1
|
Xing J, Zhao X, Li X, Fang R, Sun M, Zhang Y, Song N. The recent advances in vaccine adjuvants. Front Immunol 2025; 16:1557415. [PMID: 40433383 PMCID: PMC12106398 DOI: 10.3389/fimmu.2025.1557415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Vaccine adjuvants, as key components in enhancing vaccine immunogenicity, play a vital role in modern vaccinology. This review systematically examines the historical evolution and mechanisms of vaccine adjuvants, with particular emphasis on innovative advancements in aluminum-based adjuvants, emulsion-based adjuvants, and nucleic acid adjuvants (e.g., CpG oligonucleotides). Specifically, aluminum adjuvants enhance immune responses through particle formation/antigen adsorption, inflammatory cascade activation, and T-cell stimulation. Emulsion adjuvants amplify immunogenicity via antigen depot effects and localized inflammation, while nucleic acid adjuvants like CpG oligonucleotides directly activate B cells and dendritic cells to promote Th1-type immune responses and memory T-cell generation. The article further explores the prospective applications of these novel adjuvants in combating emerging pathogens (including influenza and SARS-CoV-2), particularly highlighting their significance in improving vaccine potency and durability. Moreover, this review underscores the critical importance of adjuvant development in next-generation vaccine design and provides theoretical foundations for creating safer, effective adjuvant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Corripio-Miyar Y, MacLeod CL, Mair I, Mellanby RJ, Moore BD, McNeilly TN. Self-Adjuvanting Calcium-Phosphate-Coated Microcrystal-Based Vaccines Induce Pyroptosis in Human and Livestock Immune Cells. Vaccines (Basel) 2023; 11:1229. [PMID: 37515044 PMCID: PMC10385459 DOI: 10.3390/vaccines11071229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Successful vaccines require adjuvants able to activate the innate immune system, eliciting antigen-specific immune responses and B-cell-mediated antibody production. However, unwanted secondary effects and the lack of effectiveness of traditional adjuvants has prompted investigation into novel adjuvants in recent years. Protein-coated microcrystals modified with calcium phosphate (CaP-PCMCs) in which vaccine antigens are co-immobilised within amino acid crystals represent one of these promising self-adjuvanting vaccine delivery systems. CaP-PCMCs has been shown to enhance antigen-specific IgG responses in mouse models; however, the exact mechanism of action of these microcrystals is currently unclear. Here, we set out to investigate this mechanism by studying the interaction between CaP-PCMCs and mammalian immune cells in an in vitro system. Incubation of cells with CaP-PCMCs induced rapid pyroptosis of peripheral blood mononuclear cells and monocyte-derived dendritic cells from cattle, sheep and humans, which was accompanied by the release of interleukin-1β and the activation of Caspase-1. We show that this pyroptotic event was cell-CaP-PCMCs contact dependent, and neither soluble calcium nor microcrystals without CaP (soluble PCMCs) induced pyroptosis. Our results corroborate CaP-PCMCs as a promising delivery system for vaccine antigens, showing great potential for subunit vaccines where the enhancement or find tuning of adaptive immunity is required.
Collapse
Affiliation(s)
| | - Clair Lyle MacLeod
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Iris Mair
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Richard J Mellanby
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Barry D Moore
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| |
Collapse
|
3
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
4
|
Shepherd BO, Chang D, Vasan S, Ake J, Modjarrad K. HIV and SARS-CoV-2: Tracing a Path of Vaccine Research and Development. Curr HIV/AIDS Rep 2022; 19:86-93. [PMID: 35089535 PMCID: PMC8795326 DOI: 10.1007/s11904-021-00597-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW This review examines the major advances and obstacles in the field of HIV vaccine research as they pertain to informing the development of vaccines against SARS-CoV-2. RECENT FINDINGS Although the field of HIV research has yet to deliver a licensed vaccine, the technologies developed and knowledge gained in basic scientific disciplines, translational research, and community engagement have positively impacted the development of vaccines for other viruses, most notably and recently for SARS-CoV-2. These advances include the advent of viral vectors and mRNA as vaccine delivery platforms; the use of structural biology for immunogen design; an emergence of novel adjuvant formulations; a more sophisticated understanding of viral phylogenetics; improvements in the development and harmonization of accurate assays for vaccine immunogenicity; and maturation of the fields of bioethics and community engagement for clinical trials conducted in diverse populations. Decades of foundational research and investments into HIV biology, though yet to yield an authorized or approved vaccine for HIV/AIDS, have now paid dividends in the rapid development of safe and effective SARS-CoV-2 vaccines. This latter success presents an opportunity for feedback on improved pathways for development of safe and efficacious vaccines against HIV and other pathogens.
Collapse
Affiliation(s)
- Brittany Ober Shepherd
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Suite 2A14, Silver Spring, MD 20910 USA ,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817 USA
| | - David Chang
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910 USA
| | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Suite 2A14, Silver Spring, MD 20910 USA ,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817 USA ,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910 USA
| | - Julie Ake
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817 USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Suite 2A14, Silver Spring, MD, 20910, USA.
| |
Collapse
|
5
|
Ratnapriya S, Perez-Greene E, Schifanella L, Herschhorn A. Adjuvant-mediated enhancement of the immune response to HIV vaccines. FEBS J 2021; 289:3317-3334. [PMID: 33705608 DOI: 10.1111/febs.15814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
Protection from human immunodeficiency virus (HIV) acquisition will likely require an effective vaccine that elicits antibodies against the HIV-1 envelope glycoproteins (Envs), which are the sole target of neutralizing antibodies and a main focus of vaccine development. Adjuvants have been widely used to augment the magnitude and longevity of the adaptive immune responses to immunizations with HIV-1 Envs and to guide the development of specific immune responses. Here, we review the adjuvants that have been used in combination with HIV-1 Envs in several preclinical and human clinical trials in recent years. We summarize the interactions between the HIV-1 Envs and adjuvants, and highlight the routes of vaccine administration for various formulations. We then discuss the use of combinations of different adjuvants, the potential effect of adjuvants on the elicitation of antibodies enriched in somatic hypermutation and containing long complementarity-determining region 3 of the antibody heavy chain, and the elicitation of non-neutralizing antibodies.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eva Perez-Greene
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA.,The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
CD4 + T Cells Induced by Tuberculosis Subunit Vaccine H1 Can Improve the HIV-1 Env Humoral Response by Intrastructural Help. Vaccines (Basel) 2020; 8:vaccines8040604. [PMID: 33066267 PMCID: PMC7711721 DOI: 10.3390/vaccines8040604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023] Open
Abstract
The induction of a potent and long-lasting, broadly neutralizing antibody response is one of the most promising approaches in HIV-1 vaccination. Recently, we demonstrated that Gag-specific T helper cells induced by DNA priming can enhance and modulate the HIV Env-specific B cell response upon virus-like particle (VLP) boost by intrastructural help (ISH). In order to minimize the induction of potentially harmful HIV specific TH cells, we explored the possibility to harness the heterologous TH cells induced by a recombinant tuberculosis subunit vaccine H1, which contains a fusion protein of Ag85B and ESAT-6 antigens in combination with the liposomal adjuvant CAF01. To provide ISH, immunodominant MHC-II restricted peptides from the H1 vaccine were genetically incorporated into the HIV 1 Gag protein and used for HIV VLP production. ISH effects on Env-specific antibody levels and B cell differentiation were analyzed in mice primed against H1 and boosted with VLPs. In contrast to non-primed mice, a significant increase of Env-specific IgG levels for up to 26 weeks after the last immunization was observed. This increase was largely caused by elevated IgG2b and IgG2c levels in mice that received H1 priming. Additionally, ISH enhanced the frequency of Env-specific long-lived plasma cells in the bone marrow. In this study, we were able to demonstrate that a heterologous prime-boost regimen consisting of the H1 tuberculosis subunit vaccine and T helper epitope modified HIV-1 VLPs resulted in enhanced HIV Env antibody and B cell responses, mediated by intrastructural help.
Collapse
|
7
|
Jensen‐Jarolim E, Bachmann MF, Bonini S, Jacobsen L, Jutel M, Klimek L, Mahler V, Mösges R, Moingeon P, O´Hehir RE, Palomares O, Pfaar O, Renz H, Rhyner C, Roth‐Walter F, Rudenko M, Savolainen J, Schmidt‐Weber CB, Traidl‐Hoffmann C, Kündig T. State-of-the-art in marketed adjuvants and formulations in Allergen Immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75:746-760. [PMID: 31774179 DOI: 10.1111/all.14134] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Abstract
Since the introduction of allergen immunotherapy (AIT) over 100 years ago, focus has been on standardization of allergen extracts, with reliable molecular composition of allergens receiving the highest attention. While adjuvants play a major role in European AIT, they have been less well studied. In this Position Paper, we summarize current unmet needs of adjuvants in AIT citing current evidence. Four adjuvants are used in products marketed in Europe: aluminium hydroxide (Al(OH)3 ) is the most frequently used adjuvant, with microcrystalline tyrosine (MCT), monophosphoryl lipid A (MPLA) and calcium phosphate (CaP) used less frequently. Recent studies on humans, and using mouse models, have characterized in part the mechanisms of action of adjuvants on pre-existing immune responses. AIT differs from prophylactic vaccines that provoke immunity to infectious agents, as in allergy the patient is presensitized to the antigen. The intended mode of action of adjuvants is to simultaneously enhance the immunogenicity of the allergen, while precipitating the allergen at the injection site to reduce the risk of anaphylaxis. Contrasting immune effects are seen with different adjuvants. Aluminium hydroxide initially boosts Th2 responses, while the other adjuvants utilized in AIT redirect the Th2 immune response towards Th1 immunity. After varying lengths of time, each of the adjuvants supports tolerance. Further studies of the mechanisms of action of adjuvants may advise shorter treatment periods than the current three-to-five-year regimens, enhancing patient adherence. Improved lead compounds from the adjuvant pipeline are under development and are explored for their capacity to fill this unmet need.
Collapse
Affiliation(s)
- Erika Jensen‐Jarolim
- Institute of Pathophysiology & Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | - Martin F. Bachmann
- Institute of Immunology Inselspital University of Berne Bern Switzerland
| | - Sergio Bonini
- Institute of Translational Pharmacology Italian National Research Council Rome Italy
| | - Lars Jacobsen
- ALC, Allergy Learning & Consulting Copenhagen Denmark
| | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wrocław Poland
- ALL‐MED Medical Research Institute Wroclaw Poland
| | - Ludger Klimek
- Center of Rhinology and Allergology Wiesbaden Germany
| | - Vera Mahler
- Division of Allergology Paul‐Ehrlich‐Institut Federal Institute for Vaccines and Biomedicines Langen Germany
| | - Ralph Mösges
- CRI‐Clinical Research International Ltd Hamburg Germany
- Institute of Medical Statistics and Bioinformatics University of Cologne Cologne Germany
| | - Philippe Moingeon
- Center for Therapeutic Innovation – Immuno‐Inflammatory Disease Servier Suresnes France
| | - Robyn E. O´Hehir
- Department of Respiratory Medicine, Allergy and Clinical Immunology (Research) Central Clinical School Monash University and Alfred Hospital Melbourne Vic. Australia
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology Chemistry School Complutense University of Madrid Madrid Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Harald Renz
- Institute of Laboratory Medicine Universities of Giessen and Marburg Lung Center (UGMLC) German Center for Lung Research (DZL) Philipps Universität Marburg Marburg Germany
| | - Claudio Rhyner
- SIAF – Swiss Institute of Allergy and Asthma Research Davos Switzerland
| | - Franziska Roth‐Walter
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | | | - Johannes Savolainen
- Department of Pulmonary Diseases and Clinical Allergology University of Turku and Turku University Hospital Turku Finland
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) German Center of Lung Research (DZL) and Helmholtz I&I Initiative Technical University, and Helmholtz Center Munich Munich Germany
| | - Claudia Traidl‐Hoffmann
- Institute of Environmental Medicine (IEM) Technical University Munich and Helmholtz Center Munich Munich Germany
| | - Thomas Kündig
- Department of Dermatology University Hospital Zurich Zurich Switzerland
| |
Collapse
|
8
|
Rational Design of Zika Virus Subunit Vaccine with Enhanced Efficacy. J Virol 2019; 93:JVI.02187-18. [PMID: 31189716 PMCID: PMC6694833 DOI: 10.1128/jvi.02187-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnant women can lead to fetal deaths and malformations. We have previously reported that ZIKV envelope protein domain III (EDIII) is a subunit vaccine candidate with cross-neutralization activity; however, like many other subunit vaccines, its efficacy is limited. To improve the efficacy of this subunit vaccine, we identified a nonneutralizing epitope on ZIKV EDIII surrounding residue 375, which is buried in the full-length envelope protein but becomes exposed in recombinant EDIII. We then shielded this epitope with an engineered glycan probe. Compared to the wild-type EDIII, the mutant EDIII induced significantly stronger neutralizing antibodies in three mouse strains and also demonstrated significantly improved efficacy by fully protecting mice, particularly pregnant mice and their fetuses, against high-dose lethal ZIKV challenge. Moreover, the mutant EDIII immune sera significantly enhanced the passive protective efficacy by fully protecting mice against lethal ZIKV challenge; this passive protection was positively associated with neutralizing antibody titers. We further showed that the enhanced efficacy of the mutant EDIII was due to the shielding of the immunodominant nonneutralizing epitope surrounding residue 375, which led to immune refocusing on the neutralizing epitopes. Taken together, the results of this study reveal that an intrinsic limitation of subunit vaccines is their artificially exposed immunodominant nonneutralizing epitopes, which can be overcome through glycan shielding. Additionally, the mutant ZIKV protein generated in this study is a promising subunit vaccine candidate with high efficacy in preventing ZIKV infections in mice.IMPORTANCE Viral subunit vaccines generally show low efficacy. In this study, we revealed an intrinsic limitation of subunit vaccine designs: artificially exposed surfaces of subunit vaccines contain epitopes unfavorable for vaccine efficacy. More specifically, we identified an epitope on Zika virus (ZIKV) envelope protein domain III (EDIII) that is buried in the full-length envelope protein but becomes exposed in recombinant EDIII. We further shielded this epitope with a glycan, and the resulting mutant EDIII vaccine demonstrated significantly enhanced efficacy over the wild-type EDIII vaccine in protecting animal models from ZIKV infections. Therefore, the intrinsic limitation of subunit vaccines can be overcome through shielding these artificially exposed unfavorable epitopes. The engineered EDIII vaccine generated in this study is a promising vaccine candidate that can be further developed to battle ZIKV infections.
Collapse
|
9
|
Mehrizi AA, Ameri Torzani M, Zakeri S, Jafary Zadeh A, Babaeekhou L. Th1 immune response to Plasmodium falciparum recombinant thrombospondin-related adhesive protein (TRAP) antigen is enhanced by TLR3-specific adjuvant, poly(I:C) in BALB/c mice. Parasite Immunol 2019; 40:e12538. [PMID: 29799636 DOI: 10.1111/pim.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Sporozoite-based malaria vaccines have provided a gold standard for malaria vaccine development, and thrombospondin-related adhesive protein (TRAP) serves as the main vaccine candidate antigen on sporozoites. As recombinant malaria vaccine candidate antigens are poorly immunogenic, additional appropriate immunostimulants, such as an efficient adjuvant, are highly essential to modulate Th1-cell predominance and also to induce a protective and long-lived immune response. In this study, polyinosinic:polycytidylic acid [poly(I:C)], the ligand of TLR3, was considered as the potential adjuvant for vaccines targeting stronger Th1-based immune responses. For this purpose, BALB/c mice were immunized with rPfTRAP delivered in putative poly(I:C) adjuvant, and humoural and cellular immune responses were determined in different immunized mouse groups. Delivery of rPfTRAP with poly(I:C) induced high levels and titres of persisted and also high-avidity anti-rPfTRAP IgG antibodies comparable to complete Freund's adjuvant (CFA)/incomplete Freund's adjuvant (IFA) adjuvant after the second boost. In addition, rPfTRAP formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-5, IgG2a/IgG1, and IgG2b/IgG1 than with CFA/IFA, indicating that poly(I:C) supports the induction of a stronger Th1-based immune response. This is a first time study which reveals the potential of rPfTRAP delivery in poly(I:C) to increase the level, avidity and durability of both anti-PfTRAP cytophilic antibodies and Th1 cytokines.
Collapse
Affiliation(s)
- A A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - M Ameri Torzani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.,Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - S Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - A Jafary Zadeh
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - L Babaeekhou
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
10
|
Pirahmadi S, Zakeri S, A Mehrizi A, D Djadid N, Raz AA, J Sani J, Abbasi R, Ghorbanzadeh Z. Cell-traversal protein for ookinetes and sporozoites (CelTOS) formulated with potent TLR adjuvants induces high-affinity antibodies that inhibit Plasmodium falciparum infection in Anopheles stephensi. Malar J 2019; 18:146. [PMID: 31014347 PMCID: PMC6480871 DOI: 10.1186/s12936-019-2773-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/11/2019] [Indexed: 02/02/2023] Open
Abstract
Background Plasmodium falciparum parasite is the most deadly species of human malaria, and the development of an effective vaccine that prevents P. falciparum infection and transmission is a key target for malarial elimination and eradication programmes. P. falciparum cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an advanced vaccine candidate. A comparative study was performed to characterize the immune responses in BALB/c mouse immunized with Escherichia coli-expressed recombinant PfCelTOS (rPfCelTOS) in toll-like receptor (TLR)-based adjuvants, CpG and Poly I:C alone or in combination (CpG + Poly I:C), followed by the assessment of transmission-reducing activity (TRA) of anti-rPfCelTOS antibodies obtained from different vaccine groups in Anopheles stephensi. Methods The aim of the current work was achieved by head-to-head comparison of the vaccine groups using conventional and avidity enzyme-linked immunosorbent assay (ELISA), immunofluorescence test (IFAT), and standard membrane feeding assay (SMFA). Results Comparing to rPfCelTOS alone, administration of rPfCelTOS with two distinct TLR-based adjuvants in vaccine mouse groups showed a significant increase in responses (antibody level, IgG subclass analysis, avidity, and Th1 cytokines) and was able to induce reasonable transmission-reducing activity. Also, comparable functional activity of anti-rPfCelTOS antibodies was found in group that received antigen in either CpG or Poly I:C (69.9%/20% and 73.5%/24.4%, respectively, reductions in intensity/prevalence). However, the vaccine group receiving rPfCelTOS in combination with CpG + Poly I:C showed a significant induction in antibody titers and inhibitory antibodies in oocysts development (78.3%/19.6% reductions in intensity/prevalence) in An. stephensi. Conclusions A key finding in this investigation is that rPfCelTOS administered alone in BALB/c mouse is poorly immunogenic, with relatively low IgG level, avidity, inhibitory antibodies, and mixed Th1/Th2 responses. However, immunological characteristic (IgG level, cytophilic IgG2a and IgG2b, avidity, and Th1 cytokines) and TRA of anti-rPfCelTOS significantly enhanced in the presence of co-administration of TLR-based adjuvants, confirming that targeting TLRs would be an effective means for the enhancement of inducing TRA against rPfCelTOS. Electronic supplementary material The online version of this article (10.1186/s12936-019-2773-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran.
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Abbas-Ali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Jafar J Sani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Ronak Abbasi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Zahra Ghorbanzadeh
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
11
|
Apostólico JDS, Lunardelli VAS, Yamamoto MM, Cunha-Neto E, Boscardin SB, Rosa DS. Poly(I:C) Potentiates T Cell Immunity to a Dendritic Cell Targeted HIV-Multiepitope Vaccine. Front Immunol 2019; 10:843. [PMID: 31105693 PMCID: PMC6492566 DOI: 10.3389/fimmu.2019.00843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/01/2019] [Indexed: 02/05/2023] Open
Abstract
Cellular immune responses are implicated in resistance to HIV and have been considered for the development of an effective vaccine. Despite their safety profile, subunit vaccines need to be delivered combined with an adjuvant. In the last years, in vivo antigen targeting to dendritic cells (DCs) using chimeric monoclonal antibodies (mAb) against the DC endocytic receptor DEC205/CD205 was shown to support long-term T cell immunity. Here, we evaluated the ability of different adjuvants to modulate specific cellular immune response when eight CD4+ HIV-derived epitopes (HIVBr8) were targeted to DEC205+ DCs in vivo. Immunization with two doses of αDECHIVBr8 mAb along with poly(I:C) induced Th1 cytokine production and higher frequency of HIV-specific polyfunctional and long-lived T cells than MPL or CpG ODN-assisted immunization. Although each adjuvant elicited responses against the 8 epitopes present in the vaccine, the magnitude of the T cell response was higher in the presence of poly(I:C). Moreover, poly(I:C) up regulated the expression of costimulatory molecules in both cDC1 and cDC2 DCs subsets. In summary, the use of poly(I:C) in a vaccine formulation that targets multiple epitopes to the DEC205 receptor improved the potency and the quality of HIV-specific responses when compared to other vaccine-adjuvant formulations. This study highlights the importance of the rational selection of antigen/adjuvant combination to potentiate the desired immune responses.
Collapse
Affiliation(s)
- Juliana de Souza Apostólico
- Laboratory of Experimental Vaccines, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
| | - Victória Alves Santos Lunardelli
- Laboratory of Experimental Vaccines, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
| | - Marcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil.,Laboratory of Clinical Immunology and Allergy (LIM60), School of Medicine-University of São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Laboratory of Experimental Vaccines, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
| |
Collapse
|
12
|
FIV vaccine with receptor epitopes results in neutralizing antibodies but does not confer resistance to challenge. NPJ Vaccines 2018; 3:16. [PMID: 29736270 PMCID: PMC5928050 DOI: 10.1038/s41541-018-0051-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is the feline analogue to human immunodeficiency virus (HIV) and utilizes parallel modes of receptor-mediated entry. The FIV surface glycoprotein (SU) is an important target for induction of neutralizing antibodies, and autoantibodies to the FIV binding receptor (CD134) block infection ex vivo; thus highlighting the potential for immunotherapies which utilize anti-receptor antibodies to block viral infection. To determine whether vaccination with CD134-SU complexes could induce protection against FIV infection, cats (n = 5 per group) were immunized with soluble CD134, recombinant FIV-SU protein, and/or CD134+SU complexes. Two trials were performed with different antigen combinations and vaccination schedules. In vivo generation of anti-CD134 and anti-SU IgG antibodies was measured, and in vitro neutralization assays were conducted. Immunization induced production of anti-CD134 and anti-SU antibodies that significantly inhibited FIV infection in vitro. However, no vaccine combination protected cats from FIV infection, and neat serum from vaccinated cats enhanced FIV growth in vitro. CD134+SU vaccinated cats exhibited increased CD4:CD8 ratio immediately prior to challenge, and antibodies were much more efficiently generated against vaccine by-products versus target antigens. Results suggest vaccination against viral and cryptic receptor epitopes yields neutralizing antibodies that synergistically inhibit FIV infection in vitro. Factors contributing to vaccine failure may include: (1) Heat-labile serum factors that enhance viral replication, (2) changes in circulating target cell populations induced by vaccination, and (3) weak immunogenicity of neutralizing epitopes compared to off-target vaccine components. Results reinforce the need to monitor vaccine preparation components and avoid non-specific immune stimulation during vaccination. A vaccine candidate for feline immunodeficiency virus elicits strong immunological reaction in vitro, but no protection to live cats. The feline analog to human immunodeficiency virus, FIV shares a similar infection paradigm and has only one partially effective vaccine. A US team, led by Colorado State University’s Susan VandeWoude, immunized cats using a complex of an FIV surface protein and a feline cell-surface protein known to facilitate FIV’s entry into immune cells. Tissue culture assays yielded promising results; however, this did not translate to live-animal protection. The researchers highlighted multiple factors that could explain the lack of success, including circulatory pro-infection factors, and immune responses generated against vaccine by-products rather than intended targets. While the vaccine candidate failed, the research provides invaluable guidance for future efforts into FIV vaccination with implications for HIV vaccine trials.
Collapse
|
13
|
Modeling the effect of boost timing in murine irradiated sporozoite prime-boost vaccines. PLoS One 2018; 13:e0190940. [PMID: 29329308 PMCID: PMC5766151 DOI: 10.1371/journal.pone.0190940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022] Open
Abstract
Vaccination with radiation-attenuated sporozoites has been shown to induce CD8+ T cell-mediated protection against pre-erythrocytic stages of malaria. Empirical evidence suggests that successive inoculations often improve the efficacy of this type of vaccines. An initial dose (prime) triggers a specific cellular response, and subsequent inoculations (boost) amplify this response to create a robust CD8+ T cell memory. In this work we propose a model to analyze the effect of T cell dynamics on the performance of prime-boost vaccines. This model suggests that boost doses and timings should be selected according to the T cell response elicited by priming. Specifically, boosting during late stages of clonal contraction would maximize T cell memory production for vaccines using lower doses of irradiated sporozoites. In contrast, single-dose inoculations would be indicated for higher vaccine doses. Experimental data have been obtained that support theoretical predictions of the model.
Collapse
|
14
|
DNA vaccines against leptospirosis: A literature review. Vaccine 2017; 35:5559-5567. [PMID: 28882437 DOI: 10.1016/j.vaccine.2017.08.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 01/19/2023]
Abstract
Leptospirosis is an infectious disease caused by pathogenic Leptospira species. The vaccines that are currently available for leptospirosis are composed of whole-cell preparations and suffer from limitations such as low efficacy, multiple side-effects, poor immunological memory and lack of cross-protection against different serovars of Leptospira spp. In light of the global prevalence of this disease, the development of a more effective vaccine against leptospirosis is of paramount importance. Genetic immunization is a promising alternative to conventional vaccine development. In the last 25years, several novel strategies have been developed for increasing the efficacy of DNA vaccines. Examples of such strategies include the introduction of novel plasmid vectors, adjuvants, alternate delivery routes, and prime-boost regimens. Herein we discuss the latest and most promising advances that have been made in developing DNA vaccines against leptospirosis. We also deliberate over the future directions that must be undertaken in order to improve results in this field.
Collapse
|
15
|
Abstract
Adjuvants have been deliberately added to vaccines since the 1920's when alum was discovered to boost antibody responses, leading to better protection. The first adjuvants were discovered by accident and were used in the safer but less immunogenic subunit vaccines, supposedly by providing an antigen depot to extend antigen presentation. Since that time, much has been discovered about how these adjuvants impact cells at the tissue site to activate innate immune responses, mobilize dendritic cells and drive adaptive immunity. New approaches to vaccine construction for infectious diseases that have so far not been well addressed by conventional vaccines often attempt to induce antibodies, polyfunctional CD4+ T cells and CD8+ CTLs. The discovery of pattern recognition receptors and ligands that drive desired T cell responses has led to development of novel adjuvant strategies using immunomodulatory agents to direct appropriate immune responses.
Collapse
Affiliation(s)
- Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Philippa Marrack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Biomedical Research, National Jewish Health, 1400, Jackson St., Denver, CO 80206, USA
| |
Collapse
|
16
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
17
|
Sack B, Kappe SHI, Sather DN. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection. Expert Rev Vaccines 2017; 16:403-414. [PMID: 28277097 DOI: 10.1080/14760584.2017.1295853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.
Collapse
Affiliation(s)
- Brandon Sack
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| | - Stefan H I Kappe
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| | - D Noah Sather
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| |
Collapse
|
18
|
|
19
|
Adjuvants: Classification, Modus Operandi, and Licensing. J Immunol Res 2016; 2016:1459394. [PMID: 27274998 PMCID: PMC4870346 DOI: 10.1155/2016/1459394] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/02/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the most efficient strategies for the prevention of infectious diseases. Although safer, subunit vaccines are poorly immunogenic and for this reason the use of adjuvants is strongly recommended. Since their discovery in the beginning of the 20th century, adjuvants have been used to improve immune responses that ultimately lead to protection against disease. The choice of the adjuvant is of utmost importance as it can stimulate protective immunity. Their mechanisms of action have now been revealed. Our increasing understanding of the immune system, and of correlates of protection, is helping in the development of new vaccine formulations for global infections. Nevertheless, few adjuvants are licensed for human vaccines and several formulations are now being evaluated in clinical trials. In this review, we briefly describe the most well known adjuvants used in experimental and clinical settings based on their main mechanisms of action and also highlight the requirements for licensing new vaccine formulations.
Collapse
|