1
|
Angelakopoulos R, Tsipourlianos A, Fytsili AE, Papaharisis L, Dimitroglou A, Barkas D, Mamuris Z, Giannoulis T, Moutou KA. Red Blood Cell Transcriptome Reflects Physiological Responses to Alternative Nutrient Sources in Gilthead Seabream ( Sparus aurata). Animals (Basel) 2025; 15:1279. [PMID: 40362093 PMCID: PMC12070918 DOI: 10.3390/ani15091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
The sustainable growth of finfish farming relies heavily on reducing the high ecological footprint of sourcing and producing fish feeds that accounts for almost 50% of the total ecological footprint of finfish farming. Sustainable alternatives to fishmeal often pose challenges due to the presence of antinutritional factors and nutrient imbalances that impair fish health and growth. Screening for alternative nutrient sources and adapting to global commodity fluctuations requires modern tools that can predict the physiological responses of fish early and reliably. The present study explores for the first time the potential of fish red blood cell (RBC) transcriptome as a minimally invasive biomarker of physiological responses in gilthead seabream (Sparus aurata) fed either a fishmeal-based (FM) or a plant-protein-based (PP) diet. Blood samples were collected at multiple time points (15, 20, and 30 days post-diet initiation) from genetically diverse full-sib families reared under commercial conditions, integrating transcriptomic analysis with long-term growth assessments. Differential gene expression analysis revealed significant dietary effects on oxidative phosphorylation, ribosomal capacity, and lipid metabolism pathways, highlighting metabolic plasticity and cellular adaptations to plant-based feeds. The downregulation of oxidative phosphorylation genes suggests a metabolic shift in response to altered nutrient composition, while ribosomal pathway modulation indicates potential constraints on protein synthesis. These transcriptomic shifts, conserved across two independent experiments, reinforce the utility of RBCs as a real-time indicator of fish physiological status, offering a tool for monitoring dietary impacts and optimizing feed formulations. Such insights are essential for advancing sustainable, nutritionally balanced aquaculture feeds that support fish welfare and productivity. The minimally invasive sample collection respects the 3Rs (Reduce, Refine, Replace) principle in animal experimentation and allows for frequent screening and generation of refined data.
Collapse
Affiliation(s)
- Rafael Angelakopoulos
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (R.A.); (A.T.); (A.E.F.); (Z.M.)
| | - Andreas Tsipourlianos
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (R.A.); (A.T.); (A.E.F.); (Z.M.)
| | - Alexia E. Fytsili
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (R.A.); (A.T.); (A.E.F.); (Z.M.)
| | | | - Arkadios Dimitroglou
- Avramar Aquaculture SA, 19002 Athens, Greece; (L.P.); (A.D.); (D.B.)
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dimitrios Barkas
- Avramar Aquaculture SA, 19002 Athens, Greece; (L.P.); (A.D.); (D.B.)
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (R.A.); (A.T.); (A.E.F.); (Z.M.)
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Science, University of Thessaly, Greece Gaiopolis, 41334 Larissa, Greece;
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (R.A.); (A.T.); (A.E.F.); (Z.M.)
| |
Collapse
|
2
|
Angelakopoulos R, Tsipourlianos A, Moutou KA, Fytsili AE, Tsingene A, Galliopoulou E, Papaharisis L, Mamuris Z, Giannoulis T, Dimitroglou A. Selection of Nonlethal Early Biomarkers to Predict Gilthead Seabream ( Sparus aurata) Growth. AQUACULTURE NUTRITION 2025; 2025:9918595. [PMID: 39816908 PMCID: PMC11730015 DOI: 10.1155/anu/9918595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
One of the main challenges in aquaculture is the constant search for sustainable alternative feed ingredients that can successfully replace fishmeal (FM) without any negative effects on fish growth and health. The goal of the present study was to develop a toolbox for rapidly anticipating the dynamics of fish growth following the introduction of a new feed; nonlethal, biochemical, and molecular markers that provide insights into physiological changes in the fish. A nutritional challenge by feeding a conventional feed rich in FM protein (FM diet) versus an experimental feed rich in plant protein (PP) and low FM inclusion (PP diet), in 20 different families of gilthead sea bream (Sparus aurata) was performed. Fifteen and 30 days after the initiation of the nutritional challenge, the transcriptional response of gilthead seabream erythrocytes along with classical hematological biochemical markers were compared. Zootechnical, biochemical, and transcriptome data from each family under different dietary treatments were combined into a classification model to identify variables that can predict the growth rate at the end of the 14-month farming period (July 2018-September 2019). A highly accurate model was produced (A > 80%) based on the combination of seven markers (five molecular and two biochemical markers) and with high potential in separating faster and slower growing fish as early as 30 days after the initiation of feeding.
Collapse
Affiliation(s)
- Rafael Angelakopoulos
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Andreas Tsipourlianos
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Katerina A. Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Alexia E. Fytsili
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Anthi Tsingene
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Eleni Galliopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | | | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Themistoklis Giannoulis
- Department of Animal Science, Laboratory of Biology, Genetics and Bioinformatics, University of Thessaly, Gaiopolis 41334, Larissa, Greece
| | - Arkadios Dimitroglou
- Department of Animal Science, Laboratory of Applied Hydrobiology, Agricultural University of Athens, Iera Odos 75 11855, Athens, Greece
| |
Collapse
|
3
|
Juigné C, Becker E, Gondret F. Small networks of expressed genes in the whole blood and relationships to profiles in circulating metabolites provide insights in inter-individual variability of feed efficiency in growing pigs. BMC Genomics 2023; 24:647. [PMID: 37891507 PMCID: PMC10605982 DOI: 10.1186/s12864-023-09751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Feed efficiency is a research priority to support a sustainable meat production. It is recognized as a complex trait that integrates multiple biological pathways orchestrated in and by various tissues. This study aims to determine networks between biological entities to explain inter-individual variation of feed efficiency in growing pigs. RESULTS The feed conversion ratio (FCR), a measure of feed efficiency, and its two component traits, average daily gain and average daily feed intake, were obtained from 47 growing pigs from a divergent selection for residual feed intake and fed high-starch or high-fat high-fiber diets during 58 days. Datasets of transcriptomics (60 k porcine microarray) in the whole blood and metabolomics (1H-NMR analysis and target gas chromatography) in plasma were available for all pigs at the end of the trial. A weighted gene co-expression network was built from the transcriptomics dataset, resulting in 33 modules of co-expressed molecular probes. The eigengenes of eight of these modules were significantly ([Formula: see text]) or tended to be ([Formula: see text]) correlated to FCR. Great homogeneity in the enriched biological pathways was observed in these modules, suggesting co-expressed and co-regulated constitutive genes. They were mainly enriched in genes participating to immune and defense-related processes, and to a lesser extent, to translation, cell development or learning. They were also generally associated with growth rate and percentage of lean mass. In the whole network, only one module composed of genes participating to the response to substances, was significantly associated with daily feed intake and body adiposity. The plasma profiles in circulating metabolites and in fatty acids were summarized by weighted linear combinations using a dimensionality reduction method. Close association was thus found between a module composed of co-expressed genes participating to T cell receptor signaling and cell development process in the whole blood and related to FCR, and the circulating concentrations of polyunsaturated fatty acids in plasma. CONCLUSION These systemic approaches have highlighted networks of entities driving key biological processes involved in the phenotypic difference in feed efficiency between animals. Connecting transcriptomics and metabolic levels together had some additional benefits.
Collapse
Affiliation(s)
- Camille Juigné
- PEGASE, INRAE, Institut Agro, Saint-Gilles, F-35590, France
- University Rennes, Inria, CNRS, IRISA - UMR 6074, Rennes, F-35000, France
| | - Emmanuelle Becker
- University Rennes, Inria, CNRS, IRISA - UMR 6074, Rennes, F-35000, France
| | | |
Collapse
|
4
|
Zhu S, Si J, Zhang H, Qi W, Zhang G, Yan X, Huang Y, Zhao M, Guo Y, Liang J, Lan G. Comparative Serum Proteome Analysis Indicates a Negative Correlation between a Higher Immune Level and Feed Efficiency in Pigs. Vet Sci 2023; 10:vetsci10050338. [PMID: 37235421 DOI: 10.3390/vetsci10050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Identifying and verifying appropriate biomarkers is instrumental in improving the prediction of early-stage pig production performance while reducing the cost of breeding and production. The main factor that affects the production cost and environmental protection cost of the pig industry is the feed efficiency of pigs. This study aimed to detect the differentially expressed proteins in the early blood index determination serum between high-feed efficiency and low-feed efficiency pigs and to provide a basis for further identification of biomarkers using the isobaric tandem mass tag and parallel reaction monitoring approach. In total, 350 (age, 90 ± 2 d; body weight, 41.20 ± 4.60 kg) purebred Yorkshire pigs were included in the study, and their serum samples were obtained during the early blood index determination. The pigs were then arranged based on their feed efficiency; 24 pigs with extreme phenotypes were grouped as high-feed efficiency and low-feed efficiency, with 12 pigs in each group. A total of 1364 proteins were found in the serum, and 137 of them showed differential expression between the groups with high- and low-feed efficiency, with 44 of them being upregulated and 93 being downregulated. PRM (parallel reaction monitoring) was used to verify 10 randomly chosen differentially expressed proteins. The proteins that were differentially expressed were shown to be involved in nine pathways, including the immune system, digestive system, human diseases, metabolism, cellular processing, and genetic information processing, according to the KEGG and GO analyses. Moreover, all of the proteins enriched in the immune system were downregulated in the high-feed efficiency pigs, suggesting that a higher immune level may not be conducive to improving feed efficiency in pigs. This study provides insights into the important feed efficiency proteins and pathways in pigs, promoting the further development of protein biomarkers for predicting and improving porcine feed efficiency.
Collapse
Affiliation(s)
- Siran Zhu
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jinglei Si
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., Nanning 530004, China
| | - Huijie Zhang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Wenjing Qi
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Guangjie Zhang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Xueyu Yan
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Ye Huang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Mingwei Zhao
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Yafen Guo
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Ganqiu Lan
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Quéméner A, Perruchot MH, Dessauge F, Vincent A, Merlot E, Le Floch N, Louveau I. Hygiene of housing conditions and proinflammatory signals alter gene expressions in porcine adipose tissues and blood cells. PeerJ 2022; 10:e14405. [PMID: 36530394 PMCID: PMC9756862 DOI: 10.7717/peerj.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue is an organ with metabolic, endocrine and immune functions. In this tissue, the expressions of genes associated with several metabolic pathways, including lipid metabolism, have been shown to be affected by genetic selection for feed efficiency, an important trait to consider in livestock. We hypothesized that the stimulation of immune system caused by poor hygiene conditions of housing impacts the molecular and cellular features of adipose tissue and that the impact may differ between pigs that diverge in feed efficiency. At the age of 12 weeks, Large White pigs from two genetic lines divergent for residual feed intake (RFI) were housed in two contrasting hygiene conditions (good vs poor). After six weeks of exposure, pigs were slaughtered (n = 36). Samples of blood, subcutaneous (SCAT) and perirenal (PRAT) adipose tissues were collected for cell response and gene expression investigations. The decrease in the relative weight of PRAT was associated with a decline in mRNA levels of FASN, ME, LCN2 and TLR4 (P < 0.05) in pigs housed in poor conditions compared with pigs housed in good conditions for both RFI lines. In SCAT, the expressions of only two key genes (PPARG and TLR4) were significantly affected by the hygiene of housing conditions. Besides, the mRNA levels of both LCN2 and GPX3 were influenced by the RFI line (P < 0.05). Because we suspected an effect of poor hygiene at the cellular levels, we investigated the differentiation of stromal vascular cells isolated from SCAT in vitro in the absence or presence of a pro-inflammatory cytokine, Tumor Necrosis Factor-α (TNF-α). The ability of these cells to differentiate in the absence or presence of TNF-α did not differ among the four groups of animals (P > 0.05). We also investigated the expressions of genes involved in the immune response and lipid metabolism in whole blood cells cultured in the absence and presence of LPS. The hygiene conditions had no effect but, the relative expression of the GPX3 gene was higher (P < 0.001) in high RFI than in low RFI pigs while the expressions of IL-10 (P = 0.027), TGFβ1 (P = 0.023) and ADIPOR2 (P = 0.05) genes were lower in high RFI than in low RFI pigs. Overall, the current study indicates that the hygiene of housing had similar effects on both RFI lines on the expression of genes in adipose tissues and on the features of SCAT adipose cells and whole blood cells in response to TNF-α and LPS. It further demonstrates that the number of genes with expression impacted by housing conditions was higher in PRAT than in SCAT. It suggests a depot-specific response of adipose tissue to the current challenge.
Collapse
|
6
|
Davoudi P, Do DN, Colombo SM, Rathgeber B, Miar Y. Application of Genetic, Genomic and Biological Pathways in Improvement of Swine Feed Efficiency. Front Genet 2022; 13:903733. [PMID: 35754793 PMCID: PMC9220306 DOI: 10.3389/fgene.2022.903733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the significant improvement of feed efficiency (FE) in pigs over the past decades, feed costs remain a major challenge for producers profitability. Improving FE is a top priority for the global swine industry. A deeper understanding of the biology underlying FE is crucial for making progress in genetic improvement of FE traits. This review comprehensively discusses the topics related to the FE in pigs including: measurements, genetics, genomics, biological pathways and the advanced technologies and methods involved in FE improvement. We first provide an update of heritability for different FE indicators and then characterize the correlations of FE traits with other economically important traits. Moreover, we present the quantitative trait loci (QTL) and possible candidate genes associated with FE in pigs and outline the most important biological pathways related to the FE traits in pigs. Finally, we present possible ways to improve FE in swine including the implementation of genomic selection, new technologies for measuring the FE traits, and the potential use of genome editing and omics technologies.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie M Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
7
|
Petrelli S, Buglione M, Maselli V, Troiano C, Larson G, Frantz L, Manin A, Ricca E, Baccigalupi L, Wright D, Pietri C, Fulgione D. Population genomic, olfactory, dietary, and gut microbiota analyses demonstrate the unique evolutionary trajectory of feral pigs. Mol Ecol 2022; 31:220-237. [PMID: 34676935 PMCID: PMC11497273 DOI: 10.1111/mec.16238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Domestication is an intriguing evolutionary process. Many domestic populations are subjected to strong human-mediated selection, and when some individuals return to the wild, they are again subjected to selective forces associated with new environments. Generally, these feral populations evolve into something different from their wild predecessors and their members typically possess a combination of both wild and human selected traits. Feralisation can manifest in different forms on a spectrum from a wild to a domestic phenotype. This depends on how the rewilded domesticated populations can readapt to natural environments based on how much potential and flexibility the ancestral genome retains after its domestication signature. Whether feralisation leads to the evolution of new traits that do not exist in the wild or to convergence with wild forms, however, remains unclear. To address this question, we performed population genomic, olfactory, dietary, and gut microbiota analyses on different populations of Sus scrofa (wild boar, hybrid, feral and several domestic pig breeds). Porcine single nucleotide polymorphisms (SNPs) analysis shows that the feral population represents a cluster distinctly separate from all others. Its members display signatures of past artificial selection, as demonstrated by values of FST in specific regions of the genome and bottleneck signature, such as the number and length of runs of homozygosity. Generalised FST values, reacquired olfactory abilities, diet, and gut microbiota variation show current responses to natural selection. Our results suggest that feral pigs are an independent evolutionary unit which can persist so long as levels of human intervention remain unchanged.
Collapse
Affiliation(s)
- Simona Petrelli
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Maria Buglione
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Valeria Maselli
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Claudia Troiano
- Department of HumanitiesUniversity of Naples Federico IINaplesItaly
| | - Greger Larson
- The Palaeogenomics & Bio‐Archaeology Research NetworkResearch Laboratory for Archaeology and History of ArtUniversity of OxfordOxfordUK
| | - Laurent Frantz
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Aurelie Manin
- The Palaeogenomics & Bio‐Archaeology Research NetworkResearch Laboratory for Archaeology and History of ArtUniversity of OxfordOxfordUK
| | - Ezio Ricca
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IINapoliItaly
| | - Loredana Baccigalupi
- Task Force on Microbiome StudiesUniversity of Naples Federico IINapoliItaly
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Dominic Wright
- IFM Biology, AVIAN Behavioural Genomics and Physiology GroupLinköping UniversityLinköpingSweden
| | - Christian Pietri
- Fédération Départementale des Chasseurs de Haute‐Corse (FDCHC)Résidence Nouvelle‐CornicheSt Joseph, BastiaFrance
| | - Domenico Fulgione
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IINapoliItaly
| |
Collapse
|
8
|
Lindholm-Perry AK, Kuehn LA, Wells JE, Rempel LA, Chitko-McKown CG, Keel BN, Oliver WT. Hematology parameters as potential indicators of feed efficiency in pigs. Transl Anim Sci 2021; 5:txab219. [PMID: 34909604 DOI: 10.1093/tas/txab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
The identification of an inexpensive, indirect measure of feed efficiency in swine could be a useful tool to help identify animals with improved phenotypes to supplement expensive phenotypes including individual feed intakes. The purpose of this study was to determine whether hematology parameters in pigs at the beginning and end of a feed efficiency study, or changes in those values over the study, were associated with average daily gain (ADG), average daily feed intake (ADFI), or gain-to-feed (G:F). Whole blood samples were taken at days 0 and 42 from pigs (n = 178) that were monitored for individual feed intakes and body weight gain during a 6-week study. Blood samples were analyzed for blood cell parameters including white blood cell (WBC), neutrophil, lymphocyte, monocyte, eosinophil and basophil counts, red blood cell (RBC) counts, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC), platelet count, and mean platelet volume (MPV). Feed efficiency parameters were predicted using an ANOVA model including fixed effects of farrowing group and pen (sex constant) and individual hematology parameters at day 0, day 42 or their change as covariates. At day 0, platelet count was positively associated with ADFI (P < 0.05) and negatively associated with G:F (P < 0.1), and lymphocyte count was positively associated with ADFI (P < 0.05). At day 42, neutrophil, RBC counts, hemoglobin and hematocrit were associated with ADFI (P < 10-3). Over the course of the study, changes in RBC measurements including RBC, hemoglobin, MCV, MCH, and MCHC (P < 10-4) which may improve oxygen carrying capacity, were associated with ADG and ADFI. The change in hematocrit over the course of the study was the only parameter that was associated with all three measures of feed efficiency (P < 0.05). Changes in RBC parameters, especially hematocrit, may be useful measurements to supplement feed efficiency phenotypes in swine.
Collapse
Affiliation(s)
- Amanda K Lindholm-Perry
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Larry A Kuehn
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James E Wells
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Lea A Rempel
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Carol G Chitko-McKown
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Brittney N Keel
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - William T Oliver
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| |
Collapse
|
9
|
Messad F, Louveau I, Renaudeau D, Gilbert H, Gondret F. Analysis of merged whole blood transcriptomic datasets to identify circulating molecular biomarkers of feed efficiency in growing pigs. BMC Genomics 2021; 22:501. [PMID: 34217223 PMCID: PMC8254903 DOI: 10.1186/s12864-021-07843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Improving feed efficiency (FE) is an important goal due to its economic and environmental significance for farm animal production. The FE phenotype is complex and based on the measurements of the individual feed consumption and average daily gain during a test period, which is costly and time-consuming. The identification of reliable predictors of FE is a strategy to reduce phenotyping efforts. Results Gene expression data of the whole blood from three independent experiments were combined and analyzed by machine learning algorithms to propose molecular biomarkers of FE traits in growing pigs. These datasets included Large White pigs from two lines divergently selected for residual feed intake (RFI), a measure of net FE, and in which individual feed conversion ratio (FCR) and blood microarray data were available. Merging the three datasets allowed considering FCR values (Mean = 2.85; Min = 1.92; Max = 5.00) for a total of n = 148 pigs, with a large range of body weight (15 to 115 kg) and different test period duration (2 to 9 weeks). Random forest (RF) and gradient tree boosting (GTB) were applied on the whole blood transcripts (26,687 annotated molecular probes) to identify the most important variables for binary classification on RFI groups and a quantitative prediction of FCR, respectively. The dataset was split into learning (n = 74) and validation sets (n = 74). With iterative steps for variable selection, about three hundred’s (328 to 391) molecular probes participating in various biological pathways, were identified as important predictors of RFI or FCR. With the GTB algorithm, simpler models were proposed combining 34 expressed unique genes to classify pigs into RFI groups (100% of success), and 25 expressed unique genes to predict FCR values (R2 = 0.80, RMSE = 8%). The accuracy performance of RF models was slightly lower in classification and markedly lower in regression. Conclusion From small subsets of genes expressed in the whole blood, it is possible to predict the binary class and the individual value of feed efficiency. These predictive models offer good perspectives to identify animals with higher feed efficiency in precision farming applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07843-4.
Collapse
Affiliation(s)
- Farouk Messad
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
| | | | | | - Hélène Gilbert
- GenPhySE, INRAE, INP-ENVT, 31326, Castanet Tolosan, France
| | | |
Collapse
|
10
|
Njunge JM, Gonzales GB, Ngari MM, Thitiri J, Bandsma RH, Berkley JA. Systemic inflammation is negatively associated with early post discharge growth following acute illness among severely malnourished children - a pilot study. Wellcome Open Res 2021; 5:248. [PMID: 33969227 PMCID: PMC8080977 DOI: 10.12688/wellcomeopenres.16330.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Rapid growth should occur among children with severe malnutrition (SM) with medical and nutritional management. Systemic inflammation (SI) is associated with death among children with SM and is negatively associated with linear growth. However, the relationship between SI and weight gain during therapeutic feeding following acute illness is unknown. We hypothesised that growth post-hospital discharge is associated with SI among children with SM. Methods: We conducted secondary analysis of data from HIV-uninfected children with SM (n=98) who survived and were not readmitted to hospital during one year of follow-up. We examined the relationship between changes in absolute deficits in weight and mid-upper-arm circumference (MUAC) from enrolment at stabilisation to 60 days and one year later, and untargeted plasma proteome, targeted cytokines/chemokines, leptin, and soluble CD14 using multivariate regularized linear regression. Results: The mean change in absolute deficit in weight and MUAC was -0.50kg (standard deviation; SD±0.69) and -1.20cm (SD±0.89), respectively, from enrolment to 60 days later. During the same period, mean weight and MUAC gain was 3.3g/kg/day (SD±2.4) and 0.22mm/day (SD±0.2), respectively. Enrolment interleukins; IL17-alpha and IL-2, and serum amyloid P were negatively associated with weight and MUAC gain during 60 days. Lipopolysaccharide binding protein and complement component 2 were negatively associated with weight gain only. Leptin was positively associated with weight gain. Soluble CD14, beta-2 microglobulin, and macrophage inflammatory protein 1 beta were negatively associated with MUAC gain only. Glutathione peroxidase 3 was positively associated with weight and MUAC gain during one year. Conclusions: Early post-hospital discharge weight and MUAC gain were rapid and comparable to children with uncomplicated SM treated in the community. Higher concentrations of SI markers were associated with less weight and MUAC gain, suggesting inflammation negatively impacts recovery from wasting. This finding warrants further research on reducing inflammation on growth among children with SM.
Collapse
Affiliation(s)
- James M. Njunge
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gerard Bryan Gonzales
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Moses M. Ngari
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Johnstone Thitiri
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Robert H.J. Bandsma
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James A. Berkley
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Cappelli K, Sabino M, Trabalza-Marinucci M, Acuti G, Capomaccio S, Menghini L, Verini-Supplizi A. Differential Effects of Dietary Oregano Essential Oil on the Inflammation Related Gene Expression in Peripheral Blood Mononuclear Cells From Outdoor and Indoor Reared Pigs. Front Vet Sci 2021; 8:602811. [PMID: 33718464 PMCID: PMC7946822 DOI: 10.3389/fvets.2021.602811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Intensive farming systems represent a stressful environment for pigs and negatively influence neuroendocrine functions, behavior, and performance. Outdoor farming is an alternative option, which is thought to imply several beneficial effects for the animal. Dietary essential oils are known to be an innovative strategy to improve pig health and performance, and oregano essential oil (ORE) possesses beneficial effects due to its antimicrobial, anti-fungal, and antioxidant properties. We tested the effect of dietary ORE on peripheral blood mononuclear cells (PBMCs) in 36 growing pigs, either reared under indoor or outdoor conditions. Quantitative real-time PCR (RT-qPCR) assay was used to evaluate the effect of diet (control vs. ORE) and the time of sampling (T1-120 days vs. T2-190 days) on the expression of inflammatory and immune-related genes (TNF, IL1β, IL8, IL18, IL10, IL1RN, STAT3, HSP90, ICAM-1, and NFKB1). Under outdoor condition, the majority of transcripts were upregulated (p < 0.05), assuming a general inflammatory status (TNF, HSP90, NFKB1, IL1β, and STAT3). However, an interaction between diet and the farming system was observed: HSP90, NFKB1, and STAT3 were downregulated (p < 0.05) in the outdoor reared pigs when fed the ORE diet. Our study showed that bioactive compounds of ORE exert their activity, especially when the animals are exposed to stressful stimuli. Dietary ORE can be an acceptable strategy to help pigs tolerate the stress related to the harsh, outdoor, rearing conditions.
Collapse
Affiliation(s)
- Katia Cappelli
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | - Marcella Sabino
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | | | - Gabriele Acuti
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | - Stefano Capomaccio
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | - Luigi Menghini
- Dipartimento di Farmacia, University of Chieti, Chieti, Italy
| | | |
Collapse
|
12
|
Njunge JM, Gonzales GB, Ngari MM, Thitiri J, Bandsma RH, Berkley JA. Systemic inflammation is negatively associated with early post discharge growth following acute illness among severely malnourished children - a pilot study. Wellcome Open Res 2020; 5:248. [PMID: 33969227 PMCID: PMC8080977 DOI: 10.12688/wellcomeopenres.16330.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 11/03/2023] Open
Abstract
Background: Rapid growth should occur among children with severe malnutrition (SM) when medically and nutritionally treated. Systemic inflammation (SI) is associated with death among children with SM and is negatively associated with linear growth. However, the relationship between SI and weight gain during therapeutic feeding following acute illness is unknown. We hypothesised that growth in the first 60 days post-hospital discharge is associated with SI among children with SM. Methods: We conducted secondary analysis of data from HIV-uninfected children with SM (n=98) who survived and were not readmitted to hospital during one year of follow up. We examined the relationship between changes in absolute deficits in weight and mid-upper-arm circumference (MUAC) from enrolment at stabilisation to 60 days later and untargeted plasma proteome, targeted cytokines/chemokines, leptin, and soluble CD14 (sCD14) using multivariate regularized linear regression. Results: The mean change in absolute deficit in weight and MUAC was -0.50kg (standard deviation; SD±0.69) and -1.20cm (SD±0.89), respectively, from enrolment to 60 days later. During the same period, mean weight and MUAC gain was 3.3g/kg/day (SD±2.4) and 0.22mm/day (SD±0.2), respectively. Enrolment inflammatory cytokines interleukin 17 alpha (IL17α), interleukin 2 (IL2), and serum amyloid P (SAP) were negatively associated with weight and MUAC gain. Lipopolysaccharide binding protein (LBP) and complement component 2 were negatively associated with weight gain only. Leptin was positively associated with weight gain. sCD14, beta-2 microglobulin (β2M), and macrophage inflammatory protein 1 beta (MIP1β) were negatively associated with MUAC gain only. Conclusions: Early post-hospital discharge weight and MUAC gain were rapid and comparable to children with uncomplicated SM treated with similar diet in the community. Higher concentrations of SI markers were associated with less weight and MUAC gain, suggesting inflammation negatively impacts recovery from wasting. This finding warrants further research on the role of inflammation on growth among children with SM.
Collapse
Affiliation(s)
- James M. Njunge
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gerard Bryan Gonzales
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Moses M. Ngari
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Johnstone Thitiri
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Robert H.J. Bandsma
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James A. Berkley
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Carmelo VAO, Kadarmideen HN. Genetic variations (eQTLs) in muscle transcriptome and mitochondrial genes, and trans-eQTL molecular pathways in feed efficiency from Danish breeding pigs. PLoS One 2020; 15:e0239143. [PMID: 32941478 PMCID: PMC7498092 DOI: 10.1371/journal.pone.0239143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023] Open
Abstract
Feed efficiency (FE) is a key trait in pig production, as improvement in FE has positive economic and environmental impact. FE is a complex phenotype and testing animals for FE is costly. Therefore, there has been a desire to find functionally relevant single nucleotide polymorphisms (SNPs) as biomarkers, to improve our biological understanding of FE as well as accuracy of genomic prediction for FE. We have performed a cis- and trans- eQTL (expression quantitative trait loci) analysis, in a population of Danbred Durocs (N = 11) and Danbred Landrace (N = 27) using both a linear and ANOVA model based on muscle tissue RNA-seq. We analyzed a total of 1425x19179 or 2.7x107 Gene-SNP combinations in eQTL detection models for FE. The 1425 genes were from RNA-Seq based differential gene expression analyses using 25880 genes related to FE and additionally combined with mitochondrial genes. The 19179 SNPs were from applying stringent quality control and linkage disequilibrium filtering on genotype data using a GGP Porcine HD 70k SNP array. We applied 1000 fold bootstrapping and enrichment analysis to further validate and analyze our detected eQTLs. We identified 13 eQTLs with FDR < 0.1, affecting several genes found in previous studies of commercial pig breeds. Examples include MYO19, CPT1B, ACSL1, IER5L, CPT1A, SUCLA2, CSRNP1, PARK7 and MFF. The bootstrapping results showed statistically significant enrichment (p-value<2.2x10-16) of eQTLs with p-value < 0.01 in both cis and trans-eQTLs. Enrichment analysis of top trans-eQTLs revealed high enrichment for gene categories and gene ontologies associated with genomic context and expression regulation. This included transcription factors (p-value = 1.0x10-13), DNA-binding (GO:0003677, p-value = 8.9x10-14), DNA-binding transcription factor activity (GO:0003700,) nucleus gene (GO:0005634, p-value<2.2x10-16), negative regulation of expression (GO:0010629, p-value<2.2x10-16). These results would be useful for future genome assisted breeding of pigs to improve FE, and in the improved understanding of the functional mechanism of trans eQTLs.
Collapse
Affiliation(s)
- Victor A. O. Carmelo
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N. Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| |
Collapse
|
14
|
de Lima AO, Koltes JE, Diniz WJS, de Oliveira PSN, Cesar ASM, Tizioto PC, Afonso J, de Souza MM, Petrini J, Rocha MIP, Cardoso TF, Neto AZ, Coutinho LL, Mourão GB, Regitano LCA. Potential Biomarkers for Feed Efficiency-Related Traits in Nelore Cattle Identified by Co-expression Network and Integrative Genomics Analyses. Front Genet 2020; 11:189. [PMID: 32194642 PMCID: PMC7064723 DOI: 10.3389/fgene.2020.00189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Feed efficiency helps to reduce environmental impacts from livestock production, improving beef cattle profitability. We identified potential biomarkers (hub genes) for feed efficiency, by applying co-expression analysis in Longissimus thoracis RNA-Seq data from 180 Nelore steers. Six co-expression modules were associated with six feed efficiency-related traits (p-value ≤ 0.05). Within these modules, 391 hub genes were enriched for pathways as protein synthesis, muscle growth, and immune response. Trait-associated transcription factors (TFs) ELF1, ELK3, ETS1, FLI1, and TCF4, were identified with binding sites in at least one hub gene. Gene expression of CCDC80, FBLN5, SERPINF1, and OGN was associated with multiple feed efficiency-related traits (FDR ≤ 0.05) and were previously related to glucose homeostasis, oxidative stress, fat mass, and osteoblastogenesis, respectively. Potential regulatory elements were identified, integrating the hub genes with previous studies from our research group, such as the putative cis-regulatory elements (eQTLs) inferred as affecting the PCDH18 and SPARCL1 hub genes related to immune system and adipogenesis, respectively. Therefore, our analyses contribute to a better understanding of the biological mechanisms underlying feed efficiency in bovine and the hub genes disclosed can be used as biomarkers for feed efficiency-related traits in Nelore cattle.
Collapse
Affiliation(s)
- Andressa O de Lima
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Wellison J S Diniz
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | | | - Aline S M Cesar
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Juliana Afonso
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Marcela M de Souza
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Juliana Petrini
- Exact Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - Marina I P Rocha
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Tainã F Cardoso
- Embrapa Pecuária Sudeste, Empresa Brazileira de Pesquisa Agropecuária, São Carlos, Brazil
| | - Adhemar Zerlotini Neto
- Embrapa Informática Agropecuária, Empresa Brazileira de Pesquisa Agropecuária, Campinas, Brazil
| | - Luiz L Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Gerson B Mourão
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Luciana C A Regitano
- Embrapa Pecuária Sudeste, Empresa Brazileira de Pesquisa Agropecuária, São Carlos, Brazil
| |
Collapse
|
15
|
Liu H, Feye KM, Nguyen YT, Rakhshandeh A, Loving CL, Dekkers JCM, Gabler NK, Tuggle CK. Acute systemic inflammatory response to lipopolysaccharide stimulation in pigs divergently selected for residual feed intake. BMC Genomics 2019; 20:728. [PMID: 31610780 PMCID: PMC6792331 DOI: 10.1186/s12864-019-6127-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/20/2019] [Indexed: 12/23/2022] Open
Abstract
Background It is unclear whether improving feed efficiency by selection for low residual feed intake (RFI) compromises pigs’ immunocompetence. Here, we aimed at investigating whether pig lines divergently selected for RFI had different inflammatory responses to lipopolysaccharide (LPS) exposure, regarding to clinical presentations and transcriptomic changes in peripheral blood cells. Results LPS injection induced acute systemic inflammation in both the low-RFI and high-RFI line (n = 8 per line). At 4 h post injection (hpi), the low-RFI line had a significantly lower (p = 0.0075) mean rectal temperature compared to the high-RFI line. However, no significant differences in complete blood count or levels of several plasma cytokines were detected between the two lines. Profiling blood transcriptomes at 0, 2, 6, and 24 hpi by RNA-sequencing revealed that LPS induced dramatic transcriptional changes, with 6296 genes differentially expressed at at least one time point post injection relative to baseline in at least one line (n = 4 per line) (|log2(fold change)| ≥ log2(1.2); q < 0.05). Furthermore, applying the same cutoffs, we detected 334 genes differentially expressed between the two lines at at least one time point, including 33 genes differentially expressed between the two lines at baseline. But no significant line-by-time interaction effects were detected. Genes involved in protein translation, defense response, immune response, and signaling were enriched in different co-expression clusters of genes responsive to LPS stimulation. The two lines were largely similar in their peripheral blood transcriptomic responses to LPS stimulation at the pathway level, although the low-RFI line had a slightly lower level of inflammatory response than the high-RFI line from 2 to 6 hpi and a slightly higher level of inflammatory response than the high-RFI line at 24 hpi. Conclusions The pig lines divergently selected for RFI had a largely similar response to LPS stimulation. However, the low-RFI line had a relatively lower-level, but longer-lasting, inflammatory response compared to the high-RFI line. Our results suggest selection for feed efficient pigs does not significantly compromise a pig’s acute systemic inflammatory response to LPS, although slight differences in intensity and duration may occur.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Animal Science, Iowa State University, 2258 Kildee Hall, Ames, IA, 50011, USA
| | - Kristina M Feye
- Interdepartmental Immunobiology, Department of Animal Science, Iowa State University, 2258 Kildee Hall, Ames, IA, 50011, USA
| | - Yet T Nguyen
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, 23529, USA
| | - Anoosh Rakhshandeh
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 239 Kildee Hall, Ames, IA, 50011, USA
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, 239 Kildee Hall, Ames, IA, 50011, USA
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
16
|
Vigors S, O'Doherty JV, Bryan K, Sweeney T. A comparative analysis of the transcriptome profiles of liver and muscle tissue in pigs divergent for feed efficiency. BMC Genomics 2019; 20:461. [PMID: 31170913 PMCID: PMC6555042 DOI: 10.1186/s12864-019-5740-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The improvement of feed efficiency is a key economic goal within the pig production industry. The objective of this study was to examine transcriptomic differences in both the liver and muscle of pigs divergent for feed efficiency, thus improving our understanding of the molecular mechanisms influencing feed efficiency and enabling the identification of candidate biomarkers. Residual feed intake (RFI) was calculated for two populations of pigs from two different farms of origin/genotype. The 6 most efficient (LRFI) and 6 least efficient (HRFI) animals from each population were selected for further analysis of Longissimus Dorsi muscle (n = 22) and liver (n = 23). Transcriptomic data were generated from liver and muscle collected post-slaughter. RESULTS The transcriptomic data segregated based on the RFI value of the pig rather than genotype/farm of origin. A total of 6463 genes were identified as being differentially expressed (DE) in muscle, while 964 genes were identified as being DE in liver. Genes that were commonly DE between muscle and liver (n = 526) were used for the multi-tissue analysis. These 526 genes were associated with protein targeting to membrane, extracellular matrix organisation and immune function. In the muscle-only analysis, genes associated with RNA processing, protein synthesis and energy metabolism were down regulated in the LRFI animals while in the liver-only analysis, genes associated with cell signalling and lipid homeostasis were up regulated in the LRFI animals. CONCLUSIONS Differences in the transcriptome segregated on pig RFI value rather than the genotype/farm of origin. Multi-tissue analysis identified that genes associated with GO terms protein targeting to membrane, extracellular matrix organisation and a range of terms relating to immune function were over represented in the differentially expressed genes of both liver and muscle.
Collapse
Affiliation(s)
- Stafford Vigors
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John V O'Doherty
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth Bryan
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
17
|
Piles M, Fernandez-Lozano C, Velasco-Galilea M, González-Rodríguez O, Sánchez JP, Torrallardona D, Ballester M, Quintanilla R. Machine learning applied to transcriptomic data to identify genes associated with feed efficiency in pigs. Genet Sel Evol 2019; 51:10. [PMID: 30866799 PMCID: PMC6417084 DOI: 10.1186/s12711-019-0453-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To date, the molecular mechanisms that underlie residual feed intake (RFI) in pigs are unknown. Results from different genome-wide association studies and gene expression analyses are not always consistent. The aim of this research was to use machine learning to identify genes associated with feed efficiency (FE) using transcriptomic (RNA-Seq) data from pigs that are phenotypically extreme for RFI. METHODS RFI was computed by considering within-sex regression on mean metabolic body weight, average daily gain, and average backfat gain. RNA-Seq analyses were performed on liver and duodenum tissue from 32 high and 33 low RFI pigs collected at 153 d of age. Machine-learning algorithms were used to predict RFI class based on gene expression levels in liver and duodenum after adjusting for batch effects. Genes were ranked according to their contribution to the classification using the permutation accuracy importance score in an unbiased random forest (RF) algorithm based on conditional inference. Support vector machine, RF, elastic net (ENET) and nearest shrunken centroid algorithms were tested using different subsets of the top rank genes. Nested resampling for hyperparameter tuning was implemented with tenfold cross-validation in the outer and inner loops. RESULTS The best classification was obtained with ENET using the expression of 200 genes in liver [area under the receiver operating characteristic curve (AUROC): 0.85; accuracy: 0.78] and 100 genes in duodenum (AUROC: 0.76; accuracy: 0.69). Canonical pathways and candidate genes that were previously reported as associated with FE in several species were identified. The most remarkable pathways and genes identified were NRF2-mediated oxidative stress response and aldosterone signalling in epithelial cells, the DNAJC6, DNAJC1, MAPK8, PRKD3 genes in duodenum, and melatonin degradation II, PPARα/RXRα activation, and GPCR-mediated nutrient sensing in enteroendocrine cells and SMOX, IL4I1, PRKAR2B, CLOCK and CCK genes in liver. CONCLUSIONS ML algorithms and RNA-Seq expression data were found to provide good performance for classifying pigs into high or low RFI groups. Classification was better with gene expression data from liver than from duodenum. Genes associated with FE in liver and duodenum tissue that can be used as predictive biomarkers for this trait were identified.
Collapse
Affiliation(s)
- Miriam Piles
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Carlos Fernandez-Lozano
- Computer Science Department, University of A Coruña, Campus Elviña s/n, 15071 A Coruña, Spain
| | - María Velasco-Galilea
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Juan Pablo Sánchez
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - David Torrallardona
- Animal Nutrition Program, Institute of Agriculture and Food Research and Technology (IRTA), Mas de Bover, 43120 Constantí, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
18
|
Zhou Y, Luo W, Yu X, Liu Q, Tong J. Brain and intestine transcriptome analyses and identification of genes involved in feed conversion efficiency of Yellow River carp (Cyprinus carpio haematopterus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:221-227. [PMID: 30594738 DOI: 10.1016/j.cbd.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 01/01/2023]
Abstract
Feed cost is one of the largest variable input costs in aquaculture. In general, dietary energy is directed toward protein deposition and muscle growth. However, most of the dietary energy will be used to support body maintenance if feed conversion efficiency (FCE) is relatively low. Thus, improving feed efficiency will make great contributions to the productivity, profitability, and sustainability of fish farming industry. In the present study, we performed comparative transcriptome analyses of brain and intestine tissues from extreme FCE groups and identified differentially expressed genes (DEGs) and regulatory pathways that may be involved in FCE and related traits in one of the important common carp strains of China, the Yellow River carp (Cyprinus carpio haematopterus). Totally, 557 and 341 DEGs between high and low FCE groups were found in brain and intestine tissues, respectively, including 66 up- and 491 down-regulated in brain of high FCE group and 282 up- and 59 down-regulated in intestine of high FCE group (p < 0.01, FDR < 0.05). These DEGs are mainly involved in metabolic pathway, organismal system and genetic information processing pathway. Finally, 20 key DEGs potentially involved in FCE of Yellow River carp were identified from these two tissues. Expression patterns (up or down regulation in the high or low FCE group) of these DEGs have been successfully validated by quantitative real-time PCR of 10 unigenes. This study provides insights into the genetic mechanisms underlying feed efficiency in Yellow River carp and supplies valuable FCE-related candidate gene resources for potential molecular breeding studies.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Qingshan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
19
|
Correia CN, McLoughlin KE, Nalpas NC, Magee DA, Browne JA, Rue-Albrecht K, Gordon SV, MacHugh DE. RNA Sequencing (RNA-Seq) Reveals Extremely Low Levels of Reticulocyte-Derived Globin Gene Transcripts in Peripheral Blood From Horses ( Equus caballus) and Cattle ( Bos taurus). Front Genet 2018; 9:278. [PMID: 30154823 PMCID: PMC6102425 DOI: 10.3389/fgene.2018.00278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
RNA-seq has emerged as an important technology for measuring gene expression in peripheral blood samples collected from humans and other vertebrate species. In particular, transcriptomics analyses of whole blood can be used to study immunobiology and develop novel biomarkers of infectious disease. However, an obstacle to these methods in many mammalian species is the presence of reticulocyte-derived globin mRNAs in large quantities, which can complicate RNA-seq library sequencing and impede detection of other mRNA transcripts. A range of supplementary procedures for targeted depletion of globin transcripts have, therefore, been developed to alleviate this problem. Here, we use comparative analyses of RNA-seq data sets generated from human, porcine, equine, and bovine peripheral blood to systematically assess the impact of globin mRNA on routine transcriptome profiling of whole blood in cattle and horses. The results of these analyses demonstrate that total RNA isolated from equine and bovine peripheral blood contains very low levels of globin mRNA transcripts, thereby negating the need for globin depletion and greatly simplifying blood-based transcriptomic studies in these two domestic species.
Collapse
Affiliation(s)
- Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Kevin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research University College Dublin, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Abeni F, Petrera F, Dal Prà A, Rapetti L, Crovetto GM, Galassi G. Blood parameters in fattening pigs from two genetic types fed diet with three different protein concentrations. Transl Anim Sci 2018; 2:372-382. [PMID: 32704720 PMCID: PMC7200405 DOI: 10.1093/tas/txy069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/05/2018] [Indexed: 11/14/2022] Open
Abstract
The study aimed to evaluate possible differences between two genetic groups (GG) of pigs, fed diets varying in dietary CP level, in hematological and biochemical plasma profiles. The study was carried out in an experimental farm and involved 36 barrows (average BW 129 ± 11 kg) from two GG: group A (18 Italian Duroc boars × Italian Large White sows) and group D (18 DanBred Duroc), fed three experimental diets: a conventional diet and two low-protein diets (LP1 and LP2). A digestibility/balances trial was carried out on 12 pigs A and 12 pigs D that were housed individually in metabolic cages during four digestibility/balances periods. The experimental design was a factorial design, with 3 diets × 2 GG × 4 periods. The experiment lasted 56 d. Blood was sampled from jugular vein in the morning before feed distribution from all barrows in pens at the start and the end of the experimental period; a supplementary blood sample was collected from the 24 pigs at the end of the four digestibility periods (six pigs per period). Blood was analyzed for hematological and biochemical parameters and serum protein profile using automated analyzers. The GG D showed lower white blood cells (WBC), lymphocyte, and monocyte counts than A group. The GG affected several plasma metabolite concentrations: triglycerides, creatinine, Cl, Fe, alkaline phosphatase, and tartrate-resistant acid phosphatase activities were higher in D groups, while urea, albumin, Ca, Na, total bilirubin, and albumin as percentage of total protein were lower than A group. On the contrary, the dietary protein level neither affects WBC nor their populations; only a trend was reported for erythrocytes (red blood cell) and platelets. The diet affected only plasma urea and total bilirubin concentrations.
Collapse
Affiliation(s)
- Fabio Abeni
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Zootecnia e Acquacoltura, Lodi, Italy
- Corresponding author:
| | - Francesca Petrera
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Zootecnia e Acquacoltura, Lodi, Italy
| | - Aldo Dal Prà
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Zootecnia e Acquacoltura, Lodi, Italy
| | - Luca Rapetti
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Milano, Italy
| | - Gianni Matteo Crovetto
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Milano, Italy
| | - Gianluca Galassi
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Milano, Italy
| |
Collapse
|
21
|
Pang M, Luo W, Fu B, Yu X, Zhou Y, Tong J. Transcriptomic Profiles of Brain Provide Insights into Molecular Mechanism of Feed Conversion Efficiency in Crucian Carp (Carassius auratus). Int J Mol Sci 2018. [PMID: 29538345 PMCID: PMC5877719 DOI: 10.3390/ijms19030858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Feed efficiency is an economically crucial trait for cultured animals, however, progress has been scarcely made in the genetic analyses of feed conversion efficiency (FCE) in fish because of the difficulties in measurement of trait phenotypes. In the present investigation, we present the first application of RNA sequencing (RNA-Seq) combined with differentially expressed genes (DEGs) analysis for identification of functional determinants related to FCE at the gene level in an aquaculture fish, crucian carp (Carassius auratus). Brain tissues of six crucian carp with extreme FCE performances were subjected to transcriptome analysis. A total of 544,612 unigenes with a mean size of 644.38 bp were obtained from Low- and High-FCE groups, and 246 DEGs that may be involved in FCE traits were identified in these two groups. qPCR confirmed that genes previously identified as up- or down-regulated by RNA-Seq were effectively up- or down-regulated under the studied conditions. Thirteen key genes, whose functions are associated with metabolism (Dgkk, Mgst3 and Guk1b), signal transduction (Vdnccsa1b, Tgfα, Nr4a1 and Tacr2) and growth (Endog, Crebrtc2, Myh7, Myh1,Myh14 and Igfbp7) were identified according to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) annotations. Our novel findings provide useful pathway information and candidate genes for future studies of genetic mechanisms underlying FCE in crucian carp.
Collapse
Affiliation(s)
- Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
22
|
Multi-tissue transcriptomic study reveals the main role of liver in the chicken adaptive response to a switch in dietary energy source through the transcriptional regulation of lipogenesis. BMC Genomics 2018. [PMID: 29514634 PMCID: PMC5842524 DOI: 10.1186/s12864-018-4520-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Because the cost of cereals is unstable and represents a large part of production charges for meat-type chicken, there is an urge to formulate alternative diets from more cost-effective feedstuff. We have recently shown that meat-type chicken source is prone to adapt to dietary starch substitution with fat and fiber. The aim of this study was to better understand the molecular mechanisms of this adaptation to changes in dietary energy sources through the fine characterization of transcriptomic changes occurring in three major metabolic tissues – liver, adipose tissue and muscle – as well as in circulating blood cells. Results We revealed the fine-tuned regulation of many hepatic genes encoding key enzymes driving glycogenesis and de novo fatty acid synthesis pathways and of some genes participating in oxidation. Among the genes expressed upon consumption of a high-fat, high-fiber diet, we highlighted CPT1A, which encodes a key enzyme in the regulation of fatty acid oxidation. Conversely, the repression of lipogenic genes by the high-fat diet was clearly associated with the down-regulation of SREBF1 transcripts but was not associated with the transcript regulation of MLXIPL and NR1H3, which are both transcription factors. This result suggests a pivotal role for SREBF1 in lipogenesis regulation in response to a decrease in dietary starch and an increase in dietary PUFA. Other prospective regulators of de novo hepatic lipogenesis were suggested, such as PPARD, JUN, TADA2A and KAT2B, the last two genes belonging to the lysine acetyl transferase (KAT) complex family regulating histone and non-histone protein acetylation. Hepatic glycogenic genes were also down-regulated in chickens fed a high-fat, high-fiber diet compared to those in chickens fed a starch-based diet. No significant dietary-associated variations in gene expression profiles was observed in the other studied tissues, suggesting that the liver mainly contributed to the adaptation of birds to changes in energy source and nutrients in their diets, at least at the transcriptional level. Moreover, we showed that PUFA deposition observed in the different tissues may not rely on transcriptional changes. Conclusion We showed the major role of the liver, at the gene expression level, in the adaptive response of chicken to dietary starch substitution with fat and fiber. Electronic supplementary material The online version of this article (10.1186/s12864-018-4520-5) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Zhang D, Shang T, Huang Y, Wang S, Liu H, Wang J, Wang Y, Ji H, Zhang R. Gene expression profile changes in the jejunum of weaned piglets after oral administration of Lactobacillus or an antibiotic. Sci Rep 2017; 7:15816. [PMID: 29150660 PMCID: PMC5693952 DOI: 10.1038/s41598-017-16158-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
The small intestine plays an essential role in the health and well-being of animals. Previous studies have shown that Lactobacillus has a protective effect on intestinal morphology, intestinal epithelium integrity and appropriate maturation of gut-associated tissues. Here, gene expression in jejunum tissue of weaned piglets was investigated by RNA-seq analysis after administration of sterile saline, Lactobacillus reuteri, or an antibiotic (chlortetracycline). In total, 401 and 293 genes were significantly regulated by chlortetracycline and L. reuteri, respectively, compared with control treatment. Notably, the HP, NOX1 and GPX2 genes were significantly up-regulated in the L. reuteri group compared with control, which is related to the antioxidant ability of this strain. In addition, the expression of genes related to arachidonic acid metabolism and linoleic acid metabolism enriched after treatment with L. reuteri. The fatty acid composition in the jejunum and colon was examined by GC-MS analysis and suggested that the MUFA C18:1n9c, and PUFAs C18:2n6c and C20:4n6 were increased in the L. reuteri group, verifying the GO enrichment and KEGG pathway analyses of the RNA-seq results. The results contribute to our understanding of the probiotic activity of this strain and its application in pig production.
Collapse
Affiliation(s)
- Dongyan Zhang
- Laboratory of Feed Biotechnology, State Key Lab. of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100083, China.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tingting Shang
- Laboratory of Feed Biotechnology, State Key Lab. of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100083, China
| | - Yan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Lab. of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
24
|
Giles TA, Belkhiri A, Barrow PA, Foster N. Molecular approaches to the diagnosis and monitoring of production diseases in pigs. Res Vet Sci 2017; 114:266-272. [PMID: 28535467 PMCID: PMC7118804 DOI: 10.1016/j.rvsc.2017.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Production disease in pigs is caused by a variety of different pathogens, mainly enteric and respiratory and can result in significant economic loss. Other factors such as stress, poor husbandry and nutrition can also contribute to an animal's susceptibility to disease. Molecular biomarkers of production disease could be of immense value by improving diagnosis and risk analysis to determine best practice with an impact on increased economic output and animal welfare. In addition to the use of multiplex PCR or microarrays to detect individual or mixed pathogens during infection, these technologies can also be used to monitor the host response to infection via gene expression. The patterns of gene expression associated with cellular damage or initiation of the early immune response may indicate the type of pathology and, by extension the types of pathogen involved. Molecular methods can therefore be used to monitor both the presence of a pathogen and the host response to it during production disease. The field of biomarker discovery and implementation is expanding as technologies such as microarrays and next generation sequencing become more common. Whilst a large number of studies have been carried out in human medicine, further work is needed to identify molecular biomarkers in veterinary medicine and in particular those associated with production disease in the pig industry. The pig transcriptome is highly complex and still not fully understood. Further gene expression studies are needed to identify molecular biomarkers which may have predictive value in identifying the environmental, nutritional and other risk factors which are associated with production diseases in pigs.
Collapse
Affiliation(s)
- Timothy A Giles
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Aouatif Belkhiri
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Paul A Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Neil Foster
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| |
Collapse
|
25
|
Gilbert H, Billon Y, Brossard L, Faure J, Gatellier P, Gondret F, Labussière E, Lebret B, Lefaucheur L, Le Floch N, Louveau I, Merlot E, Meunier-Salaün MC, Montagne L, Mormede P, Renaudeau D, Riquet J, Rogel-Gaillard C, van Milgen J, Vincent A, Noblet J. Review: divergent selection for residual feed intake in the growing pig. Animal 2017; 11:1427-1439. [PMID: 28118862 PMCID: PMC5561440 DOI: 10.1017/s175173111600286x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
This review summarizes the results from the INRA (Institut National de la Recherche Agronomique) divergent selection experiment on residual feed intake (RFI) in growing Large White pigs during nine generations of selection. It discusses the remaining challenges and perspectives for the improvement of feed efficiency in growing pigs. The impacts on growing pigs raised under standard conditions and in alternative situations such as heat stress, inflammatory challenges or lactation have been studied. After nine generations of selection, the divergent selection for RFI led to highly significant (P<0.001) line differences for RFI (-165 g/day in the low RFI (LRFI) line compared with high RFI line) and daily feed intake (-270 g/day). Low responses were observed on growth rate (-12.8 g/day, P<0.05) and body composition (+0.9 mm backfat thickness, P=0.57; -2.64% lean meat content, P<0.001) with a marked response on feed conversion ratio (-0.32 kg feed/kg gain, P<0.001). Reduced ultimate pH and increased lightness of the meat (P<0.001) were observed in LRFI pigs with minor impact on the sensory quality of the meat. These changes in meat quality were associated with changes of the muscular energy metabolism. Reduced maintenance energy requirements (-10% after five generations of selection) and activity (-21% of time standing after six generations of selection) of LRFI pigs greatly contributed to the gain in energy efficiency. However, the impact of selection for RFI on the protein metabolism of the pig remains unclear. Digestibility of energy and nutrients was not affected by selection, neither for pigs fed conventional diets nor for pigs fed high-fibre diets. A significant improvement of digestive efficiency could likely be achieved by selecting pigs on fibre diets. No convincing genetic or blood biomarker has been identified for explaining the differences in RFI, suggesting that pigs have various ways to achieve an efficient use of feed. No deleterious impact of the selection on the sow reproduction performance was observed. The resource allocation theory states that low RFI may reduce the ability to cope with stressors, via the reduction of a buffer compartment dedicated to responses to stress. None of the experiments focussed on the response of pigs to stress or challenges could confirm this theory. Understanding the relationships between RFI and responses to stress and energy demanding processes, as such immunity and lactation, remains a major challenge for a better understanding of the underlying biological mechanisms of the trait and to reconcile the experimental results with the resource allocation theory.
Collapse
Affiliation(s)
- H. Gilbert
- GenPhySE, INRA, INP,
ENSAT, Université de Toulouse,
31326 Castanet-Tolosan, France
| | - Y. Billon
- GenESI, INRA, 17700
Surgères, France
| | - L. Brossard
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - J. Faure
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - P. Gatellier
- QuaPA, INRA, 63122 Saint
Genès-Champanelle, France
| | - F. Gondret
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - E. Labussière
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - B. Lebret
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - L. Lefaucheur
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - N. Le Floch
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - I. Louveau
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - E. Merlot
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | | | - L. Montagne
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - P. Mormede
- GenPhySE, INRA, INP,
ENSAT, Université de Toulouse,
31326 Castanet-Tolosan, France
| | - D. Renaudeau
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - J. Riquet
- GenPhySE, INRA, INP,
ENSAT, Université de Toulouse,
31326 Castanet-Tolosan, France
| | - C. Rogel-Gaillard
- GABI, INRA,
AgroParisTech, Université Paris-Saclay,
78350 Jouy-en-Josas Cedex, France
| | - J. van Milgen
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - A. Vincent
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - J. Noblet
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| |
Collapse
|
26
|
Metzler-Zebeli BU, Magowan E, Hollmann M, Ball MEE, Molnár A, Lawlor PG, Hawken RJ, O'Connell NE, Zebeli Q. Assessing serum metabolite profiles as predictors for feed efficiency in broiler chickens reared at geographically distant locations. Br Poult Sci 2017; 58:729-738. [PMID: 28805076 DOI: 10.1080/00071668.2017.1362688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. The objective of this study was to investigate differences in growth performance, serum intermediary metabolites, acute-phase proteins and white blood cells in low, medium and high-residual feed intake (RFI) chickens. It was also assessed if the environment affects the feed efficiency (FE) and FE-related performance and serum profiles of chickens. 2. Individual body weight (BW) and feed intake (FI) were recorded from d 7 of life. At 5 weeks of age, female and male broiler chickens (Cobb 500) were selected according to their RFI (L1: Austria; L2: UK; n = 9/RFI group, sex and locatity -45on) and blood samples were collected. 3. Chickens at L1 had similar FI but a 15% higher BW gain compared to chickens at L2. The RFI values of female chickens were -231, 8 and 215 g and those of male chickens -197, 0 and 267 g for low, medium and high RFI, respectively. 4. Location affected serum glucose, urea, cholesterol, non-esterified fatty acids (NEFA) and ovotransferrin in females, and serum glucose and triglycerides in male chickens. Serum uric acid and NEFA linearly increased from low to high RFI in females, whereas in males, cholesterol showed the same linear response from low to high RFI. Serum alpha-1-acid glycoprotein and blood heterophil-to-lymphocyte ratio linearly increased by 35% and 68%, respectively, from low to high RFI but only in male chickens at L1. 5. Regression analysis showed significant positive relationships between RFI and serum uric acid (R2 = 0.49) and cholesterol (R2 = 0.13). 6. It was concluded that RFI-related variation in serum metabolites of chickens was largely similar for the two environments and that serum metabolite patterns could be used to predict RFI in chickens.
Collapse
Affiliation(s)
- B U Metzler-Zebeli
- a University Clinic for Swine, Department for Farm Animals and Veterinary Public Health , University of Veterinary Medicine , Vienna , Austria
| | - E Magowan
- b Agri-Food and Biosciences Institute , Agriculture Branch , Hillsborough , Northern Ireland , UK
| | - M Hollmann
- c Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health , University of Veterinary Medicine , Vienna , Austria
| | - M E E Ball
- b Agri-Food and Biosciences Institute , Agriculture Branch , Hillsborough , Northern Ireland , UK
| | - A Molnár
- b Agri-Food and Biosciences Institute , Agriculture Branch , Hillsborough , Northern Ireland , UK
| | - P G Lawlor
- d Teagasc Pig Development Department , Animal & Grassland Research & Innovation Centre , Fermoy , Ireland
| | - R J Hawken
- e Cobb-Vantress Inc. , Siloam Springs , AR , USA
| | - N E O'Connell
- f Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| | - Q Zebeli
- b Agri-Food and Biosciences Institute , Agriculture Branch , Hillsborough , Northern Ireland , UK
| |
Collapse
|
27
|
Strategies towards Improved Feed Efficiency in Pigs Comprise Molecular Shifts in Hepatic Lipid and Carbohydrate Metabolism. Int J Mol Sci 2017; 18:ijms18081674. [PMID: 28763040 PMCID: PMC5578064 DOI: 10.3390/ijms18081674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Due to the central role of liver tissue in partitioning and metabolizing of nutrients, molecular liver-specific alterations are of considerable interest to characterize an efficient conversion and usage of feed in livestock. To deduce tissue-specific and systemic effects on nutrient metabolism and feed efficiency (FE) twenty-four animals with extreme phenotypes regarding residual feed intake (RFI) were analyzed. Transcriptome and fatty acid profiles of liver tissue were complemented with measurements on blood parameters and thyroid hormone levels. Based on 803 differentially-abundant probe sets between low- and high-FE animals, canonical pathways like integrin signaling and lipid and carbohydrate metabolism, were shown to be affected. Molecular alterations of lipid metabolism show a pattern of a reduced hepatic usage of fatty acids in high-FE animals. Complementary analyses at the systemic level exclusively pointed to increased circulating triglycerides which were, however, accompanied by considerably lower concentrations of saturated and polyunsaturated fatty acids in the liver of high-FE pigs. These results are in accordance with altered muscle-to-fat ratios usually ascribed to FE animals. It is concluded that strategies to improve FE might favor a metabolic shift from energy storage towards energy utilization and mobilization.
Collapse
|
28
|
Candidate Gene Identification of Feed Efficiency and Coat Color Traits in a C57BL/6J × Kunming F2 Mice Population Using Genome-Wide Association Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7132941. [PMID: 28828387 PMCID: PMC5554547 DOI: 10.1155/2017/7132941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022]
Abstract
Feed efficiency (FE) is a very important trait in livestock industry. Identification of the candidate genes could be of benefit for the improvement of FE trait. Mouse is used as the model for many studies in mammals. In this study, the candidate genes related to FE and coat color were identified using C57BL/6J (C57) × Kunming (KM) F2 mouse population. GWAS results showed that 61 and 2 SNPs were genome-wise suggestive significantly associated with feed conversion ratio (FCR) and feed intake (FI) traits, respectively. Moreover, the Erbin, Msrb2, Ptf1a, and Fgf10 were considered as the candidate genes of FE. The Lpl was considered as the candidate gene of FI. Further, the coat color trait was studied. KM mice are white and C57 ones are black. The GWAS results showed that the most significant SNP was located at chromosome 7, and the closely linked gene was Tyr. Therefore, our study offered useful target genes related to FE in mice; these genes may play similar roles in FE of livestock. Also, we identified the major gene of coat color in mice, which would be useful for better understanding of natural mutation of the coat color in mice.
Collapse
|
29
|
Fu L, Xu Y, Hou Y, Qi X, Zhou L, Liu H, Luan Y, Jing L, Miao Y, Zhao S, Liu H, Li X. Proteomic analysis indicates that mitochondrial energy metabolism in skeletal muscle tissue is negatively correlated with feed efficiency in pigs. Sci Rep 2017; 7:45291. [PMID: 28345649 PMCID: PMC5366906 DOI: 10.1038/srep45291] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/21/2017] [Indexed: 11/11/2022] Open
Abstract
Feed efficiency (FE) is a highly important economic trait in pig production. Investigating the molecular mechanisms of FE is essential for trait improvement. In this study, the skeletal muscle proteome of high-FE and low-FE pigs were investigated by the iTRAQ approach. A total of 1780 proteins were identified, among which 124 proteins were differentially expressed between the high- and low-FE pigs, with 74 up-regulated and 50 down-regulated in the high-FE pigs. Ten randomly selected differentially expressed proteins (DEPs) were validated by Western blotting and quantitative PCR (qPCR). Gene ontology (GO) analysis showed that all the 25 DEPs located in mitochondria were down-regulated in the high-FE pigs. Furthermore, the glucose-pyruvate-tricarboxylic acid (TCA)-oxidative phosphorylation energy metabolism signaling pathway was found to differ between high- and low-FE pigs. The key enzymes involved in the conversion of glucose to pyruvate were up-regulated in the high-FE pigs. Thus, our results suggested mitochondrial energy metabolism in the skeletal muscle tissue was negatively correlated with FE in pigs, and glucose utilization to generate ATP was more efficient in the skeletal muscle tissue of high-FE pigs. This study offered new targets and pathways for improvement of FE in pigs.
Collapse
Affiliation(s)
- Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Yueyuan Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Ye Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Xiaolong Qi
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Lian Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Huiying Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Yu Luan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Lu Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Yuanxin Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| |
Collapse
|
30
|
Yang Y, Zhou R, Mu Y, Hou X, Tang Z, Li K. Genome-wide analysis of DNA methylation in obese, lean, and miniature pig breeds. Sci Rep 2016; 6:30160. [PMID: 27444743 PMCID: PMC4957084 DOI: 10.1038/srep30160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is a crucial epigenetic modification involved in diverse biological processes. There is significant phenotypic variance between Chinese indigenous and western pig breeds. Here, we surveyed the genome-wide DNA methylation profiles of blood leukocytes from three pig breeds (Tongcheng, Landrace, and Wuzhishan) by methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in gene body regions and repetitive sequences. LINE/L1 and SINE/tRNA-Glu were the predominant methylated repeats in pigs. The methylation level in the gene body regions was higher than in the 5' and 3' flanking regions of genes. About 15% of CpG islands were methylated in the pig genomes. Additionally, 2,807, 2,969, and 5,547 differentially methylated genes (DMGs) were identified in the Tongcheng vs. Landrace, Tongcheng vs. Wuzhishan, and Landrace vs. Wuzhishan comparisons, respectively. A total of 868 DMGs were shared by the three contrasts. The DMGs were significantly enriched in development- and metabolism-related biological processes and pathways. Finally, we identified 32 candidate DMGs associated with phenotype variance in pigs. Our research provides a DNA methylome resource for pigs and furthers understanding of epigenetically regulated phenotype variance in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Rong Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhua Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonglin Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
31
|
Désert C, Merlot E, Zerjal T, Bed'hom B, Härtle S, Le Cam A, Roux PF, Baeza E, Gondret F, Duclos MJ, Lagarrigue S. Transcriptomes of whole blood and PBMC in chickens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:1-9. [PMID: 27442111 DOI: 10.1016/j.cbd.2016.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/16/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
Global transcriptome analysis of chicken whole blood to discover biomarkers of different phenotypes or physiological disorders has never been investigated so far. Whole blood provides significant advantages, allowing large scale and non-invasive sampling. However, generation of gene expression data from the blood of non-mammalian species remains a challenge, notably due to the nucleated red blood cells, hindering the use of well-established protocols. The aim of this study was to analyze the relevance of using whole blood cells (WB) to find biomarkers, instead of Peripheral Blood Mononuclear Cells (PBMC), usually chosen for immune challenges. RNA sources from WB and PBMC was characterized by microarray analysis. Our results show that the quality and quantity of RNA obtained from WB was suitable for further analyses, although the quality was lower than that from PBMC. The transcriptome profiling comparison revealed that the majority of genes were expressed in both WB and PBMC. Hemoglobin subunits were the major transcripts in WB, whereas the most enriched biological process was related to protein catabolic process. Most of the over-represented transcripts in PBMC were implicated in functions specific to thrombocytes, like coagulation and platelet activation, probably due to the large proportion of this nucleated cell type in chicken PBMC. Functions related to B and T cells and to other immune functions were also enriched in the PBMC subset. We conclude that WB is more suitable for large scale immunity oriented studies and other biological processes that have been poorly investigated so far.
Collapse
Affiliation(s)
- Colette Désert
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France.
| | - Elodie Merlot
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France
| | - Tatiana Zerjal
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bertrand Bed'hom
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Aurélie Le Cam
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons, Rennes, France
| | - Pierre-François Roux
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France
| | | | - Florence Gondret
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France
| | | | - Sandrine Lagarrigue
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France
| |
Collapse
|