1
|
Xiao L, Mei Z, Chen J, Zhao K, Zhang H, Sharma S, Liao A, Liu C. Targeted Degradation Technology Based on the Autophagy-Lysosomal Pathway: A Promising Strategy for Treating Preeclampsia. Am J Reprod Immunol 2025; 93:e70066. [PMID: 40047433 DOI: 10.1111/aji.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/09/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
In recent years, targeted protein degradation (TPD) strategies leveraging the autophagy-lysosomal pathway (ALP) have transcended the limitations of conventional drug molecules, emerging as a highly promising approach for selectively eliminating disease-related proteins via the cell's intrinsic degradation machinery. These TPD methods, such as autophagosome-tethering compounds (ATTEC), autophagy-targeting chimera (AUTAC), AUTOphagy-TArgeting chimera (AUTOTAC), and chaperone-mediated autophagy (CMA) targeting chimera, exhibit efficacy in degrading misfolded protein aggregates associated with neurodegenerative disorders. Moreover, the excessive accumulation of misfolded proteins or protein complexes in the placenta has been identified as a significant contributor to preeclampsia (PE). Given the lack of effective treatments for PE, the application of autophagy-mediated TPD technology presents a novel therapeutic avenue. This review draws parallels between misfolded protein aggregates in neurodegenerative diseases and placenta-derived PE, integrating a substantial number of full-text studies. By harnessing TPD technologies grounded in the ALP, these autophagic degraders offer a pioneering approach for targeted therapy in PE by dismantling potential targets. Presently, there is limited exploration of ALP technology for identifying target proteins in the placenta. Nonetheless, we have proposed several potential target proteins, laying the groundwork for future therapeutic endeavors.
Collapse
Affiliation(s)
- Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilin Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Surendra Sharma
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Zhang T, Li H, Jiang E, Zhang L, Liu L, Zhang C. CSPG4 involvement in endometrial decidualization contributes to the pathogenesis of preeclampsia†. Biol Reprod 2025; 112:361-374. [PMID: 39563514 DOI: 10.1093/biolre/ioae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
Preeclampsia (PE) is a condition of pregnancy in which symptoms of hypertension develop after 20 weeks of gestation. it can lead to placental dysfunction, maternal and perinatal mortality and morbidity. The incidence of PE is increasing, posing a serious threat to the lives of pregnant women and their unborn children. Currently, most of the research on the pathogenesis of PE has focused on placenta, However, maternal decidualization is the basis for placental formation and growth. Chondroitin sulfate proteoglycan 4 (CSPG4) is a transmembrane protein that plays a role in cell proliferation, invasion, and migration. However, its function during decidualization is not yet understood. In this study, we investigated the role of CSPG4 and found that its expression was significantly down-regulated in the decidual tissue of patients with severe PE compared to normal pregnant women. During artificially induced decidualization, CSPG4 expression was significantly increased. Knockdown of CSPG4 by small interfering RNA inhibited decidualization, which, in turn, inhibited the invasion of trophoblast cells. In both pseudopregnant and pregnant mice, endometrial stromal cells proliferated rapidly and Cspg4 expression increased during decidualization. Therefore, we believe that CSPG4 plays a crucial role in the process of decidualization. The defect in decidualization caused by abnormal CSPG4 expression could lead to insufficient trophoblast invasion, ultimately contributing to the occurrence of PE.
Collapse
Affiliation(s)
- Tianying Zhang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Taishan Polytechnic, Taian, Shandong 271000, China
| | - Hua Li
- Department of Gynecology and Obstetrics, Ji'nan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Enhui Jiang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lisheng Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cong Zhang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
3
|
Deng K, Li X, Liu Z, Su Y, Sun X, Wei W, Fan Y, Zhang Y, Wang F. IGF2BP2 regulates the proliferation and migration of endometrial stromal cells through the PI3K/AKT/mTOR signaling pathway in Hu sheep. J Anim Sci 2024; 102:skae129. [PMID: 38727196 PMCID: PMC11151927 DOI: 10.1093/jas/skae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), a significant member of the conserved RNA-binding protein family, plays various roles in numerous physiological and pathological processes. However, the specific function of IGF2BP2 in regulating endometrial function in sheep remains largely unknown. In this study, we observed a significant upregulation in IGF2BP2 mRNA abundance in the endometrium during the luteal phase compared to the follicular phase in Hu sheep. The knockdown of IGF2BP2 resulted in accelerated cell proliferation and migration of Hu sheep endometrial stromal cells (ESCs). Moreover, RNA sequencing analysis revealed that genes with significantly altered expression in IGF2BP2 knockdown cells were predominantly enriched in endometrial receptivity-related signaling pathways, such as cytokine-cytokine receptor interaction, NOD-like receptor, PI3K-AKT, and JAK-STAT signaling pathway. Additionally, the knockdown of IGF2BP2 significantly increased the expression of matrix metalloprotein 9 (MMP9), vascular endothelial growth factor, and prolactin (PRL) in ESCs. The knockdown of IGF2BP2 was also observed to stimulate the PI3K/AKT/mTOR pathway by upregulating integrin β4 (ITGB4) expression. Notably, the downregulation of ITGB4 attenuates IGF2BP2 knockdown-induced facilitation of proliferation and migration of Hu sheep ESCs by inhibiting the PI3K/AKT/mTOR pathway. Collectively, these findings highlight the important role of IGF2BP2 in regulating endometrial function, particularly through the modulation of ESC proliferation and migration via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Kaiping Deng
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhipeng Liu
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yalong Su
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Sun
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wurilege Wei
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010000, China
| | - Yixuan Fan
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Zhang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Bergsten TM, Li K, Lantvit DD, Murphy BT, Burdette JE. Kaempferol, a Phytoprogestin, Induces a Subset of Progesterone-Regulated Genes in the Uterus. Nutrients 2023; 15:1407. [PMID: 36986136 PMCID: PMC10051346 DOI: 10.3390/nu15061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Progesterone functions as a steroid hormone involved in female reproductive physiology. While some reproductive disorders manifest with symptoms that can be treated by progesterone or synthetic progestins, recent data suggest that women also seek botanical supplements to alleviate these symptoms. However, botanical supplements are not regulated by the U.S. Food and Drug Administration and therefore it is important to characterize and quantify the inherent active compounds and biological targets of supplements within cellular and animal systems. In this study, we analyzed the effect of two natural products, the flavonoids, apigenin and kaempferol, to determine their relationship to progesterone treatment in vivo. According to immunohistochemical analysis of uterine tissue, kaempferol and apigenin have some progestogenic activity, but do not act in exactly the same manner as progesterone. More specifically, kaempferol treatment did not induce HAND2, did not change proliferation, and induced ZBTB16 expression. Additionally, while apigenin treatment did not appear to dramatically affect transcripts, kaempferol treatment altered some transcripts (44%) in a similar manner to progesterone treatment but had some unique effects as well. Kaempferol regulated primarily unfolded protein response, androgen response, and interferon-related transcripts in a similar manner to progesterone. However, the effects of progesterone were more significant in regulating thousands of transcripts making kaempferol a selective modifier of signaling in the mouse uterus. In summary, the phytoprogestins, apigenin and kaempferol, have progestogenic activity in vivo but also act uniquely.
Collapse
Affiliation(s)
| | | | | | | | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Zhang H, Li X, Zhang T, Zhou Q, Zhang C. Establishment and validation of a predictive model of preeclampsia based on transcriptional signatures of 43 genes in decidua basalis and peripheral blood. BMC Bioinformatics 2022; 23:527. [PMID: 36476092 PMCID: PMC9730617 DOI: 10.1186/s12859-022-05086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) has an increasing incidence worldwide, and there is no gold standard for prediction. Recent progress has shown that abnormal decidualization and impaired vascular remodeling are essential to PE pathogenesis. Therefore, it is of great significance to analyze the decidua basalis and blood changes of PE to explore new methods. Here, we performed weighted gene co-expression network analysis based on 9553 differentially expressed genes of decidua basalis data (GSE60438 includes 25 cases of PE and 23 non-cases) from Gene Expression Omnibus to screen relevant module-eigengenes (MEs). Among them, MEblue and MEgrey are the most correlated with PE, which contains 371 core genes. Subsequently, we applied the logistic least absolute shrinkage and selection operator regression, screened 43 genes most relevant to prediction from the intersections of the 371 genes and training set (GSE48424 includes 18 cases of PE and 18 non-cases) genes, and built a predictive model. The specificity and sensitivity are illustrated by receiver operating characteristic curves, and the stability was verified by two validation sets (GSE86200 includes 12 cases of PE and 48 non-cases, and GSE85307 includes 47 cases of PE and 110 non-cases). The results demonstrated that our predictive model shows good predictions, with an area under the curve of 0.991 for the training set, 0.874 and 0.986 for the validation sets. Finally, we found the 43 key marker genes in the model are closely associated with the clinically accepted predictive molecules, including FLT1, PIGF, ENG and VEGF. Therefore, this predictive model provides a potential approach for PE diagnosis and treatment.
Collapse
Affiliation(s)
- Hongya Zhang
- grid.16821.3c0000 0004 0368 8293Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135 China ,grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China ,grid.452927.f0000 0000 9684 550XShanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135 China
| | - Xuexiang Li
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China
| | - Tianying Zhang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China
| | - Qianhui Zhou
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China
| | - Cong Zhang
- grid.16821.3c0000 0004 0368 8293Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135 China ,grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China ,grid.452927.f0000 0000 9684 550XShanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135 China
| |
Collapse
|
6
|
Yan X, Rong M, Zhou Q, Zhang C. DCAF13 is essential for the pathogenesis of preeclampsia through its involvement in endometrial decidualization. Mol Cell Endocrinol 2022; 556:111741. [PMID: 35932979 DOI: 10.1016/j.mce.2022.111741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
Abstract
Preeclampsia (PE) is a syndrome that occurs during pregnancy and affects more than 8 million mother-infant pairs each year. Most previous studies on the pathogenesis of PE have focused on the placenta. However, decidualization is the basis for placentation and subsequent development. The CRL4 (Cullin 4-RING E3 ubiquitin ligase) complex ubiquitinates and degrades substrates, while DCAF13 (DDB1 and CUL4-associated factor 13) is a component and substrate receptor of this complex, which recognizes and recruits the complex different substrates. DCAF13 plays a major role in the maintenance of follicles and the development of oocytes. However, its role in subsequent pregnancies remains unclear. In the present study, we first investigated DCAF13 levels in the decidua of PE patients and found that it is significantly lower than that of normal pregnant women. Second, we found that DCAF13 expression increases during decidualization, and reducing expression of DCAF13 by siRNA prevents decidualization. Third, in vivo experiments in mice further revealed that Dcaf13 expression increases with decidualization. Finally, we generated and found that uteri of pseudopregnant conditional Dcaf13 knockout mice fails to undergo decidualization. Therefore, we propose that DCAF13 plays a key role in decidualization. Abnormal expression of DCAF13 affects the decidualization process, which is likely involved in the occurrence and development of PE.
Collapse
Affiliation(s)
- Xingyu Yan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, 361102, China
| | - Miaomiao Rong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qianhui Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
7
|
Hu M, Wang Y, Meng Y, Hu J, Qiao J, Zhen J, Liang D, Fan M. Hypoxia induced-disruption of lncRNA TUG1/PRC2 interaction impairs human trophoblast invasion through epigenetically activating Nodal/ALK7 signalling. J Cell Mol Med 2022; 26:4087-4100. [PMID: 35729773 PMCID: PMC9279603 DOI: 10.1111/jcmm.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Inadequate trophoblastic invasion is considered as one of hallmarks of preeclampsia (PE), which is characterized by newly onset of hypertension (>140/90 mmHg) and proteinuria (>300 mg in a 24‐h urine) after 20 weeks of gestation. Accumulating evidence has indicated that long noncoding RNAs are aberrantly expressed in PE, whereas detailed mechanisms are unknown. In the present study, we showed that lncRNA Taurine upregulated 1 (TUG1) were downregulated in preeclamptic placenta and in HTR8/SVneo cells under hypoxic conditions, together with reduced enhancer of zeste homolog2 (EZH2) and embryonic ectoderm development (EED) expression, major components of polycomb repressive complex 2 (PRC2), as well as activation of Nodal/ALK7 signalling pathway. Mechanistically, we found that TUG1 bound to PRC2 (EZH2/EED) in HTR8/SVneo cells and weakened TUG1/PRC2 interplay was correlated with upregulation of Nodal expression via decreasing H3K27me3 mark at the promoter region of Nodal gene under hypoxic conditions. And activation of Nodal signalling prohibited trophoblast invasion via reducing MMP2 levels. Overexpression of TUG1 or EZH2 significantly attenuated hypoxia‐induced reduction of trophoblastic invasiveness via negative modulating Nodal/ALK7 signalling and rescuing expression of its downstream target MMP2. These investigations might provide some evidence for novel mechanisms responsible for inadequate trophoblastic invasion and might shed some light on identifying future therapeutic targets for PE.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanping Meng
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinxiu Hu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiao Qiao
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Decai Liang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
PPP2R2A affects embryonic implantation by regulating the proliferation and apoptosis of Hu sheep endometrial stromal cells. Theriogenology 2021; 176:149-162. [PMID: 34619436 DOI: 10.1016/j.theriogenology.2021.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Embryonic implantation is a complex reproductive physiological process in mammals. Although several endometrial proteins affecting embryonic implantation have been reported in the past, there are still potential endometrial proteins that have been neglected, and their specific regulatory mechanisms are unclear. This study demonstrated that protein phosphatase 2A regulatory subunit B55α (PPP2R2A) served as a novel regulator in medication of sheep embryonic implantation in vitro. Our results showed that sheep PPP2R2A encoded 447 amino acids and shared 91.74%-92.36% amino acid sequences with its orthologs compared with other species. Meanwhile, PPP2R2A was widely expressed in sheep uterine tissues, and it could regulate the expression levels of key regulators of embryonic implantation in endometrial stromal cells (ESCs). Knockdown of PPP2R2A significantly inhibited cell proliferation by blocking cell cycle transfer G0/G1 into S phase accompanied by downregulation of CDK2, CDK4, CCND1, CCNE1 and upregulation of P21. In contrast to PPP2R2A overexpression, PPP2R2A interference greatly promoted cell apoptosis and the expression of BAX, CASP3, CASP9 and BAX/BCL-2. Taken together, these results suggest that PPP2R2A, as a novel regulatory factor, affects embryonic implantation via regulating the proliferation and apoptosis of Hu sheep ESCs in vitro.
Collapse
|
9
|
Rong M, Yan X, Zhang H, Zhou C, Zhang C. Dysfunction of Decidual Macrophages Is a Potential Risk Factor in the Occurrence of Preeclampsia. Front Immunol 2021; 12:655655. [PMID: 34054819 PMCID: PMC8152936 DOI: 10.3389/fimmu.2021.655655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Preeclampsia is a multi-factorial and multi-genetic disorder that affects more than eight million mother and baby pairs each year. Currently, most of the attention to the pathogenesis of preeclampsia has been focused on placenta, but recent progresses suggest that excellent decidualization lays foundation for placentation and growth. Moreover, preeclampsia is associated with an imbalance in immunoregulatory mechanisms, however, how the immune regulatory system in the decidua affects preeclampsia is still unclear. In our study, after intersecting the genes of differentially expressed between preeclampsia and the control gotten by conventional expression profile analysis and the genes contained in the ligand receptor network, we found eight differentially expressed genes in a ligand-receptor relationship, and the eight genes have a characteristic: most of them participate in the interaction between decidual macrophages and other decidual immune cells. The results of single-cell sequencing of decidual cells further demonstrated that decidual macrophages affect the functions of other immune cells through export. As a result, abnormal gene expression affects the export function of decidual macrophages, which in turn affects the interaction of decidual macrophages with other immune cells, thereby destroying the original immune regulation mechanism, and ultimately leading to the occurrence of preeclampsia.
Collapse
Affiliation(s)
- Miaomiao Rong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Xingyu Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Chan Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
10
|
Wang B, Xu T, Li Y, Wang W, Lyu C, Luo D, Yang Q, Ning N, Chen ZJ, Yan J, Chen DB, Li J. Trophoblast H2S Maintains Early Pregnancy via Regulating Maternal-Fetal Interface Immune Hemostasis. J Clin Endocrinol Metab 2020; 105:5854355. [PMID: 32506120 PMCID: PMC7526739 DOI: 10.1210/clinem/dgaa357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Dysregulated immune hemostasis occurs in unexplained recurrent spontaneous abortion (URSA). Synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), hydrogen sulfide (H2S) promotes regulatory T-cell differentiation and regulates immune hemostasis; yet, its role in URSA is elusive. OBJECTIVE To determine if H2S plays a role in early pregnancy and if dysregulated H2S signaling results in recurrent spontaneous abortion. DESIGN First trimester placenta villi and decidua were collected from normal and URSA pregnancies. Protein expression was examined by immunohistochemistry and immunoblotting. Human trophoblast HTR8/SVneo and JEG3 cells were treated with H2S donors; HTR8/SVneo cells were transfected with CBS ribonucleic acid interference (RNAi) or complementary deoxyribonucleic acid. Cell migration and invasion were determined by transwell assays; trophoblast transcriptomes were determined by RNA sequencing (RNA-seq). Wild-type, CBS-deficient, and CBA/J × DBA/2 mice were treated with CBS and CSE inhibitors or H2S donors to determine the role of H2S in early pregnancy in vivo. RESULTS CBS and CSE proteins showed cell-specific expressions, but only CBS decreased in the villous cytotrophoblast in URSA versus normal participants. H2S donors promoted migration and invasion and MMP-2 and VEGF expression in human placenta trophoblast cells that contain SV40 viral deoxyribonucleic acid sequences (HTR8/SVneo) and human placenta trophoblast cells (JEG3 cells), similar to forced CBS expression in HTR8/SVneo cells. The CBS-responsive transcriptomes in HTR8/SVneo cells contained differentially regulated genes (ie, interleukin-1 receptor and prostaglandin-endoperoxide synthase 2) that are associated with nuclear factor-κB-mediated inflammatory response. In vivo, dysregulated CBS/H2S signaling significantly increased embryonic resorption and decidual T-helper 1/T-helper 2 imbalance in mice, which was partially rescued by H2S donors. CONCLUSION CBS/H2S signaling maintains early pregnancy, possibly via regulating maternal-fetal interface immune hemostasis, offering opportunities for H2S-based immunotherapies for URSA.
Collapse
Affiliation(s)
- Banqin Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tonghui Xu
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Medical Research Center, Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenfu Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunzi Lyu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dan Luo
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiuhong Yang
- Department of Gynaecology and Obstetrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Nannan Ning
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Correspondence and Reprint Requests: Jingxin Li, MD, PhD, Department of Physiology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. E-mail: . Junhao Yan, MD, PhD, Center for Reproductive Medicine, Shandong University, Jinan, 250021, China. ; Dongbao Chen, Ph.D., Department of Obstetrics & Gynecology, University of California, Irvine, 92697, USA.
| | - Dong-bao Chen
- Department of Obstetrics & Gynecology, University of California, Irvine
- Correspondence and Reprint Requests: Jingxin Li, MD, PhD, Department of Physiology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. E-mail: . Junhao Yan, MD, PhD, Center for Reproductive Medicine, Shandong University, Jinan, 250021, China. ; Dongbao Chen, Ph.D., Department of Obstetrics & Gynecology, University of California, Irvine, 92697, USA.
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Correspondence and Reprint Requests: Jingxin Li, MD, PhD, Department of Physiology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. E-mail: . Junhao Yan, MD, PhD, Center for Reproductive Medicine, Shandong University, Jinan, 250021, China. ; Dongbao Chen, Ph.D., Department of Obstetrics & Gynecology, University of California, Irvine, 92697, USA.
| |
Collapse
|
11
|
Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev 2019; 99:1249-1279. [DOI: 10.1152/physrev.00019.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors are intracellular proteins that act as transcription factors. Proteins with classic nuclear receptor domain structure lacking identified signaling ligands are designated orphan nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with different and nonoverlapping effects on targets. Endogenous regulation of both is achieved predominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis, steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1 depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1 compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue, where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overexpressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear receptors are nonredundant factors that are crucial regulators of a panoply of biological processes, across multiple reproductive tissues.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Olivia E. Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalyne Bertolin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Bruce D. Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
12
|
Tong J, Yang J, Lv H, Lv S, Zhang C, Chen ZJ. Dysfunction of pseudogene PGK1P2 is involved in preeclampsia by acting as a competing endogenous RNA of PGK1. Pregnancy Hypertens 2018; 13:37-45. [DOI: 10.1016/j.preghy.2018.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
|
13
|
Zhang L, Liu X, Liu J, Ma X, Zhou Z, Song Y, Cao B. miR-26a promoted endometrial epithelium cells (EECs) proliferation and induced stromal cells (ESCs) apoptosis via the PTEN-PI3K/AKT pathway in dairy goats. J Cell Physiol 2018; 233:4688-4706. [PMID: 29115668 DOI: 10.1002/jcp.26252] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022]
Abstract
Changes in endometrial cell morphology and function are absolutely necessary for successful embryo implantation. In this study, miR-26a was widely expressed in dairy goats, and was found to be regulated by β-estradiol (E2) and progesterone (P4) in endometrial epithelium cells (EECs) as well as stromal cells (ESCs). Furthermore, miR-26a played a role in the regulation of cells proliferation and apoptosis by directly regulating PTEN and indirectly regulating the PI3K/AKT pathway in EECs but not in ESCs of dairy goats in vitro. In addition, miR-26a regulated the expression of osteopontin (OPN), vascular endothelial growth factor (VEGF), Cyclooxygenase-2 (COX-2), and prolactin (PRL) in endometrial cells. Therefore, we could get a conclusion that miR-26a had very complex and diverse functions in the endometrial cells during the development of endometrial receptivity in dairy goats. This study provided an efficient platform for studying the regulatory effect of miR-26a on endometrial cells during the development of endometrial receptivity in dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Junze Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xingna Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Zhanqin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | | |
Collapse
|
14
|
Zhang L, Liu X, Che S, Cui J, Liu Y, An X, Cao B, Song Y. CircRNA-9119 regulates the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) by sponging miR-26a in the endometrial epithelial cells of dairy goat. Reprod Fertil Dev 2018; 30:1759-1769. [DOI: 10.1071/rd18074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) have been found to play important functional roles in epigenetic regulation under certain physiological and pathological conditions. However, knowledge of circRNAs during the development of receptive endometrium (RE) from pre-RE is limited. In the RE of dairy goats, higher circRNA-9119 levels, with lower miR-26a and higher prostaglandin-endoperoxide synthase 2 (PTGS2) levels, were detected. Further study showed that circRNA-9119 decreased levels of miR-26a by acting as a microRNA sponge, and that miR-26a downregulated the expression of PTGS2 via the predicted target site in endometrial epithelial cells (EECs) of dairy goats in vitro. In this way, circRNA-9119 functioned as a competing endogenous RNAs (ceRNA) that sequestered miR-26a, thereby protecting PTGS2 transcripts from miR-26a-mediated suppression in dairy goat EECs in vitro. Furthermore, PTGS2 participated in the regulation of some protein markers for endometrial receptivity in dairy goat EECs in vitro. Thus, a circRNA-9119–miR-26a–PTGS2 pathway in the endometrium was identified, and modulation of circRNA-9119–miR-26a–PTGS2 expression in EECs may emerge as a potential target to regulate the development of RE.
Collapse
|
15
|
Zhang L, Liu XR, Liu JZ, Song YX, Zhou ZQ, Cao BY. miR-182 selectively targets HOXA10 in goat endometrial epithelium cells in vitro. Reprod Domest Anim 2017; 52:1081-1092. [DOI: 10.1111/rda.13031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/10/2017] [Indexed: 12/14/2022]
Affiliation(s)
- L Zhang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - X-R Liu
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - J-Z Liu
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Y-X Song
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Z-Q Zhou
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - B-Y Cao
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| |
Collapse
|
16
|
Zhang L, Liu X, Liu J, Zhou Z, Song Y, Cao B, An X. miR-182 aids in receptive endometrium development in dairy goats by down-regulating PTN expression. PLoS One 2017; 12:e0179783. [PMID: 28678802 PMCID: PMC5497977 DOI: 10.1371/journal.pone.0179783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/04/2017] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has shown that miRNAs play important roles in endometrium development during the menstrual cycle in humans and many other animals. Our previous data indicated that miR-182 levels increase 15.55-fold and pleiotrophin (PTN) levels decrease 20.97-fold in the receptive endometrium (RE, D15) compared with the pre-receptive endometrium (PE, D5) in dairy goats. The present study shows that miR-182 is widely expressed in different tissues of dairy goats and that its expression levels are regulated by E2 and P4 in endometrial epithelium cells (EECs). We confirmed that PTN is a target of miR-182 and that miR-182 regulates the protein levels of AKT, Bcl-2, FAS, MAPK, Caspase-3 and SP1 in EECs. Furthermore, miR-182 up-regulates or maintains the expression levels of osteopontin (OPN), cyclooxygenase-2 (COX-2) and prolactin receptor (PRLR) in EECs, suggesting that miR-182 is an important regulatory factor in the construction of endometrial receptivity in dairy goats. In conclusion, miR-182 participates in the development of endometrial receptivity by down-regulating PTN and affecting the expression of select apoptosis-related genes and increasing or maintaining the expression levels of OPN, COX-2 and PRLR in the EECs of dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Junze Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Zhanqin Zhou
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
An evolutionary conserved interaction between the Gcm transcription factor and the SF1 nuclear receptor in the female reproductive system. Sci Rep 2016; 6:37792. [PMID: 27886257 PMCID: PMC5122895 DOI: 10.1038/srep37792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
NR5A1 is essential for the development and for the function of steroid producing glands of the reproductive system. Moreover, its misregulation is associated with endometriosis, which is the first cause of infertility in women. Hr39, the Drosophila ortholog of NR5A1, is expressed and required in the secretory cells of the spermatheca, the female exocrine gland that ensures fertility by secreting substances that attract and capacitate the spermatozoids. We here identify a direct regulator of Hr39 in the spermatheca: the Gcm transcription factor. Furthermore, lack of Gcm prevents the production of the secretory cells and leads to female sterility in Drosophila. Hr39 regulation by Gcm seems conserved in mammals and involves the modification of the DNA methylation profile of mNr5a1. This study identifies a new molecular pathway in female reproductive system development and suggests a role for hGCM in the progression of reproductive tract diseases in humans.
Collapse
|