1
|
Song Y, Yuan J, Zhang L, Dai Z, Full RJ. Size, shape and orientation of macro-sized substrate protrusions affect the toe and foot adhesion of geckos. J Exp Biol 2021; 224:258485. [PMID: 33914037 DOI: 10.1242/jeb.223438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 02/17/2021] [Indexed: 02/02/2023]
Abstract
Geckos are excellent climbers using compliant, hierarchically arranged adhesive toes to negotiate diverse terrains varying in roughness at multiple size scales. Here, we complement advancements at smaller size scales with measurements at the macro scale. We studied the attachment of a single toe and whole foot of geckos on macroscale rough substrates by pulling them along, across and off smooth rods and spheres mimicking different geometric protrusions of substrates. When we pulled a single toe along rods, the force increased with the rod diameter, whereas the attachment force of dragging toes across rods increased from about 60% on small diameter rods relative to a flat surface to ∼100% on larger diameter rods, but showed no further increase as rod diameter doubled. Toe force also increased as the pulling changed from along-rod loading to across-rod loading. When toes were pulled off spheres, the force increased with increasing sphere diameter as observed for along-rod pulling. For feet with separated toes, attachment on spheres was stronger than that on rods with the same diameter. Attachment force of a foot decreased as rod and sphere size increased but remained sufficient to support the body weight of geckos. These results provide a bridge to the macroscale roughness seen in nature by revealing the importance of the dimension, shape and orientation of macroscale substrate features for compliant toe and foot function of geckos. Our data not only enhance our understanding of geckos' environmental adaptive adhesion but can also provide inspiration for novel robot feet in development.
Collapse
Affiliation(s)
- Yi Song
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Jiwei Yuan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
| | - Linghao Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
| | - Robert J Full
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Palecek AM, Schoenfuss HL, Blob RW. Sticking to it: testing passive pull-off forces in waterfall-climbing fishes across challenging substrates. J Exp Biol 2021; 224:jeb228718. [PMID: 33328291 DOI: 10.1242/jeb.228718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022]
Abstract
The pelvic sucker of Hawaiian waterfall climbing gobies allows these fishes to attach to substrates while climbing waterfalls tens to hundreds of meters tall. Climbing ability varies by species and may be further modulated by the physical characteristics of the waterfall substrate. In this study, we investigated the influence of surface wettability (hydrophobic versus hydrophilic surface charges) and substrate roughness on the passive adhesive system of four species of gobies with different climbing abilities. Overall, passive adhesive performance varied by species and substrate, with the strongest climbers showing the highest shear pull-off forces, particularly on rough surfaces. Thus, differences in passive adhesive performance may help to explain the ability of some species to migrate further upstream than others and contribute to their ability to invade new habitats.
Collapse
Affiliation(s)
- Amanda M Palecek
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Pillai R, Nordberg E, Riedel J, Schwarzkopf L. Geckos cling best to, and prefer to use, rough surfaces. Front Zool 2020; 17:32. [PMID: 33088332 PMCID: PMC7566132 DOI: 10.1186/s12983-020-00374-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Fitness is strongly related to locomotor performance, which can determine success in foraging, mating, and other critical activities. Locomotor performance on different substrates is likely to require different abilities, so we expect alignment between species' locomotor performance and the habitats they use in nature. In addition, we expect behaviour to enhance performance, such that animals will use substrates on which they perform well. METHODS We examined the associations between habitat selection and performance in three species of Oedura geckos, including two specialists, (one arboreal, and one saxicolous), and one generalist species, which used both rocks and trees. First, we described their microhabitat use in nature (tree and rock type) for these species, examined the surface roughnesses they encountered, and selected materials with comparable surface microtopographies (roughness measured as peak-to-valley heights) to use as substrates in lab experiments quantifying behavioural substrate preferences and clinging performance. RESULTS The three Oedura species occupied different ecological niches and used different microhabitats in nature, and the two specialist species used a narrower range of surface roughnesses compared to the generalist. In the lab, Oedura geckos preferred substrates (coarse sandpaper) with roughness characteristics similar to substrates they use in nature. Further, all three species exhibited greater clinging performance on preferred (coarse sandpaper) substrates, although the generalist used fine substrates in nature and had good performance capabilities on fine substrates as well. CONCLUSION We found a relationship between habitat use and performance, such that geckos selected microhabitats on which their performance was high. In addition, our findings highlight the extensive variation in surface roughnesses that occur in nature, both among and within microhabitats.
Collapse
Affiliation(s)
- Rishab Pillai
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Eric Nordberg
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Jendrian Riedel
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| |
Collapse
|
4
|
Riedel J, Vucko MJ, Blomberg SP, Schwarzkopf L. Skin hydrophobicity as an adaptation for self-cleaning in geckos. Ecol Evol 2020; 10:4640-4651. [PMID: 32551049 PMCID: PMC7297746 DOI: 10.1002/ece3.6218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Hydrophobicity is common in plants and animals, typically caused by high relief microtexture functioning to keep the surface clean. Although the occurrence and physical causes of hydrophobicity are well understood, ecological factors promoting its evolution are unclear. Geckos have highly hydrophobic integuments. We predicted that, because the ground is dirty and filled with pathogens, high hydrophobicity should coevolve with terrestrial microhabitat use. Advancing contact-angle (ACA) measurements of water droplets were used to quantify hydrophobicity in 24 species of Australian gecko. We reconstructed the evolution of ACA values, in relation to microhabitat use of geckos. To determine the best set of structural characteristics associated with the evolution of hydrophobicity, we used linear models fitted using phylogenetic generalized least squares (PGLS), and then model averaging based on AICc values. All species were highly hydrophobic (ACA > 132.72°), but terrestrial species had significantly higher ACA values than arboreal ones. The evolution of longer spinules and smaller scales was correlated with high hydrophobicity. These results suggest that hydrophobicity has coevolved with terrestrial microhabitat use in Australian geckos via selection for long spinules and small scales, likely to keep their skin clean and prevent fouling and disease.
Collapse
Affiliation(s)
- Jendrian Riedel
- College of Science and EngineeringJames Cook UniversityTownsvilleQld.Australia
| | - Matthew John Vucko
- College of Science and EngineeringJames Cook UniversityTownsvilleQld.Australia
| | - Simone P. Blomberg
- School of Biological SciencesUniversity of QueenslandSt. LuciaQld.Australia
| | - Lin Schwarzkopf
- College of Science and EngineeringJames Cook UniversityTownsvilleQld.Australia
| |
Collapse
|
5
|
Pillai R, Nordberg E, Riedel J, Schwarzkopf L. Nonlinear variation in clinging performance with surface roughness in geckos. Ecol Evol 2020; 10:2597-2607. [PMID: 32185005 PMCID: PMC7069281 DOI: 10.1002/ece3.6090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Understanding the challenges faced by organisms moving within their environment is essential to comprehending the evolution of locomotor morphology and habitat use. Geckos have developed adhesive toe pads that enable exploitation of a wide range of microhabitats. These toe pads, and their adhesive mechanisms, have typically been studied using a range of artificial substrates, usually significantly smoother than those available in nature. Although these studies have been fundamental in understanding the mechanisms of attachment in geckos, it is unclear whether gecko attachment simply gradually declines with increased roughness as some researchers have suggested, or whether the interaction between the gekkotan adhesive system and surface roughness produces nonlinear relationships. To understand ecological challenges faced in their natural habitats, it is essential to use test surfaces that are more like surfaces used by geckos in nature. We tested gecko shear force (i.e., frictional force) generation as a measure of clinging performance on three artificial substrates. We selected substrates that exhibit microtopographies with peak-to-valley heights similar to those of substrates used in nature, to investigate performance on a range of smooth surfaces (glass), and fine-grained (fine sandpaper) to rough (coarse sandpaper). We found that shear force did not decline monotonically with roughness, but varied nonlinearly among substrates. Clinging performance was greater on glass and coarse sandpaper than on fine sandpaper, and clinging performance was not significantly different between glass and coarse sandpaper. Our results demonstrate that performance on different substrates varies, probably depending on the underlying mechanisms of the adhesive apparatus in geckos.
Collapse
Affiliation(s)
- Rishab Pillai
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Eric Nordberg
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Jendrian Riedel
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Lin Schwarzkopf
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| |
Collapse
|
6
|
Stark AY, Mitchell CT. Stick or Slip: Adhesive Performance of Geckos and Gecko-Inspired Synthetics in Wet Environments. Integr Comp Biol 2019; 59:214-226. [PMID: 30873552 DOI: 10.1093/icb/icz008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gecko adhesive system has inspired hundreds of synthetic mimics principally focused on replicating the strong, reversible, and versatile properties of the natural system. For geckos native to the tropics, versatility includes the need to remain attached to substrates that become wet from high humidity and frequent rain. Paradoxically, van der Waals forces, the principal mechanism responsible for gecko adhesion, reduce to zero when two contacting surfaces separate even slightly by entrapped water layers. A series of laboratory studies show that instead of slipping, geckos maintain and even improve their adhesive performance in many wet conditions (i.e., on wet hydrophobic substrates, on humid substrates held at low temperatures). The mechanism for this is not fully clarified, and likely ranges in scale from the chemical and material properties of the gecko's contact structures called setae (e.g., setae soften and change surface confirmation when exposed to water), to their locomotor biomechanics and decision-making behavior when encountering water on a substrate in their natural environment (e.g., some geckos tend to run faster and stop more frequently on misted substrates than dry). Current work has also focused on applying results from the natural system to gecko-inspired synthetic adhesives, improving their performance in wet conditions. Gecko-inspired synthetic adhesives have also provided a unique opportunity to test hypotheses about the natural system in semi-natural conditions replicated in the laboratory. Despite many detailed studies focused on the role of water and humidity on gecko and gecko-inspired synthetic adhesion, there remains several outstanding questions: (1) what, if any, role does capillary or capillary-like adhesion play on overall adhesive performance of geckos and gecko-inspired synthetics, (2) how do chemical and material changes at the surface and in the bulk of gecko setae and synthetic fibrils change when exposed to water, and what does this mean for adhesive performance, and (3) how much water do geckos encounter in their native environment, and what is their corresponding behavioral response? This review will detail what we know about gecko adhesion in wet environments, and outline the necessary next steps in biological and synthetic system investigations.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| | - Christopher T Mitchell
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
7
|
Bauer AM. Gecko Adhesion in Space and Time: A Phylogenetic Perspective on the Scansorial Success Story. Integr Comp Biol 2019; 59:117-130. [DOI: 10.1093/icb/icz020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
An evolutionary perspective on gecko adhesion was previously hampered by a lack of an explicit phylogeny for the group and of robust comparative methods to study trait evolution, an underappreciation for the taxonomic and structural diversity of geckos, and a dearth of fossil evidence bearing directly on the origin of the scansorial apparatus. With a multigene dataset as the basis for a comprehensive gekkotan phylogeny, model-based methods have recently been employed to estimate the number of unique derivations of the adhesive system and its role in lineage diversification. Evidence points to a single basal origin of the spinulate oberhautchen layer of the epidermis, which is a necessary precursor for the subsequent elaboration of a functional adhesive mechanism in geckos. However, multiple gains and losses are implicated for the elaborated setae that are necessary for adhesion via van der Waals forces. The well-supported phylogeny of gekkotans has demonstrated that convergence and parallelism in digital design are even more prevalent than previously believed. It also permits the reexamination of previously collected morphological data in an explicitly evolutionary context. Both time-calibrated trees and recently discovered amber fossils that preserve gecko toepads suggest that a fully-functional adhesive apparatus was not only present, but also represented by diverse architectures, by the mid-Cretaceous. Further characterization and phylogenetically-informed analyses of the other components of the adhesive system (muscles, tendons, blood sinuses, etc.) will permit a more comprehensive reconstruction of the evolutionary pathway(s) by which geckos have achieved their structural and taxonomic diversity. A phylogenetic perspective can meaningfully inform functional and performance studies of gecko adhesion and locomotion and can contribute to advances in bioinspired materials.
Collapse
Affiliation(s)
- A M Bauer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
8
|
Tunable Adhesion for Bio-Integrated Devices. MICROMACHINES 2018; 9:mi9100529. [PMID: 30424462 PMCID: PMC6215118 DOI: 10.3390/mi9100529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 02/03/2023]
Abstract
With the rapid development of bio-integrated devices and tissue adhesives, tunable adhesion to soft biological tissues started gaining momentum. Strong adhesion is desirable when used to efficiently transfer vital signals or as wound dressing and tissue repair, whereas weak adhesion is needed for easy removal, and it is also the essential step for enabling repeatable use. Both the physical and chemical properties (e.g., moisture level, surface roughness, compliance, and surface chemistry) vary drastically from the skin to internal organ surfaces. Therefore, it is important to strategically design the adhesive for specific applications. Inspired largely by the remarkable adhesion properties found in several animal species, effective strategies such as structural design and novel material synthesis were explored to yield adhesives to match or even outperform their natural counterparts. In this mini-review, we provide a brief overview of the recent development of tunable adhesives, with a focus on their applications toward bio-integrated devices and tissue adhesives.
Collapse
|
9
|
Abstract
The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).
Collapse
|
10
|
Niewiarowski PH, Stark AY, Dhinojwala A. Sticking to the story: outstanding challenges in gecko-inspired adhesives. ACTA ACUST UNITED AC 2016; 219:912-9. [PMID: 27030772 DOI: 10.1242/jeb.080085] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The natural clinging ability of geckos has inspired hundreds of studies seeking design principles that could be applied to creating synthetic adhesives with the same performance capabilities as the gecko: adhesives that use no glue, are self-cleaning and reusable, and are insensitive to a wide range of surface chemistries and roughness. Important progress has been made, and the basic mechanics of how 'hairy' adhesives work have been faithfully reproduced, advancing theory in surface science and portending diverse practical applications. However, after 15 years, no synthetic mimic can yet perform as well as a gecko and simultaneously meet of all the criteria listed above. Moreover, processes for the production of inexpensive and scalable products are still not clearly in view. Here, we discuss our perspective on some of the gaps in understanding that still remain; these gaps in our knowledge should stimulate us to turn to deeper study of the way in which free-ranging geckos stick to the variety of surfaces found in their natural environments and to a more complete analysis of the materials composing the gecko toe pads.
Collapse
Affiliation(s)
- Peter H Niewiarowski
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA
| | - Alyssa Y Stark
- Department of Biology, University of Louisville, 139 Life Science Building, Louisville, KY 40292, USA
| | - Ali Dhinojwala
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
11
|
Stark AY, Subarajan S, Jain D, Niewiarowski PH, Dhinojwala A. Superhydrophobicity of the gecko toe pad: biological optimization versus laboratory maximization. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0184. [PMID: 27354726 DOI: 10.1098/rsta.2016.0184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
While many gecko-inspired hierarchically structured surfaces perform as well as or better than the natural adhesive system, these designs often fail to function across a variety of contexts. For example, the gecko can adhere to rough, wet and dirty surfaces; however, most synthetic mimics cannot maintain function when faced with a similar situation. The solution to this problem lies in a more thorough investigation of the natural system. Here, we review the adhesive system of the gecko toe pad, as well as the far less-well-studied anti-adhesive system that results from the chemistry and structure of the toe pad (superhydrophobicity). This paradoxical relationship serves as motivation to study functional optimization at the system level. As an example, we experimentally investigate the role of surface lipids in adhesion and anti-adhesion, and find a clear performance trade-off related to shear adhesion in air on a hydrophilic surface. This represents the first direct investigation of the role of surface lipids in gecko adhesion and anti-adhesion, and supports the argument that a system-level approach is necessary to elucidate optimization in biological systems. Without such an approach, bioinspired designs will be limited in functionality and context, especially compared to the natural systems they mimic.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Integrated Bioscience Program, , University of Akron, Akron, OH 44325, USA Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Shairani Subarajan
- Integrated Bioscience Program, , University of Akron, Akron, OH 44325, USA
| | - Dharamdeep Jain
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | | | - Ali Dhinojwala
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| |
Collapse
|