1
|
Lamarca A, Palmer DH, Wasan HS, Ross PJ, Ma YT, Arora A, Falk S, Gillmore R, Wadsley J, Patel K, Anthoney A, Maraveyas A, Iveson T, Waters JS, Hobbs C, Barber S, Ryder WD, Ramage J, Davies LM, Bridgewater JA, Valle JW. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol 2021; 22:690-701. [PMID: 33798493 PMCID: PMC8082275 DOI: 10.1016/s1470-2045(21)00027-9] [Citation(s) in RCA: 470] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Advanced biliary tract cancer has a poor prognosis. Cisplatin and gemcitabine is the standard first-line chemotherapy regimen, but no robust evidence is available for second-line chemotherapy. The aim of this study was to determine the benefit derived from second-line FOLFOX (folinic acid, fluorouracil, and oxaliplatin) chemotherapy in advanced biliary tract cancer. METHODS The ABC-06 clinical trial was a phase 3, open-label, randomised trial done in 20 sites with expertise in managing biliary tract cancer across the UK. Adult patients (aged ≥18 years) who had histologically or cytologically verified locally advanced or metastatic biliary tract cancer (including cholangiocarcinoma and gallbladder or ampullary carcinoma) with documented radiological disease progression to first-line cisplatin and gemcitabine chemotherapy and an Eastern Cooperative Oncology Group performance status of 0-1 were randomly assigned (1:1) centrally to active symptom control (ASC) and FOLFOX or ASC alone. FOLFOX chemotherapy was administered intravenously every 2 weeks for a maximum of 12 cycles (oxaliplatin 85 mg/m2, L-folinic acid 175 mg [or folinic acid 350 mg], fluorouracil 400 mg/m2 [bolus], and fluorouracil 2400 mg/m2 as a 46-h continuous intravenous infusion). Randomisation was done following a minimisation algorithm using platinum sensitivity, serum albumin concentration, and stage as stratification factors. The primary endpoint was overall survival, assessed in the intention-to-treat population. Safety was also assessed in the intention-to-treat population. The study is complete and the final results are reported. This trial is registered with ClinicalTrials.gov, NCT01926236, and EudraCT, 2013-001812-30. FINDINGS Between March 27, 2014, and Jan 4, 2018, 162 patients were enrolled and randomly assigned to ASC plus FOLFOX (n=81) or ASC alone (n=81). Median follow-up was 21·7 months (IQR 17·2-30·8). Overall survival was significantly longer in the ASC plus FOLFOX group than in the ASC alone group, with a median overall survival of 6·2 months (95% CI 5·4-7·6) in the ASC plus FOLFOX group versus 5·3 months (4·1-5·8) in the ASC alone group (adjusted hazard ratio 0·69 [95% CI 0·50-0·97]; p=0·031). The overall survival rate in the ASC alone group was 35·5% (95% CI 25·2-46·0) at 6 months and 11·4% (5·6-19·5) at 12 months, compared with 50·6% (39·3-60·9) at 6 months and 25·9% (17·0-35·8) at 12 months in the ASC plus FOLFOX group. Grade 3-5 adverse events were reported in 42 (52%) of 81 patients in the ASC alone group and 56 (69%) of 81 patients in the ASC plus FOLFOX group, including three chemotherapy-related deaths (one each due to infection, acute kidney injury, and febrile neutropenia). The most frequently reported grade 3-5 FOLFOX-related adverse events were neutropenia (ten [12%] patients), fatigue or lethargy (nine [11%] patients), and infection (eight [10%] patients). INTERPRETATION The addition of FOLFOX to ASC improved median overall survival in patients with advanced biliary tract cancer after progression on cisplatin and gemcitabine, with a clinically meaningful increase in 6-month and 12-month overall survival rates. To our knowledge, this trial is the first prospective, randomised study providing reliable, high-quality evidence to allow an informed discussion with patients of the potential benefits and risks from second-line FOLFOX chemotherapy in advanced biliary tract cancer. Based on these findings, FOLFOX should become standard-of-care chemotherapy in second-line treatment for advanced biliary tract cancer and the reference regimen for further clinical trials. FUNDING Cancer Research UK, StandUpToCancer, AMMF (The UK Cholangiocarcinoma Charity), and The Christie Charity, with additional funding from The Cholangiocarcinoma Foundation and the Conquer Cancer Foundation Young Investigator Award for translational research.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust/Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Daniel H Palmer
- University of Liverpool and Clatterbridge Cancer Centre, Liverpool, UK
| | - Harpreet Singh Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial Colllege London, London, UK
| | - Paul J Ross
- Guy's Cancer, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Yuk Ting Ma
- Department of Hepatobiliary Oncology, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Arvind Arora
- Department of Medical Oncology, University Hospital of Nottingham NHS Trust, University of Nottingham, Nottingham, UK
| | - Stephen Falk
- Bristol Haematology and Oncology Centre, Bristol, UK
| | - Roopinder Gillmore
- Department of Medical Oncology, Royal Free NHS Foundation Trust, London, UK
| | | | - Kinnari Patel
- Department of Medical Oncology, Cancer and Haematology Centre, Oxford, UK
| | - Alan Anthoney
- Department of Medical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Anthony Maraveyas
- Department of Medical Oncology, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Tim Iveson
- Department of Gastro-Intestinal Oncology, University Hospital Southampton NHS Foundation Trust, Southampton University, Southampton, UK
| | | | - Claire Hobbs
- Department of Clinical Oncology, Great Western Hospital, Swindon, UK
| | - Safia Barber
- Manchester Clinical Trials Unit, University of Manchester, Manchester, UK
| | - W David Ryder
- Manchester Clinical Trials Unit, University of Manchester, Manchester, UK
| | - John Ramage
- Hampshire Hospitals NHS Foundation Trust, Basingstoke, UK
| | - Linda M Davies
- Manchester Centre for Health Economics, University of Manchester, Manchester, UK
| | | | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust/Institute of Cancer Sciences, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Zimmermann M, Li T, Semrad TJ, Wu CY, Yu A, Cimino G, Malfatti M, Haack K, Turteltaub KW, Pan CX, Cho M, Kim EJ, Henderson PT. Oxaliplatin-DNA Adducts as Predictive Biomarkers of FOLFOX Response in Colorectal Cancer: A Potential Treatment Optimization Strategy. Mol Cancer Ther 2020; 19:1070-1079. [PMID: 32029633 PMCID: PMC7192311 DOI: 10.1158/1535-7163.mct-19-0133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/10/2019] [Accepted: 01/23/2020] [Indexed: 11/16/2022]
Abstract
FOLFOX is one of the most effective treatments for advanced colorectal cancer. However, cumulative oxaliplatin neurotoxicity often results in halting the therapy. Oxaliplatin functions predominantly via the formation of toxic covalent drug-DNA adducts. We hypothesize that oxaliplatin-DNA adduct levels formed in vivo in peripheral blood mononuclear cells (PBMC) are proportional to tumor shrinkage caused by FOLFOX therapy. We further hypothesize that adducts induced by subtherapeutic "diagnostic microdoses" are proportional to those induced by therapeutic doses and are also predictive of response to FOLFOX therapy. These hypotheses were tested in colorectal cancer cell lines and a pilot clinical study. Four colorectal cancer cell lines were cultured with therapeutically relevant (100 μmol/L) or diagnostic microdose (1 μmol/L) concentrations of [14C]oxaliplatin. The C-14 label enabled quantification of oxaliplatin-DNA adduct level with accelerator mass spectrometry (AMS). Oxaliplatin-DNA adduct formation was correlated with oxaliplatin cytotoxicity for each cell line as measured by the MTT viability assay. Six colorectal cancer patients received by intravenous route a diagnostic microdose containing [14C]oxaliplatin prior to treatment, as well as a second [14C]oxaliplatin dose during FOLFOX chemotherapy, termed a "therapeutic dose." Oxaliplatin-DNA adduct levels from PBMC correlated significantly to mean tumor volume change of evaluable target lesions (5 of the 6 patients had measurable disease). Oxaliplatin-DNA adduct levels were linearly proportional between microdose and therapeutically relevant concentrations in cell culture experiments and patient samples, as was plasma pharmacokinetics, indicating potential utility of diagnostic microdosing.
Collapse
Affiliation(s)
- Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Accelerated Medical Diagnostics Incorporated, Berkeley, California
| | - Tao Li
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Thomas J Semrad
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Gene Upshaw Memorial Tahoe Forest Cancer Center, Truckee, California
| | - Chun-Yi Wu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California
| | - Aiming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California
| | - George Cimino
- Accelerated Medical Diagnostics Incorporated, Berkeley, California
| | | | - Kurt Haack
- Lawrence Livermore National Laboratory, Livermore, California
| | | | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Department of Urology, University of California Davis, Sacramento, California
- VA Northern California Health Care System, Mather, CA
| | - May Cho
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Edward J Kim
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California.
- Accelerated Medical Diagnostics Incorporated, Berkeley, California
| |
Collapse
|
3
|
Malfatti MA, Buchholz BA, Enright HA, Stewart BJ, Ognibene TJ, McCartt AD, Loots GG, Zimmermann M, Scharadin TM, Cimino GD, Jonas BA, Pan CX, Bench G, Henderson PT, Turteltaub KW. Radiocarbon Tracers in Toxicology and Medicine: Recent Advances in Technology and Science. TOXICS 2019; 7:E27. [PMID: 31075884 PMCID: PMC6631948 DOI: 10.3390/toxics7020027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
This review summarizes recent developments in radiocarbon tracer technology and applications. Technologies covered include accelerator mass spectrometry (AMS), including conversion of samples to graphite, and rapid combustion to carbon dioxide to enable direct liquid sample analysis, coupling to HPLC for real-time AMS analysis, and combined molecular mass spectrometry and AMS for analyte identification and quantitation. Laser-based alternatives, such as cavity ring down spectrometry, are emerging to enable lower cost, higher throughput measurements of biological samples. Applications covered include radiocarbon dating, use of environmental atomic bomb pulse radiocarbon content for cell and protein age determination and turnover studies, and carbon source identification. Low dose toxicology applications reviewed include studies of naphthalene-DNA adduct formation, benzo[a]pyrene pharmacokinetics in humans, and triclocarban exposure and risk assessment. Cancer-related studies covered include the use of radiocarbon-labeled cells for better defining mechanisms of metastasis and the use of drug-DNA adducts as predictive biomarkers of response to chemotherapy.
Collapse
Affiliation(s)
- Michael A Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Bruce A Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Heather A Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Benjamin J Stewart
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - A Daniel McCartt
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Gabriela G Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis Medical School, Sacramento, CA 95817, USA.
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA 94708, USA.
| | - Tiffany M Scharadin
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis Medical School, Sacramento, CA 95817, USA.
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA 94708, USA.
| | - George D Cimino
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA 94708, USA.
| | - Brian A Jonas
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis Medical School, Sacramento, CA 95817, USA.
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis Medical School, Sacramento, CA 95817, USA.
| | - Graham Bench
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis Medical School, Sacramento, CA 95817, USA.
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA 94708, USA.
| | - Kenneth W Turteltaub
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
4
|
Mazzocchi A, Devarasetty M, Herberg S, Petty WJ, Marini F, Miller L, Kucera G, Dukes DK, Ruiz J, Skardal A, Soker S. Pleural Effusion Aspirate for use in 3D Lung Cancer Modeling and Chemotherapy Screening. ACS Biomater Sci Eng 2019; 5:1937-1943. [PMID: 31723594 DOI: 10.1021/acsbiomaterials.8b01356] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide yet in vitro disease models have been limited to traditional 2D culture utilizing cancer cell lines. In contrast, recently developed 3D models (organoids) have been adopted by researchers to improve the physiological relevance of laboratory study. We have hypothesized that 3D hydrogel-based models will allow for improved disease replication and characterization over standard 2D culture using cells taken directly from patients. Here, we have leveraged the use of 3D hydrogel-based models to create lung cancer organoids using a unique cell source, pleural effusion aspirate, from multiple lung cancer patients. With these 3D models, we have characterized the cell populations comprising the pleural effusion aspirate and have tracked phenotypic changes that develop during short-term in vitro culture. We found that isolated, patient cells placed directly into organoids created anatomically relevant structures and exhibited lung cancer specific behaviors. On the other hand, cells first grown in plastic dishes and then cultured in 3D did not create similar structures. Further, we have been able to compare chemotherapeutic response of patient cells between 2D and 3D cell culture systems. Our results show that cells in 2D culture were more sensitive to treatment when compared with 3D organoids. Collectively, we have been able to utilize tumor cells from pleural effusion fluid of lung cancer patients to create organoids that display in vivo like anatomy and drug response and thus could serve as more accurate disease models for study of tumor progression and drug development.
Collapse
Affiliation(s)
- Andrea Mazzocchi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Samuel Herberg
- Current address: SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210
| | - William J Petty
- Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center at Wake Forest Baptist Medical, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Frank Marini
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.,Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Lance Miller
- Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center at Wake Forest Baptist Medical, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Gregory Kucera
- Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center at Wake Forest Baptist Medical, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - David K Dukes
- Current address: Alabama College of Osteopathic Medicine, 445 Health Sciences Blvd, Dothan, AL 36303, USA
| | - Jimmy Ruiz
- Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center at Wake Forest Baptist Medical, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center at Wake Forest Baptist Medical, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center at Wake Forest Baptist Medical, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
5
|
Wang S, Scharadin TM, Zimmermann M, Malfatti MA, Turteltaub KW, de Vere White R, Pan CX, Henderson PT. Correlation of Platinum Cytotoxicity to Drug-DNA Adduct Levels in a Breast Cancer Cell Line Panel. Chem Res Toxicol 2018; 31:1293-1304. [PMID: 30381944 DOI: 10.1021/acs.chemrestox.8b00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platinum drugs, including carboplatin and oxaliplatin, are commonly used chemotherapy drugs that kill cancer cells by forming toxic drug-DNA adducts. These drugs have a proven, but modest, efficacy against several aggressive subtypes of breast cancer but also cause several side effects that can lead to the cessation of treatment. There is a clinical need to identify patients who will respond to platinum drugs in order to better inform clinical decision making. Diagnostic microdosing involves dosing patients or patient samples with subtherapeutic doses of radiolabeled platinum followed by measurement of platinum-DNA adducts in blood or tumor tissue and may be used to predict patient response. We exposed a panel of six breast cancer cell lines to 14C-labeled carboplatin or oxaliplatin at therapeutic and microdose (1% therapeutic dose) concentrations for a range of exposure lengths and isolated DNA from the cells. The DNA was converted to graphite, and measurement of radiocarbon due to platinum-DNA adduction was quantified via accelerator mass spectrometry (AMS). We observed a linear correlation in adduct levels between the microdose and therapeutic dose, and the level of platinum-DNA adducts corresponded to cell line drug sensitivity for both carboplatin and oxaliplatin. These results showed a clear separation in adduct levels between the sensitive and resistant groups of cell lines that could not be fully explained or predicted by changes in DNA repair rates or mutations in DNA repair genes. Further, we were able to quantitate oxaliplatin-DNA adducts in the blood and tumor tissue of a metastatic breast cancer patient. Together, these data support the use of diagnostic microdosing for predicting patient sensitivity to platinum. Future studies will be aimed at replicating this data in a clinical feasibility trial.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States
| | - Tiffany M Scharadin
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States
| | - Michael A Malfatti
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Kenneth W Turteltaub
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Ralph de Vere White
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States.,Department of Urology , University of California Davis Medical Center , Sacramento , California 95817 , United States.,VA Northern California Health Care System , Mather , California 95655 , United States
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States
| |
Collapse
|
6
|
Hum NR, Martin KA, Malfatti MA, Haack K, Buchholz BA, Loots GG. Tracking Tumor Colonization in Xenograft Mouse Models Using Accelerator Mass Spectrometry. Sci Rep 2018; 8:15013. [PMID: 30302019 PMCID: PMC6178347 DOI: 10.1038/s41598-018-33368-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Here we introduce an Accelerator Mass Spectrometry (AMS)-based high precision method for quantifying the number of cancer cells that initiate metastatic tumors, in xenograft mice. Quantification of 14C per cell prior to injection into animals, and quantification of 14C in whole organs allows us to extrapolate the number of cancer cells available to initiate metastatic tumors. The 14C labeling was optimized such that 1 cancer cell was detected among 1 million normal cells. We show that ~1–5% of human cancer cells injected into immunodeficient mice form subcutaneous tumors, and even fewer cells initiate metastatic tumors. Comparisons of metastatic site colonization between a highly metastatic (PC3) and a non-metastatic (LnCap) cell line showed that PC3 cells colonize target tissues in greater quantities at 2 weeks post-delivery, and by 12 weeks post-delivery no 14C was detected in LnCap xenografts, suggesting that all metastatic cells were cleared. The 14C-signal correlated with the presence and the severity of metastatic tumors. AMS measurements of 14C-labeled cells provides a highly-sensitive, quantitative assay to experimentally evaluate metastasis and colonization of target tissues in xenograft mouse models. This approach can potentially be used to evaluate tumor aggressiveness and assist in making informed decisions regarding treatment.
Collapse
Affiliation(s)
- Nicholas R Hum
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Kelly A Martin
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA.,Georgetown University, Department of Biochemistry & Molecular Biology, Washington, DC, USA
| | - Michael A Malfatti
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Kurt Haack
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Bruce A Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Gabriela G Loots
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA. .,UC Merced, School of Natural Sciences, Merced, CA, USA.
| |
Collapse
|
7
|
Scharadin TM, Malfatti MA, Haack K, Turteltaub KW, Pan CX, Henderson PT, Jonas BA. Toward Predicting Acute Myeloid Leukemia Patient Response to 7 + 3 Induction Chemotherapy via Diagnostic Microdosing. Chem Res Toxicol 2018; 31:1042-1051. [PMID: 30152692 DOI: 10.1021/acs.chemrestox.8b00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is a rare yet deadly cancer of the blood and bone marrow. Presently, induction chemotherapy with the DNA damaging drugs cytarabine (ARA-C) and idarubicin (IDA), known as 7 + 3, is the standard of care for most AML patients. However, 7 + 3 is a relatively ineffective therapy, particularly in older patients, and has serious therapy-related toxicities. Therefore, a diagnostic test to predict which patients will respond to 7 + 3 is a critical unmet medical need. We hypothesize that a threshold level of therapy-induced 7 + 3 drug-DNA adducts determines cytotoxicity and clinical response. We further hypothesize that in vitro exposure of AML cells to nontoxic diagnostic microdoses enables prediction of the ability of AML cells to achieve that threshold during treatment. Our test involves dosing cells with very low levels of 14C-labeled drug followed by DNA isolation and quantification of drug-DNA adducts via accelerator mass spectrometry. Here, we have shown proof of principle by correlating ARA-C- and DOX-DNA adduct levels with cellular IC50 values of paired sensitive and resistant cancer cell lines and AML cell lines. Moreover, we have completed a pilot retrospective trial of diagnostic microdosing for 10 viably cryopreserved primary AML samples and observed higher ARA-C- and DOX-DNA adducts in the 7 + 3 responders than nonresponders. These initial results suggest that diagnostic microdosing may be a feasible and useful test for predicting patient response to 7 + 3 induction chemotherapy, leading to improved outcomes for AML patients and reduced treatment-related morbidity and mortality.
Collapse
Affiliation(s)
- Tiffany M Scharadin
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis School of Medicine , Sacramento , California 95817 , United States
| | - Michael A Malfatti
- Lawrence Livermore National Laboratory , Livermore , California 94551 , United States
| | - Kurt Haack
- Lawrence Livermore National Laboratory , Livermore , California 94551 , United States
| | - Kenneth W Turteltaub
- Lawrence Livermore National Laboratory , Livermore , California 94551 , United States
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis School of Medicine , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States.,VA Northern California Health Care System , 10535 Hospital Way , Mather , California 95655 , United States
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis School of Medicine , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States
| | - Brian A Jonas
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis School of Medicine , Sacramento , California 95817 , United States.,VA Northern California Health Care System , 10535 Hospital Way , Mather , California 95655 , United States
| |
Collapse
|
8
|
Wang F, Zhang H, Ma AH, Yu W, Zimmermann M, Yang J, Hwang SH, Zhu D, Lin TY, Malfatti M, Turteltaub KW, Henderson PT, Airhart S, Hammock BD, Yuan J, de Vere White RW, Pan CX. COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin. Mol Cancer Ther 2017; 17:474-483. [PMID: 29284644 DOI: 10.1158/1535-7163.mct-16-0818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/25/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
Cisplatin-based therapy is highly toxic, but moderately effective in most cancers. Concurrent inhibition of cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) results in antitumor activity and has organ-protective effects. The goal of this study was to determine the antitumor activity of PTUPB, an orally bioavailable COX-2/sEH dual inhibitor, in combination with cisplatin and gemcitabine (GC) therapy. NSG mice bearing bladder cancer patient-derived xenografts were treated with vehicle, PTUPB, cisplatin, GC, or combinations thereof. Mouse experiments were performed with two different PDX models. PTUPB potentiated cisplatin and GC therapy, resulting in significantly reduced tumor growth and prolonged survival. PTUPB plus cisplatin was no more toxic than cisplatin single-agent treatment as assessed by body weight, histochemical staining of major organs, blood counts, and chemistry. The combination of PTUPB and cisplatin increased apoptosis and decreased phosphorylation in the MAPK/ERK and PI3K/AKT/mTOR pathways compared with controls. PTUPB treatment did not alter platinum-DNA adduct levels, which is the most critical step in platinum-induced cell death. The in vitro study using the combination index method showed modest synergy between PTUPB and platinum agents only in 5637 cell line among several cell lines examined. However, PTUPB is very active in vivo by inhibiting angiogenesis. In conclusion, PTUPB potentiated the antitumor activity of cisplatin-based treatment without increasing toxicity in vivo and has potential for further development as a combination chemotherapy partner. Mol Cancer Ther; 17(2); 474-83. ©2017 AACR.
Collapse
Affiliation(s)
- Fuli Wang
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California.,Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shanxi Province, China
| | - Hongyong Zhang
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California
| | - Ai-Hong Ma
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California
| | - Weimin Yu
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California.,Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Maike Zimmermann
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, California
| | - Sung Hee Hwang
- Department of Entomology and Nematology, University of California, Davis, California
| | - Daniel Zhu
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California
| | - Tzu-Yin Lin
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California
| | | | | | - Paul T Henderson
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California
| | | | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, California
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shanxi Province, China
| | - Ralph W de Vere White
- Department of Urology, School of Medicine and Comprehensive Cancer Center, University of California Davis, Sacramento, California.
| | - Chong-Xian Pan
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California. .,Department of Urology, School of Medicine and Comprehensive Cancer Center, University of California Davis, Sacramento, California.,VA Northern California Health Care System, Rancho Cordova, California
| |
Collapse
|
9
|
Stornetta A, Zimmermann M, Cimino GD, Henderson PT, Sturla SJ. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine. Chem Res Toxicol 2017; 30:388-409. [PMID: 27936622 PMCID: PMC5379252 DOI: 10.1021/acs.chemrestox.6b00380] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 01/23/2023]
Abstract
Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge.
Collapse
Affiliation(s)
- Alessia Stornetta
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Maike Zimmermann
- Department
of Internal Medicine, Division of Hematology and Oncology and the
UC Davis Comprehensive Cancer Center, University
of California Davis, 4501 X Street, Sacramento, California 95655, United States
- Accelerated
Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, California 95618, United States
| | - George D. Cimino
- Accelerated
Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, California 95618, United States
| | - Paul T. Henderson
- Department
of Internal Medicine, Division of Hematology and Oncology and the
UC Davis Comprehensive Cancer Center, University
of California Davis, 4501 X Street, Sacramento, California 95655, United States
- Accelerated
Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, California 95618, United States
| | - Shana J. Sturla
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Enright HA, Malfatti MA, Zimmermann M, Ognibene T, Henderson P, Turteltaub KW. Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology. Chem Res Toxicol 2016; 29:1976-1986. [PMID: 27726383 PMCID: PMC5203773 DOI: 10.1021/acs.chemrestox.6b00234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accelerator mass spectrometry (AMS) has been adopted as a powerful bioanalytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10-18 mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins, such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to that of graphite-based analysis, therefore enabling the use of lower 14C and chemical doses, which are imperative for clinical testing. The aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research.
Collapse
Affiliation(s)
- Heather A. Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Michael A. Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Medical Center, Sacramento, CA USA
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA USA
| | - Ted Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Paul Henderson
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Medical Center, Sacramento, CA USA
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA USA
| | - Kenneth W. Turteltaub
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| |
Collapse
|
11
|
Zimmermann M, Wang SS, Zhang H, Lin TY, Malfatti M, Haack K, Ognibene T, Yang H, Airhart S, Turteltaub KW, Cimino GD, Tepper CG, Drakaki A, Chamie K, de Vere White R, Pan CX, Henderson PT. Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice. Mol Cancer Ther 2016; 16:376-387. [PMID: 27903751 DOI: 10.1158/1535-7163.mct-16-0381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/05/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022]
Abstract
We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [14C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [14C]carboplatin or [14C]gemcitabine and the resulting drug-DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. Mol Cancer Ther; 16(2); 376-87. ©2016 AACR.
Collapse
Affiliation(s)
- Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California.,Accelerated Medical Diagnostics Incorporated, Berkeley, California
| | - Si-Si Wang
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Hongyong Zhang
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Tzu-Yin Lin
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | | | - Kurt Haack
- Lawrence Livermore National Laboratory, Livermore, California
| | - Ted Ognibene
- Lawrence Livermore National Laboratory, Livermore, California
| | | | | | | | - George D Cimino
- Accelerated Medical Diagnostics Incorporated, Berkeley, California
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, California
| | - Alexandra Drakaki
- Division of Hematology and Oncology, UCLA Medical Center, Los Angeles, California
| | - Karim Chamie
- Department of Urology, UCLA Medical Center, Los Angeles, California
| | - Ralph de Vere White
- Department of Urology, University of California Davis, Sacramento, California
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California. .,Department of Urology, University of California Davis, Sacramento, California.,VA Northern California Health Care System, Mather, California
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California. .,Accelerated Medical Diagnostics Incorporated, Berkeley, California
| |
Collapse
|
12
|
Scharadin TM, Zhang H, Zimmermann M, Wang S, Malfatti MA, Cimino GD, Turteltaub K, de Vere White R, Pan CX, Henderson PT. Diagnostic Microdosing Approach to Study Gemcitabine Resistance. Chem Res Toxicol 2016; 29:1843-1848. [PMID: 27657672 DOI: 10.1021/acs.chemrestox.6b00247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gemcitabine metabolites cause the termination of DNA replication and induction of apoptosis. We determined whether subtherapeutic "microdoses" of gemcitabine are incorporated into DNA at levels that correlate to drug cytotoxicity. A pair of nearly isogenic bladder cancer cell lines differing in resistance to several chemotherapy drugs were treated with various concentrations of 14C-labeled gemcitabine for 4-24 h. Drug incorporation into DNA was determined by accelerator mass spectrometry. A mechanistic analysis determined that RRM2, a DNA synthesis protein and a known resistance factor, substantially mediated gemcitabine toxicity. These results support gemcitabine levels in DNA as a potential biomarker of drug cytotoxicity.
Collapse
Affiliation(s)
- Tiffany M Scharadin
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States
| | - Hongyong Zhang
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States.,Accelerated Medical Diagnostics Incorporated , Berkeley, California 95618, United States
| | - Sisi Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States
| | - Michael A Malfatti
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - George D Cimino
- Accelerated Medical Diagnostics Incorporated , Berkeley, California 95618, United States
| | - Kenneth Turteltaub
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Ralph de Vere White
- Department of Urology, University of California Davis Medical Center , Sacramento, California 95817, United States
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States.,Accelerated Medical Diagnostics Incorporated , Berkeley, California 95618, United States
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States.,Accelerated Medical Diagnostics Incorporated , Berkeley, California 95618, United States
| |
Collapse
|