PMCID: PMC6611504 DOI: 10.3389/fgene.2019.00610] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Fast growth is one of the most desired traits for all food animals, which affects the profitability of animal production. The Pacific oyster, Crassostrea gigas, is an important aquaculture shellfish around the world with the largest annual production. Growth of the Pacific oyster has been greatly improved by artificial selection breeding, but molecular mechanisms underlying growth remains poorly understood, which limited the molecular integrative breeding of fast growth with other superior traits. In this study, comparative transcriptome analyses between the fast-growing selectively bred Pacific oyster and unselected wild Pacific oysters were conducted by RNA-Seq. A total of 1,303 protein-coding genes differentially expressed between fast-growing oysters and wild controls were identified, of which 888 genes were expressed at higher levels in the fast-growing oysters. Functional analysis of the differentially expressed genes (DEGs) indicated that genes involved in microtubule motor activity and biosynthesis of nucleotides and proteins are potentially important for growth in the oyster. Positive selection analysis of genes at the transcriptome level showed that a significant number of ribosomal protein genes had undergone positive selection during the artificial selection breeding process. These results also indicated the importance of protein biosynthesis and metabolism for the growth of oysters. The alternative splicing (AS) of genes was also compared between the two groups of oysters. A total of 3,230 differential alternative splicing events (DAS) were identified, involved in 1,818 genes. These DAS genes were associated with specific functional pathways related to growth, such as “long-term potentiation,” “salivary secretion,” and “phosphatidylinositol signaling system.” The findings of this study will be valuable resources for future investigation to unravel molecular mechanisms underlying growth regulation in the oyster and other marine invertebrates and to provide solid support for breeding application to integrate fast growth with other superior traits in the Pacific oyster.
Collapse
Affiliation(s)
- Fuqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Boyang Hu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Huiru Fu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Zexin Jiao
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
46
|
Stenger PL, Vidal-Dupiol J, Reisser C, Planes S, Ky CL. Colour plasticity in the shells and pearls of animal graft model Pinctada margaritifera assessed by HSV colour quantification. Sci Rep 2019; 9:7520. [PMID: 31101851 PMCID: PMC6525208 DOI: 10.1038/s41598-019-43777-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/01/2019] [Indexed: 01/24/2023] Open
Abstract
The bivalve Pinctada margaritifera has the capacity to produce the most varied and colourful pearls in the world. Colour expression in the inner shell is under combined genetic and environmental control and is correlated with the colour of pearls produced when the same individual is used as a graft donor. One major limitation when studying colour phenotypes is grader subjectivity, which leads to inconsistent colour qualification and quantification. Through the use of HSV (Hue Saturation Value) colour space, we created an R package named 'ImaginR' to characterise inner shell colour variations in P. margaritifera. Using a machine-learning protocol with a training dataset, ImaginR was able to reassign individual oysters and pearls to predefined human-based phenotype categories. We then tested the package on samples obtained in an experiment testing the effects of donor conditioning depth on the colour of the donor inner shell and colour of the pearls harvested from recipients following grafting and 20 months of culture in situ. These analyses successfully detected donor shell colour modifications due to depth-related plasticity and the maintenance of these modifications through to the harvested pearls. Besides its potential interest for standardization in the pearl industry, this new method is relevant to other research projects using biological models.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia
| | - Jérémie Vidal-Dupiol
- IFREMER, UMR 5244 IHPE, University Perpignan Via Domitia, CNRS, University Montpellier, F-34095, Montpellier, France
| | - Céline Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia.
| |
Collapse
|
47
|
Song J, Wang C. Transcriptomic and proteomic analyses of genetic factors influencing adductor muscle coloration in QN Orange scallops. BMC Genomics 2019; 20:363. [PMID: 31072381 PMCID: PMC6509969 DOI: 10.1186/s12864-019-5717-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/18/2019] [Indexed: 11/26/2022] Open
Abstract
Background Color polymorphism, a high-valued trait, is frequently observed in molluscan shellfish. The QN Orange scallop, a new scallop strain successively selected from the interspecific hybrids of the bay scallop (Argopecten irradians irradians) and the Peruvian scallop (Argopecten purpuratus), is distinguished from other scallops by its orange adductor muscles. In this study, to reveal the mechanisms of the formation of adductor muscle coloration in the QN Orange scallops, we compared the proteome and transcriptome of orange adductor muscles of the QN Orange and those of white adductor muscles of the Bohai Red scallop, another strain selected from the interspecific hybrids of the bay scallop and the Peruvian scallop. Results Transcriptomic analysis revealed 416 differentially expressed genes (DEGs) between white and orange adductor muscles, among which 216 were upregulated and 200 were downregulated. Seventy-four differentially expressed proteins (DEPs), including 36 upregulated and 38 downregulated proteins, were identified through label-free proteomics. Among the identified DEGs and DEPs, genes related to carotenoids biosynthesis including apolipophorin, and Cytochrome P450 and those related to melanin biosynthesis including tyrosinase and Ras-related protein Rab-11A were found to express at higher levels in orange adductor muscles. The high expression levels of VPS (vacuolar protein sorting) and TIF (translation initiation factor) in orange adductor muscle tissues indicated that carotenoid accumulation may be affected by proteins outside of the carotenoid pathway. Conclusions Our results implied that the coloration of orange adductor muscles in the QN Orange scallops may be controlled by genes modulating accumulation of carotenoids and melanins. This study may provide valuable information for understanding the mechanisms and pathways underlying adductor muscle coloration in molluscan shellfish. Electronic supplementary material The online version of this article (10.1186/s12864-019-5717-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junlin Song
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunde Wang
- Qingdao Agricultural University, Qingdao, 266109, China. .,Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
48
|
Malachowicz M, Wenne R. Mantle transcriptome sequencing of Mytilus spp. and identification of putative biomineralization genes. PeerJ 2019; 6:e6245. [PMID: 30723611 PMCID: PMC6359903 DOI: 10.7717/peerj.6245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/09/2018] [Indexed: 12/16/2022] Open
Abstract
In molluscs, the shell secreted by mantle tissue during the biomineralization process is the first barrier against predators and mechanical damage. Changing environmental conditions, such as ocean acidification, influence shell strength and thus protection of the soft body within. Mussels are marine bivalves with important commercial and ecological value worldwide. Despite this importance, the proteins involved in the biomineralization and pigmentation processes in Mytilus spp. remain unclear, as does taxonomy of Mytilus taxa, though there have been many molecular studies. To further understanding in these areas, this study aimed to characterize and compare mantle transcriptomes of four mussel taxa using next generation sequencing. Mussels representing four taxa, were collected from several localities and RNA from mantle tissue was extracted. RNA sequences obtained were assembled, annotated and potential molecular markers, including simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were identified. Candidate contigs putatively related to biomineralization and pigmentation processes were then selected and several transcripts were chosen for phylogenetic analyses from the Bivalvia class. Transcriptome comparisons between Mytilus taxa, including gene ontology (GO) enrichment analysis and orthologues identification were performed. Of assembled contigs, 46.57%, 37.28% and 17.53% were annotated using NCBI NR, GO and Kyoto Encyclopedia of Genes and Genomes databases, respectively. Potential SSRs (483) and SNPs (1,497) were identified. Results presented a total of 1,292 contigs putatively involved in biomineralization and melanogenesis. Phylogenetic analyses of α-carbonic anhydrase, chitinase and tyrosinase revealed complex evolutionary history and diversity of these genes, which may be a result of duplication events or adaptation to different environments in mussels and other bivalves. Enrichment analyses revealed GO terms associated with pH and thermal response in Mytilus edulis from the North Sea and M. galloprovincialis from the Mediterranean Sea. The phylogenetic analysis within the genus Mytilus revealed M. californianus and M. coruscus to be genetically more distant from the other taxa: M. trossulus, M. edulis, M. chilensis and M. galloprovincialis. This work represents the first mantle transcriptome comparison between Mytilus taxa and provides contigs putatively involved in biomineralization.
Collapse
Affiliation(s)
| | - Roman Wenne
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
49
|
Mao J, Zhang X, Zhang W, Tian Y, Wang X, Hao Z, Chang Y. Genome-wide identification, characterization and expression analysis of the MITF gene in Yesso scallops (Patinopecten yessoensis) with different shell colors. Gene 2018; 688:155-162. [PMID: 30552980 DOI: 10.1016/j.gene.2018.11.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023]
Abstract
The microphthalmia-associated transcription factor (MITF) is the center of the regulator network of melanin synthesis in vertebrates. However, the role of MITF in shell color formation is poorly studied in mollusks. In the present study, an MITF gene, PyMITF, was first identified at the whole-genome level in Yesso scallop (Patinopecten yessoensis), an evolutionarily and economically important species, the shell color of which shows polymorphism. The PyMITF is a large gene spanning ~37 kb in the genome with 7 introns and 8 exons. A basic helix-loop-helix leucine zipper (bHLH-LZ) domain was detected in the PyMITF protein sequence, which can bind the canonical E-box sequence in the promoter region of the downstream genes. Phylogenetic analysis of the MITFs among vertebrates and invertebrates revealed that the molecular evolution of MITFs was consistent with the species taxonomy. Different expression levels of PyMITF were detected among different shell color strains, indicating the important role of PyMITF involved in shell pigmentation. Besides, PyMITF was expressed at a significantly higher level in the central mantle than that in the edge mantle, proving the participation of the central mantle in shell color formation in molecular level for the first time. The work provides valuable information for the molecular mechanism study of shell color formation.
Collapse
Affiliation(s)
- Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiaosen Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenjing Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
50
|
Yu F, Qu B, Lin D, Deng Y, Huang R, Zhong Z. Pax3 Gene Regulated Melanin Synthesis by Tyrosinase Pathway in Pteria penguin. Int J Mol Sci 2018; 19:ijms19123700. [PMID: 30469474 PMCID: PMC6321176 DOI: 10.3390/ijms19123700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/31/2022] Open
Abstract
The paired-box 3 (Pax3) is a transcription factor and it plays an important part in melanin synthesis. In this study, a new Pax3 gene was identified from Pteria penguin (Röding, 1798) (P. penguin) by RACE-PCR (rapid-amplification of cDNA ends-polymerase chain reaction) and its effect on melanin synthesis was deliberated by RNA interference (RNAi). The cDNA of PpPax3 was 2250 bp long, containing an open reading fragment of 1365 bp encoding 455 amino acids. Amino acid alignment and phylogenetic tree showed PpPax3 shared the highest (69.2%) identity with Pax3 of Mizuhopecten yessoensis. Tissue expression profile showed that PpPax3 had the highest expression in mantle, a nacre-formation related tissue. The PpPax3 silencing significantly inhibited the expression of PpPax3, PpMitf, PpTyr and PpCdk2, genes involved in Tyr-mediated melanin synthesis, but had no effect on PpCreb2 and an increase effect on PpBcl2. Furthermore, the PpPax3 knockdown obviously decreased the tyrosinase activity, the total content of eumelanin and the proportion of PDCA (pyrrole-2,3-dicarboxylic acid) in eumelanin, consistent with influence of tyrosinase (Tyr) knockdown. These data indicated that PpPax3 played an important regulating role in melanin synthesis by Tyr pathway in P. penguin.
Collapse
Affiliation(s)
- Feifei Yu
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Bingliang Qu
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Dandan Lin
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Zhiming Zhong
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| |
Collapse
|