1
|
Kim J, Ślęczkowska M, Nobre B, Wieringa P. Study Models for Chlamydia trachomatis Infection of the Female Reproductive Tract. Microorganisms 2025; 13:553. [PMID: 40142446 PMCID: PMC11945960 DOI: 10.3390/microorganisms13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Chlamydia trachomatis (Ct) is a leading cause of sexually transmitted infections globally, often resulting in inflammatory disorders, ectopic pregnancies, and infertility. Studying Ct's pathogenesis remains challenging due to its unique life cycle and host-specific interactions, which require diverse experimental models. Animal studies using mouse, guinea pig, pig, and non-human primate models provide valuable insights into immune responses, hormonal influences, and disease progression. However, they face limitations in terms of translational relevance due to physiological differences, as well as ethical concerns. Complementing these, in vitro systems, ranging from simple monolayer to advanced three-dimensional models, exhibit improved physiological relevance by replicating the human tissue architecture. This includes the detailed investigation of epithelial barrier disruptions, epithelium-stroma interactions, and immune responses at a cellular level. Nonetheless, in vitro models fall short in mimicking the intricate tissue structures found in vivo and, therefore, cannot faithfully replicate the host-pathogen interactions or infection dynamics observed in living organisms. This review presents a comprehensive overview of the in vivo and in vitro models employed over the past few decades to investigate Ct and its pathogenesis, addressing their strengths and limitations. Furthermore, we explore emerging technologies, including organ-on-chip and in silico models, as promising tools to overcome the existing challenges and refine our understanding of Ct infections.
Collapse
Affiliation(s)
| | | | | | - Paul Wieringa
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.K.); (M.Ś.); (B.N.)
| |
Collapse
|
2
|
Wenbo L, Yewei Y, Hui Z, Zhongyu L. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of Chlamydia. Virulence 2024; 15:2351234. [PMID: 38773735 PMCID: PMC11123459 DOI: 10.1080/21505594.2024.2351234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
Chlamydia infection is an important cause of public health diseases, and no effective vaccine is currently available. Owing to its unique intracellular lifestyle, Chlamydia requires a variety of nutrients and substrates from host cells, particularly sphingomyelin, cholesterol, iron, amino acids, and the mannose-6-phosphate receptor, which are essential for inclusion development. Here, we summarize the recent advances in Chlamydia nutrient acquisition mechanism by hijacking host cell vesicular transport, which plays an important role in chlamydial growth and development. Chlamydia obtains the components necessary to complete its intracellular developmental cycle by recruiting Rab proteins (major vesicular trafficking regulators) and Rab effector proteins to the inclusion, interfering with Rab-mediated multivesicular trafficking, reorienting the nutrition of host cells, and reconstructing the intracellular niche environment. Consequently, exploring the role of vesicular transport in nutrient acquisition offers a novel perspective on new approaches for preventing and treating Chlamydia infection.
Collapse
Affiliation(s)
- Lei Wenbo
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yang Yewei
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhou Hui
- Department of Laboratory Medicine and Pathology, First Affiliated Hospital of Hunan University of Chinese Traditional Medicine, Changsha, Hunan, P.R. China
| | - Li Zhongyu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
3
|
Rodrigues R, Sousa C, Vale N. Deciphering the Puzzle: Literature Insights on Chlamydia trachomatis-Mediated Tumorigenesis, Paving the Way for Future Research. Microorganisms 2024; 12:1126. [PMID: 38930508 PMCID: PMC11205399 DOI: 10.3390/microorganisms12061126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Some infectious agents have the potential to cause specific modifications in the cellular microenvironment that could be propitious to the carcinogenesis process. Currently, there are specific viruses and bacteria, such as human papillomavirus (HPV) and Helicobacter pylori, that are well established as risk factors for neoplasia. Chlamydia trachomatis (CT) infections are one of the most common bacterial sexually transmitted infections worldwide, and recent European data confirmed a continuous rise across Europe. The infection is often asymptomatic in both sexes, requiring a screening program for early detection. Notwithstanding, not all countries in Europe have it. Chlamydia trachomatis can cause chronic and persistent infections, resulting in inflammation, and there are plausible biological mechanisms that link the genital infection with tumorigenesis. Herein, we aimed to understand the epidemiological and biological plausibility of CT genital infections causing endometrial, ovarian, and cervical tumors. Also, we covered some of the best suitable in vitro techniques that could be used to study this potential association. In addition, we defend the point of view of a personalized medicine strategy to treat those patients through the discovery of some biomarkers that could allow it. This review supports the need for the development of further fundamental studies in this area, in order to investigate and establish the role of chlamydial genital infections in oncogenesis.
Collapse
Affiliation(s)
- Rafaela Rodrigues
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal
| | - Carlos Sousa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Ghasemian E, Harding-Esch E, Mabey D, Holland MJ. When Bacteria and Viruses Collide: A Tale of Chlamydia trachomatis and Sexually Transmitted Viruses. Viruses 2023; 15:1954. [PMID: 37766360 PMCID: PMC10536055 DOI: 10.3390/v15091954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The global incidence of sexually transmitted infections (STIs) remains high, with the World Health Organization (WHO) estimating that over 1 million people acquire STIs daily. STIs can lead to infertility, pregnancy complications, and cancers. Co-infections with multiple pathogens are prevalent among individuals with an STI and can lead to heightened infectivity and more severe clinical manifestations. Chlamydia trachomatis (CT) is the most reported bacterial STI worldwide in both men and women, and several studies have demonstrated co-infection of CT with viral and other bacterial STIs. CT is a gram-negative bacterium with a unique biphasic developmental cycle including infectious extracellular elementary bodies (EBs) and metabolically active intracellular reticulate bodies (RBs). The intracellular form of this organism, RBs, has evolved mechanisms to persist for long periods within host epithelial cells in a viable but non-cultivable state. The co-infections of CT with the most frequently reported sexually transmitted viruses: human immunodeficiency virus (HIV), human papillomavirus (HPV), and herpes simplex virus (HSV) have been investigated through in vitro and in vivo studies. These research studies have made significant strides in unraveling the intricate interactions between CT, these viral STIs, and their eukaryotic host. In this review, we present an overview of the epidemiology of these co-infections, while specifically delineating the underlying mechanisms by which CT influences the transmission and infection dynamics of HIV and HSV. Furthermore, we explore the intricate relationship between CT and HPV infection, with a particular emphasis on the heightened risk of cervical cancer. By consolidating the current body of knowledge, we provide valuable insights into the complex dynamics and implications of co-infection involving CT and sexually transmitted viruses.
Collapse
Affiliation(s)
- Ehsan Ghasemian
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK; (E.H.-E.); (D.M.); (M.J.H.)
| | | | | | | |
Collapse
|
5
|
Ray A, Pradhan D, Arora R, Siraj F, Rastogi S. Microarray profiling of serum micro-RNAs in women with Chlamydia trachomatis-associated recurrent spontaneous abortion: A case control study. Microb Pathog 2023; 182:106273. [PMID: 37507027 DOI: 10.1016/j.micpath.2023.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chlamydia trachomatis infection is a major cause of sexually transmitted diseases and adverse pregnancy outcomes such as recurrent spontaneous abortion (RSA). Micro-RNAs (miRNAs) have been known to be upregulated/downregulated in various reproductive-associated diseases such as ectopic pregnancy, preterm birth and pre-eclampsia. However, there is paucity of literature on miRNA profile in C. trachomatis-infected RSA. The present study aimed to determine the profile of serum miRNAs followed by their validation in C. trachomatis-infected RSA and to find target genes involved in biological pathways. Non-heparinized blood and first void urine were collected from 30 non-pregnant women with RSA and 30 non-pregnant women with ≥2 successful deliveries (controls) attending Department of Obstetrics and Gynaecology, Safdarjung hospital, New Delhi, India. C. trachomatis detection was done in urine by PCR and chlamydial load was determined by quantitative real-time PCR (qRT-PCR). miRNA expression was studied by microarray analysis followed by in vitro validation by qRT-PCR. Analysis of target genes/pathways was characterized in silico. 06 RSA patients were infected with C. trachomatis, while chlamydial load was found to be 6000-12,000 copies/ml. 110 circulating miRNAs were expressed differentially in infected RSA patients compared with controls. Of these, 16 were overexpressed and 94 downregulated. 06 differentially expressed circulating miRNAs were selected to validate the microarray results. qRT-PCR data confirmed the reliability of the microarray results: miR-4443, -5100, -7975 showed statistically significant upregulation, while miR-6808-5p, -3148, -6727-5p were significantly downregulated in infected RSA patients versus controls. Chlamydial load was positively correlated with these upregulated miRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that target genes of miRNAs in RSA are involved in AMPK, Akt and mTOR signaling pathways. Overall results indicate that differentially expressed circulating miRNAs are involved in pathogenesis of C. trachomatis-associated RSA and have the potential to be used as biomarkers for predicting RSA.
Collapse
Affiliation(s)
- Ankita Ray
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Room No. 5001, Convergence Block, AIIMS, New Delhi, 110029, India.
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi, 110029, India.
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| |
Collapse
|
6
|
Hocking JS, Geisler WM, Kong FYS. Update on the Epidemiology, Screening, and Management of Chlamydia trachomatis Infection. Infect Dis Clin North Am 2023; 37:267-288. [PMID: 37005162 DOI: 10.1016/j.idc.2023.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Chlamydia trachomatis infection ("chlamydia") is the most commonly diagnosed bacterial sexually transmitted infection globally, occurring in the genitals (urethra or vagina/cervix), rectum, or pharynx. If left untreated in women, genital chlamydia can ascend into the upper genital tract causing pelvic inflammatory disease, increasing their risk for ectopic pregnancy, infertility, and chronic pelvic pain. In men, chlamydia can cause epididymitis and proctitis. However, chlamydia is asymptomatic in over 80% of cases. This article provides an update on the epidemiology, natural history, and clinical manifestations of chlamydia in adults and discusses the current approaches to its management and control policy.
Collapse
Affiliation(s)
- Jane S Hocking
- Melbourne School of Population and Global Health, University of Melbourne, 3/207 Bouverie Street, Carlton South, Melbourne, Victoria, Australia 3053.
| | - William M Geisler
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, ZRB 242, Birmingham, AL 35294, USA
| | - Fabian Y S Kong
- Melbourne School of Population and Global Health, University of Melbourne, 3/207 Bouverie Street, Carlton South, Melbourne, Victoria, Australia 3053
| |
Collapse
|
7
|
Chigorimbo-Murefu NTL, Potgieter M, Dzanibe S, Gabazana Z, Buri G, Chawla A, Nleya B, Olivier AJ, Harryparsad R, Calder B, Garnett S, Maziya L, Lewis DA, Jaspan H, Wilson D, Passmore JAS, Mulder N, Blackburn J, Bekker LG, Gray CM. A pilot study to show that asymptomatic sexually transmitted infections alter the foreskin epithelial proteome. Front Microbiol 2022; 13:928317. [PMID: 36325020 PMCID: PMC9618803 DOI: 10.3389/fmicb.2022.928317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
There is limited data on the role of asymptomatic STIs (aSTIs) on the risk of human immunodeficiency virus (HIV) acquisition in the male genital tract (MGT). The impact of foreskin removal on lowering HIV acquisition is well described, but molecular events leading to HIV acquisition are unclear. Here, in this pilot study, we show that asymptomatic urethral infection with Chlamydia trachomatis (CT) significantly impacts the foreskin proteome composition. We developed and optimized a shotgun liquid chromatography coupled tandem mass spectrometry (MS)-based proteomics approach and utilized this on foreskins collected at medical male circumcision (MMC) from 16 aSTI+ men and 10 age-matched STI- controls. We used a novel bioinformatic metaproteomic pipeline to detect differentially expressed (DE) proteins. Gene enrichment ontology analysis revealed proteins associated with inflammatory and immune activation function in both inner and outer foreskin from men with an aSTI. Neutrophil activation/degranulation and viral-evasion proteins were significantly enriched in foreskins from men with aSTI, whereas homotypic cell-cell adhesion proteins were enriched in foreskin tissue from men without an aSTI. Collectively, our data show that asymptomatic urethral sexually transmitted infections result in profound alterations in epithelial tissue that are associated with depletion of barrier integrity and immune activation.
Collapse
Affiliation(s)
- Nyaradzo T. L. Chigorimbo-Murefu
- Divisions of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Matthys Potgieter
- Division of Computational Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Chemical and Systems Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sonwabile Dzanibe
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Zikhona Gabazana
- Division of Computational Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gershom Buri
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Aditya Chawla
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bokani Nleya
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Abraham J. Olivier
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rushil Harryparsad
- Divisions of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bridget Calder
- Division of Chemical and Systems Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shaun Garnett
- Division of Chemical and Systems Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lungile Maziya
- Department of Medicine, Edendale Hospital, Pietermaritzburg, South Africa
| | - David A. Lewis
- Western Sydney Sexual Health Centre, Western Sydney Local Health District, Parramatta, NSW, Australia
- Westmead Clinical School and Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Heather Jaspan
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Doug Wilson
- Department of Medicine, Edendale Hospital, Pietermaritzburg, South Africa
| | - Jo-Ann S. Passmore
- Divisions of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicola Mulder
- Division of Computational Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Division of Chemical and Systems Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Clive M. Gray
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
8
|
Chen X, Yuan W, Zhou Q, Tan Y, Wang R, Dong S. Sensitive and visual identification of Chlamydia trachomatis using multiple cross displacement amplification integrated with a gold nanoparticle-based lateral flow biosensor for point-of-care use. Front Cell Infect Microbiol 2022; 12:949514. [PMID: 35937700 PMCID: PMC9355032 DOI: 10.3389/fcimb.2022.949514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infection (STI) and remains a major public health challenge, especially in less-developed regions. Establishing a rapid, inexpensive, and easy-to-interpret point-of-care (POC) testing system for C. trachomatis could be critical for its treatment and limiting further transmission. Here, we devised a novel approach termed a multiple cross displacement amplification integrated with gold nanoparticle-based lateral flow biosensor (MCDA-AuNPs-LFB) for the highly specific, sensitive, user-friendly, and rapid identification of C. trachomatis in clinical samples. A suite of MCDA primers based on the C. trachomatis ompA gene from 14 serological variants (serovar A-K, L1, L2, and L3) were successfully designed and used to establish the assay. Optimal assay conditions were identified at 67°C, and the detection procedure, including nucleic acid preparation (approximately 5 min), MCDA amplification (30 min), and AuNPs-LFB visual readout (within 2 min), was completed within 40 min. The all-in cost for each test was approximately $5.5 USD. The limit of detection (LoD) was 10 copies/reaction, and no cross-reaction was observed with non-C. trachomatis microbes. A total of 135 suspected C. trachomatis-infection genital secretion samples were collected and simultaneously detected using real-time quantitative PCR (qPCR) in our assay. Compared with the qPCR technology, the MCDA-AuNPs-LFB sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 96.20%, 94.92%, and 100%, respectively. Hence, our MCDA-AuNP-LFB assay exhibited considerable potential for POC testing and could be used to identify C. trachomatis in clinical settings, particularly in low-income regions.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Clinical Medical Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei Yuan
- Quality Control Department, Guizhou Provincial Center for Clinical Laboratory, Guiyang, China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
| | - Yan Tan
- Quality Control Department, Guizhou Provincial Center for Clinical Laboratory, Guiyang, China
| | - Ronghua Wang
- Department of Clinical Laboratory, Longli people’s Hospital, Qianlan, China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
9
|
Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071065. [PMID: 35888153 PMCID: PMC9323215 DOI: 10.3390/life12071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Currently, Chlamydia trachomatis still possesses a significant impact on public health, with more than 130 million new cases each year, alongside a high prevalence of asymptomatic infections (approximately 80% in women and 50% in men). C. trachomatis infection involves a wide range of different cell types, from cervical epithelial cells, testicular Sertoli cells to Synovial cells, leading to a broad spectrum of pathologies of varying severity both in women and in men. Several two-dimensional in vitro cellular models have been employed for investigating C. trachomatis host–cell interaction, although they present several limitations, such as the inability to mimic the complex and dynamically changing structure of in vivo human host-tissues. Here, we present a brief overview of the most cutting-edge three-dimensional cell-culture models that mimic the pathophysiology of in vivo human tissues and organs for better translating experimental findings into a clinical setting. Future perspectives in the field of C. trachomatis research are also provided.
Collapse
|
10
|
Veretennikova A, Chang TL. Chlamydia trachomatis Enhances HIV Infection of Non-Activated PBMCs. EC MICROBIOLOGY 2022; 18:13-17. [PMID: 36507927 PMCID: PMC9731503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sexual contact is the most common route of HIV transmission, and the concurrent presence of sexually transmitted infections (STIs) such as Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (gonococcus, GC) is known to increase the HIV risk. Antibiotic treatment decreases the incidence of STIs but not HIV. CT and GC activate Toll-like receptors (TLRs) 2 and 4, which act as sensors of microbial infection are critical for initiating immune responses to control infection. We have previously shown that GC enhances HIV infection of primary resting CD4+ T cells through activation of TLR2 but not TLR4. In this study, we determined the effect of live and fixed CT and different species of lactobacilli including L. jensenii and L. reuteri on HIV infection of freshly isolated PBMCs. We found that pretreatment of freshly isolated PBMCs with fresh or fixed CT, but not lactobacilli, promoted HIV infection of freshly isolated CD4+ T cells. Together with our previous reports, we concluded that STIs such as CT and GC but not commensal bacteria like lactobacilli enhanced HIV infection, possibly through immune activation. Importantly, the enhancement effect of fixed CT on HIV infection may explain the failure of antibiotic treatments to reduce the HIV incidence. Combined strategies to inhibit STI growth and STI-mediated mucosal immune activation should be considered for HIV prevention in the settings of STIs.
Collapse
Affiliation(s)
- Alina Veretennikova
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA
| | - Theresa L Chang
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
11
|
Lawson RM. HIV and Other Sexually Transmitted Infections: Screening Recommendations. J Nurse Pract 2022. [DOI: 10.1016/j.nurpra.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
12
|
Wang K, Muñoz KJ, Tan M, Sütterlin C. Chlamydia and HPV induce centrosome amplification in the host cell through additive mechanisms. Cell Microbiol 2021; 23:e13397. [PMID: 34716742 DOI: 10.1111/cmi.13397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
Based on epidemiology studies, Chlamydia trachomatis has been proposed as a co-factor for human papillomavirus (HPV) in the development of cervical cancer. These two intracellular pathogens have been independently reported to induce the production of extra centrosomes, or centrosome amplification, which is a hallmark of cancer cells. We developed a cell culture model to systematically measure the individual and combined effects of Chlamydia and HPV on the centrosome in the same host cell. We found that C. trachomatis caused centrosome amplification in a greater proportion of cells than HPV and that the effects of the two pathogens on the centrosome were additive. Furthermore, centrosome amplification induced by Chlamydia, but not by HPV, strongly correlated with multinucleation and required progression through mitosis. Our results suggest that C. trachomatis and HPV induce centrosome amplification through different mechanisms, with the chlamydial effect being largely due to a failure in cytokinesis that also results in multinucleation. Our findings provide support for C. trachomatis as a co-factor for HPV in carcinogenesis and offer mechanistic insights into how two infectious agents may cooperate to promote cancer. TAKE AWAYS: • Chlamydia and HPV induce centrosome amplification in an additive manner. • Chlamydia-induced centrosome amplification is linked to host cell multinucleation. • Chlamydia-induced centrosome amplification requires cell cycle progression. • Chlamydia and HPV cause centrosome amplification through different mechanisms. • This study supports Chlamydia as a co-factor for HPV in carcinogenesis.
Collapse
Affiliation(s)
- Kevin Wang
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Karissa J Muñoz
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA.,Department of Medicine, University of California, Irvine, California, USA
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| |
Collapse
|
13
|
Chlamydia trachomatis Stimulation Enhances HIV-1 Susceptibility through the Modulation of a Member of the Macrophage Inflammatory Proteins. J Invest Dermatol 2021; 142:1338-1348.e6. [PMID: 34662561 DOI: 10.1016/j.jid.2021.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Sexually transmitted infections such as Chlamydia trachomatis can enhance HIV-1 infection. However, the molecular mechanisms modulating the enhancement of HIV-1 infectivity and replication during HIV-1/sexually transmitted infections coinfection remain elusive. In this study, we performed an ex vivo infection of HIV-1 in PBMCs of C. trachomatis‒infected patients and observed a significant increase in HIV-1 p24 levels compared with those in cells from healthy donors. Similarly, C. trachomatis‒stimulated PBMCs from healthy donors showed enhanced susceptibility to HIV-1. C. trachomatis‒stimulated CD4 T cells also harbored more HIV-1 copy numbers. RNA sequencing data revealed the upregulation of CCL3L1/CCL3L3, a paralog of CCL3 in C. trachomatis‒stimulated CD4 T cells infected with HIV-1. Furthermore, an increase in CCL3L1/CCL3L3 expression levels correlated with HIV-1 replication in C. trachomatis‒stimulated cells. However, the addition of exogenous CCL3L1 reduces HIV-1 infection of healthy cells, indicating a dual role of CCL3L1 in HIV-1 infection. Further investigation revealed that a knockout of CCL3L1/CCL3L3 in Jurkat T cells rescued the increased susceptibility of C. trachomatis‒stimulated cells to HIV-1 infection. These results reveal a role for CCL3L1/CCL3L3 in enhancing HIV-1 replication and production and highlight a mechanism for the enhanced susceptibility to HIV-1 among C. trachomatis‒infected patients.
Collapse
|
14
|
Van Der Pol B, Gaydos CA. A profile of the binx health io® molecular point-of-care test for chlamydia and gonorrhea in women and men. Expert Rev Mol Diagn 2021; 21:861-868. [PMID: 34225553 DOI: 10.1080/14737159.2021.1952074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Point-of-care (POC) tests for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are urgently needed to control the STI epidemic in order to offer patients an immediate diagnoses and accurate treatment before they leave a clinical encounter and thus reduce transmission and sequelae. Nucleic acid amplification tests (NAATs) have increased sensitivity and specificity, but very few POC assays can provide results of such tests within the usual time of the patient visit.Areas covered: This review describes the technology and performance characteristics of the binx health io® [Boston, MA] (binx io) CT/NG assay, a new rapid molecular POC assay. The assay is compared to other available molecular POC tests. We also describe the importance of time to results and assay performance for this POC assay.Expert opinion: The binx io CT/NG assay offers the ability to incorporate the use of POC tests to identify and immediately treat chlamydia and gonococcal infections into the clinical visit, which will provide improved outcomes for patients. Additional implementation studies are needed to optimize the adoption of this new test.
Collapse
Affiliation(s)
- Barbara Van Der Pol
- University of Alabama at Birmingham School of Medicine, Department of Medicine, Birmingham, USA
| | - Charlotte A Gaydos
- Johns Hopkins University School of Medicine, Department of Medicine, Baltimore, USA
| |
Collapse
|
15
|
Liu L, Chen X, Tang T, Chen L, Huang Q, Li Z, Bai Q, Chen L. Analysis of microRNA expression profiles in human bronchial epithelial cells infected by Chlamydia psittaci. Microb Pathog 2021; 154:104837. [PMID: 33689813 DOI: 10.1016/j.micpath.2021.104837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chlamydia psittaci is a pathogen of birds that can cause zoonotic disease in mammals including pneumonia in humans. MicroRNAs (miRNAs) are a class of small non-coding RNA fragments with a length of about 22 nt, which play an important role in regulating gene expression after transcription. Chlamydia infection can cause changes in host cell miRNA expression, but the potential biological function of miRNAs in C. psittaci infection and pathogenesis is not well understood. METHODS Small RNA sequencing (sRNA-Seq) technology was used to characterise miRNA expression in human bronchial epithelial (HBE) cells after C. psittaci infection, and differentially expressed miRNAs were identified. Candidate target genes for these miRNAs were then functionally annotated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The sRNA-Seq results were partially validated by quantitative real time polymerase chain reaction (qRT-PCR) and miRNA-target networks were constructed using visualization software. RESULTS We identified 151 differentially expressed miRNAs (46 known miRNAs and 105 novel miRNAs) in C. psittaci-infected HBE cells, of which 140 were upregulated and 11 were downregulated. Of these, 17 known miRNAs were significantly upregulated and two were downregulated using P < 0.05 and |log2FoldChange|>1.5 as threshold criteria. GO enrichment results showed that the predicted targets of these differentially expressed miRNAs were mainly involved in transcriptional regulation and ATP binding. KEGG pathway analysis suggested that the candidate target genes were involved in several important signaling pathways such as MAPK, ErbB, cGMP-PKG, cAMP, mTOR, GNRH, oxytocin, PI3K-Akt and AMPK, which are primarily related to biological processes such as transcription and signal transduction. The qRT-PCR results for miR-2116-3p, miR-3195, miR-663a, miR-10401-5p, miR-124-3p, miR-184, miR-744-5p and hsa-miR-514b-5p were consistent with the sRNA-Seq data. CONCLUSIONS A large amount of miRNA expression profile data relating to C. psittaci infection was obtained, which provides a useful experimental and theoretical basis for further understanding the pathogenic mechanisms of C. psittaci infection.
Collapse
Affiliation(s)
- Luyao Liu
- Department of public health laboratory sciences, College of Public Health, University of South China, Hengyang, China; Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China
| | - Xi Chen
- Department of public health laboratory sciences, College of Public Health, University of South China, Hengyang, China; Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China
| | - Ting Tang
- Department of public health laboratory sciences, College of Public Health, University of South China, Hengyang, China; Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China; Department of Infection Control, The First People's Hospital of Yunnan Province, Kunming, China
| | - Li Chen
- Department of public health laboratory sciences, College of Public Health, University of South China, Hengyang, China; Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China
| | - Qiaoling Huang
- Department of public health laboratory sciences, College of Public Health, University of South China, Hengyang, China; Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Qinqin Bai
- Department of public health laboratory sciences, College of Public Health, University of South China, Hengyang, China
| | - Lili Chen
- Department of public health laboratory sciences, College of Public Health, University of South China, Hengyang, China; Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China.
| |
Collapse
|
16
|
Pilo S, Zizelski Valenci G, Rubinstein M, Pichadze L, Scharf Y, Dveyrin Z, Rorman E, Nissan I. High-resolution multilocus sequence typing for Chlamydia trachomatis: improved results for clinical samples with low amounts of C. trachomatis DNA. BMC Microbiol 2021; 21:28. [PMID: 33461496 PMCID: PMC7814548 DOI: 10.1186/s12866-020-02077-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/20/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Several Multilocus Sequence Typing (MLST) schemes have been developed for Chlamydia trachomatis. Bom's MLST scheme for MLST is based on nested PCR amplification and sequencing of five hypervariable genes and ompA. In contrast to other Chlamydia MLST schemes, Bom's MLST scheme gives higher resolution and phylogenetic trees that are comparable to those from whole genome sequencing. However, poor results have been obtained with Bom's MLST scheme in clinical samples with low concentrations of Chlamydia DNA. RESULTS In this work, we present an improved version of the scheme that is based on the same genes and MLST database as Bom's MLST scheme, but with newly designed primers for nested-1 and nested-2 steps under stringent conditions. Furthermore, we introduce a third primer set for the sequencing step, which considerably improves the performance of the assay. The improved primers were tested in-silico using a dataset of 141 Whole Genome Sequences (WGS) and in a comparative analysis of 32 clinical samples. Based on cycle threshold and melting curve analysis values obtained during Real-Time PCR of nested-1 & 2 steps, we developed a simple scoring scheme and flow chart that allow identification of reaction inhibitors as well as to predict with high accuracy amplification success. The improved MLST version was used to obtain a genovars distribution in patients attending an STI clinic in Tel Aviv. CONCLUSIONS The newly developed MLST version showed great improvement of assay results for samples with very low concentrations of Chlamydia DNA. A similar concept could be applicable to other MLST schemes.
Collapse
Affiliation(s)
- Shlomo Pilo
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | | | - Mor Rubinstein
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Lea Pichadze
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Yael Scharf
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Zeev Dveyrin
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Efrat Rorman
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Israel Nissan
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel.
| |
Collapse
|
17
|
Discovery of Spilanthol Endoperoxide as a Redox Natural Compound Active against Mammalian Prx3 and Chlamydia trachomatis Infection. Antioxidants (Basel) 2020; 9:antiox9121220. [PMID: 33287170 PMCID: PMC7761737 DOI: 10.3390/antiox9121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis (Ct) is a bacterial intracellular pathogen responsible for a plethora of diseases ranging from blindness to pelvic inflammatory diseases and cervical cancer. Although this disease is effectively treated with antibiotics, concerns for development of resistance prompt the need for new low-cost treatments. Here we report the activity of spilanthol (SPL), a natural compound with demonstrated anti-inflammatory properties, against Ct infections. Using chemical probes selective for imaging mitochondrial protein sulfenylation and complementary assays, we identify an increase in mitochondrial oxidative state by SPL as the underlying mechanism leading to disruption of host cell F-actin cytoskeletal organization and inhibition of chlamydial infection. The peroxidation product of SPL (SPL endoperoxide, SPLE), envisioned to be the active compound in the cellular milieu, was chemically synthesized and showed more potent anti-chlamydial activity. Comparison of SPL and SPLE reactivity with mammalian peroxiredoxins, demonstrated preferred reactivity of SPLE with Prx3, and virtual lack of SPL reaction with any of the reduced Prx isoforms investigated. Cumulatively, these findings support the function of SPL as a pro-drug, which is converted to SPLE in the cellular milieu leading to inhibition of Prx3, increased mitochondrial oxidation and disruption of F-actin network, and inhibition of Ct infection.
Collapse
|
18
|
Inflammation, HIV, and Immune Quiescence: Leveraging on Immunomodulatory Products to Reduce HIV Susceptibility. AIDS Res Treat 2020; 2020:8672850. [PMID: 33178456 PMCID: PMC7609152 DOI: 10.1155/2020/8672850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Collapse
|
19
|
Sabihi M, Böttcher M, Pelczar P, Huber S. Microbiota-Dependent Effects of IL-22. Cells 2020; 9:E2205. [PMID: 33003458 PMCID: PMC7599675 DOI: 10.3390/cells9102205] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines are important contributors to immune responses against microbial and environmental threats and are of particular importance at epithelial barriers. These interfaces are continuously exposed to external factors and thus require immune components to both protect the host from pathogen invasion and to regulate overt inflammation. Recently, substantial efforts have been devoted to understanding how cytokines act on certain cells at barrier sites, and why the dysregulation of immune responses may lead to pathogenesis. In particular, the cytokine IL-22 is involved in preserving an intact epithelium, maintaining a balanced microbiota and a functioning defense system against external threats. However, a tight regulation of IL-22 is generally needed, since uncontrolled IL-22 production can lead to the progression of autoimmunity and cancer. Our aim in this review is to summarize novel findings on IL-22 and its interactions with specific microbial stimuli, and subsequently, to understand their contributions to the function of IL-22 and the clinical outcome. We particularly focus on understanding the detrimental effects of dysregulated control of IL-22 in certain disease contexts.
Collapse
Affiliation(s)
| | | | | | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (M.S.); (M.B.); (P.P.)
| |
Collapse
|
20
|
Abstract
The human immunodeficiency virus (HIV) and sexually transmitted infections (STIs) are considered epidemics in the United States. Research on the association between STIs and HIV infectiousness and susceptibility has shown that STIs promote HIV acquisition and transmission via mucosal inflammation and ulceration caused by viral or bacterial pathogens. Some of the most common STIs associated with HIV are chlamydia, gonorrhea, syphilis, and herpes simplex virus type 2. STIs are a major cause of morbidity and mortality, particularly if diagnosis or treatment is delayed. Prevention and treatment of both HIV and STIs is essential to ending these associated epidemics.
Collapse
Affiliation(s)
- Robin M Lawson
- Capstone College of Nursing, The University of Alabama, 650 University Boulevard, East, Tuscaloosa, AL 35401, USA.
| |
Collapse
|
21
|
Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during In Vivo Infectivity and Reveals a Specific Role for the C Terminus during Cellular Invasion. Infect Immun 2020; 88:IAI.00841-19. [PMID: 32152196 DOI: 10.1128/iai.00841-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/03/2020] [Indexed: 02/04/2023] Open
Abstract
The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia's ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor.
Collapse
|
22
|
Mechanisms of Endogenous HIV-1 Reactivation by Endocervical Epithelial Cells. J Virol 2020; 94:JVI.01904-19. [PMID: 32051273 DOI: 10.1128/jvi.01904-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/01/2020] [Indexed: 12/23/2022] Open
Abstract
Pharmacological HIV-1 reactivation to reverse latent infection has been extensively studied. However, HIV-1 reactivation also occurs naturally, as evidenced by occasional low-level viremia ("viral blips") during antiretroviral treatment (ART). Clarifying where blips originate from and how they happen could provide clues to stimulate latency reversal more effectively and safely or to prevent viral rebound following ART cessation. We studied HIV-1 reactivation in the female genital tract, a dynamic anatomical target for HIV-1 infection throughout all disease stages. We found that primary endocervical epithelial cells from several women reactivated HIV-1 from latently infected T cells. The endocervical cells' HIV-1 reactivation capacity further increased upon Toll-like receptor 3 stimulation with poly(I·C) double-stranded RNA or infection with herpes simplex virus 2 (HSV-2). Notably, acyclovir did not eliminate HSV-2-induced HIV-1 reactivation. While endocervical epithelial cells secreted large amounts of several cytokines and chemokines, especially tumor necrosis factor alpha (TNF-α), CCL3, CCL4, and CCL20, their HIV-1 reactivation capacity was almost completely blocked by TNF-α neutralization alone. Thus, immunosurveillance activities by columnar epithelial cells in the endocervix can cause endogenous HIV-1 reactivation, which may contribute to viral blips during ART or rebound following ART interruption.IMPORTANCE A reason that there is no universal cure for HIV-1 is that the virus can hide in the genome of infected cells in the form of latent proviral DNA. This hidden provirus is protected from antiviral drugs until it eventually reactivates to produce new virions. It is not well understood where in the body or how this reactivation occurs. We studied HIV-1 reactivation in the female genital tract, which is often the portal of HIV-1 entry and which remains a site of infection throughout the disease. We found that the columnar epithelial cells lining the endocervix, the lower part of the uterus, are particularly effective in reactivating HIV-1 from infected T cells. This activity was enhanced by certain microbial stimuli, including herpes simplex virus 2, and blocked by antibodies against the inflammatory cytokine TNF-α. Avoiding HIV-1 reactivation could be important for maintaining a functional HIV-1 cure when antiviral therapy is stopped.
Collapse
|
23
|
Matrix Metalloproteinases Expressed in Response to Bacterial Vaginosis Disrupt the Endocervical Epithelium, Increasing Transmigration of HIV. Infect Immun 2020; 88:IAI.00041-20. [PMID: 32094253 DOI: 10.1128/iai.00041-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial vaginosis (BV), a disorder of the female reproductive tract (FRT) in which a healthy Lactobacillus-dominant microflora is replaced by BV-associated bacteria (BVAB), can significantly increase the incidence of human immunodeficiency virus (HIV) acquisition. Discerning the effect of BV on the mucosal epithelium of the FRT may yield novel preventatives and therapeutics for HIV infection. Here, we investigated barrier dysfunction of the endocervix by host-derived factors, secreted in response to BV, as a potential cause of HIV infection. Using a polarized endocervical cell culture system, we determined that conditioned media (CM) from endocervical cells cocultured with BVAB (endocervical+BVAB CM), as well as cervicovaginal fluid (CVF) from women with BV, disrupted epithelial polarization. We assessed host matrix metalloproteinases (MMPs) as the BV-associated secreted factors which disrupt the endocervical epithelium. MMPs were overexpressed in endocervical+BVAB CM and CVF from women with BV and were capable of disrupting endocervical epithelial polarization. When we cocultured polarized endocervical cells with HIV-1-infected lymphocyte-derived cells, we discovered endocervical+BVAB CM and MMPs significantly increased the transmigration of virus through the epithelium, and treatment with an MMP inhibitor decreased these effects. When we examined the effect of CVF on HIV-1 transmigration through endocervical epithelium, we demonstrated that CVF samples with greater concentrations of BV-associated MMPs increased viral transmigration. Our results suggest MMPs increase HIV-1 infection by disrupting the endocervical epithelium, permitting transmigration of virus through the epithelium to infect underlying target cells.
Collapse
|
24
|
Luo F, Shu M, Gong S, Wen Y, He B, Su S, Li Z. Antiapoptotic activity of Chlamydia trachomatis Pgp3 protein involves activation of the ERK1/2 pathway mediated by upregulation of DJ-1 protein. Pathog Dis 2020; 77:5714752. [PMID: 31971555 DOI: 10.1093/femspd/ftaa003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis has evolved strategies to prevent host cell apoptosis to evade the host immune defense. However, the precise mechanisms of antiapoptotic activity of C. trachomatis still need to be clarified. Pgp3, one of eight plasmid proteins of C. trachomatis, has been identified to be closely associated with chlamydial virulence. In this study, we attempted to explore the effects and the mechanisms of Pgp3 protein on apoptosis in HeLa cells; the results showed that Pgp3 increased Bcl-2/Bax ratio and prevented caspase-3 activation to suppress apoptosis induced by TNF-α and cycloheximide (CHX) through ERK1/2 pathway activation. Downregulation of DJ-1 with siRNA-DJ-1(si-DJ-1) reduced ERK1/2 phosphorylation and elevated apoptotic rate significantly in Pgp3-HeLa cells. However, inhibition of ERK1/2 signal pathway with ERK inhibitor PD98059 had little effect on DJ-1 expression. These findings confirm that plasmid protein Pgp3 contributes to apoptosis resistance through ERK1/2 signal pathway mediated by upregulation of DJ-1 expression. Therefore, the present study provided novel insights into the role of Pgp3 in apoptosis and suggested that manipulation of the host apoptosis response could be a new approach for the prevention and treatment of C. trachomatis infection.
Collapse
Affiliation(s)
- Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Silu Gong
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Bei He
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| |
Collapse
|
25
|
Rajeeve K, Sivadasan R. Transcervical Mouse Infections with Chlamydia trachomatis and Determination of Bacterial Burden. Bio Protoc 2020; 10:e3506. [PMID: 33654733 DOI: 10.21769/bioprotoc.3506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 11/02/2022] Open
Abstract
Chlamydia trachomatis is an obligate human pathogen. It infects the genital tract of humans ascending into the fallopian tube, exacerbated by chronic pelvic pain, pelvic inflammatory disease, and fallopian tube scaring resulting in infertility and other malignancies. The major hurdle in controlling chlamydial spread is that the infection remains asymptomatic, thus leading to chronic, recurrent and persistent infections, with no vaccines developed so far. Being a human pathogen, we do not have an in vivo model of C. trachomatis infection. C. trachomatis do not cause ascending infections and fallopian tube pathology in the mouse urogenital tract when infected vaginally. To overcome this hurdle trans cervical method of infection must be adapted. In this protocol the method of establishing trans-cervical Chlamydial infection with the procedure to determine the bacterial load is detailed. This method will facilitate to deliver the bacteria past the cervix establishing an ascending infection into the uterine horns reciprocating human fallopian tube infections.
Collapse
Affiliation(s)
- Karthika Rajeeve
- Department of Biomedicine, The Skou building, Hoegh-Guldbergs Gade 10, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Rajeeve Sivadasan
- RNA Biology and Cancer German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Ma C, Du J, He W, Chen R, Li Y, Dou Y, Yuan X, Zhao L, Gong H, Liu P, Liu H. Rapid and accurate diagnosis of Chlamydia trachomatis in the urogenital tract by a dual-gene multiplex qPCR method. J Med Microbiol 2019; 68:1732-1739. [PMID: 31613208 DOI: 10.1099/jmm.0.001084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Chlamydia trachomatis (C. trachomatis, CT) is an obligatory intracellular bacterium that causes urogenital tract infections and leads to severe reproductive consequences. Therefore, a rapid and accurate detection method with high sensitivity and specificity is an urgent requirement for the routine diagnosis of C. trachomatis infections.Aim. In this study, we aimed to develop a multiplex quantitative real-time PCR (qPCR) assay based on two target regions for accurate detection of C. trachomatis in urogenital tract infections.Methodology. Primers and probes based on the conserved regions of the cryptic plasmid and 23S rRNA gene were designed. Then, two qPCR assays were established to screen for the optimal probe and primers for each of the two target regions. Subsequently, the multiplex qPCR method was developed and optimized. For the diagnostic efficiency evaluation, 1284 urogenital specimens were tested by the newly developed multiplex qPCR method, an immunological assay and a singleplex qPCR assay widely used in hospitals.Results. The multiplex qPCR method could amplify both target regions in the range of 1.0×102-1.0×108 copies ml-1 with a strong linear relationship, and lower limits of detection (LODs) for both targets reached 2 copies PCR-1. For the multiplex qPCR method, the diagnostic sensitivity and specificity was 100.0 % (134/134) and 99.3 % (1142/1150), respectively. For the singleplex qPCR assay, the diagnostic sensitivity and specificity was 88.8 % (119/134) and 100.0 % (1150/1150), respectively. For the immunological assay, the diagnostic sensitivity and specificity was 47.0 % (63/134) and 100.0 % (1150/1150), respectively.Conclusion. In this study, a multiplex qPCR assay with high sensitivity and specificity for rapid (≤2.0 h) and accurate diagnosis of C. trachomatis was developed. The qPCR assay has the potential to be used as a routine diagnostic method in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Caifeng Ma
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Jikun Du
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Weina He
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Rui Chen
- Department of Clinical Laboratory, The Second People's Hospital of Futian District, Shenzhen, PR China
| | - Yuxia Li
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Yuhong Dou
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Xiaoxue Yuan
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Lijun Zhao
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Huijiao Gong
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Ping Liu
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Helu Liu
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| |
Collapse
|
27
|
Di Pietro M, Filardo S, Romano S, Sessa R. Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019; 7:microorganisms7050140. [PMID: 31100923 PMCID: PMC6560445 DOI: 10.3390/microorganisms7050140] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Research in Chlamydia trachomatis and Chlamydia pneumoniae has gained new traction due to recent advances in molecular biology, namely the widespread use of the metagenomic analysis and the development of a stable genomic transformation system, resulting in a better understanding of Chlamydia pathogenesis. C. trachomatis, the leading cause of bacterial sexually transmitted diseases, is responsible of cervicitis and urethritis, and C. pneumoniae, a widespread respiratory pathogen, has long been associated with several chronic inflammatory diseases with great impact on public health. The present review summarizes the current evidence regarding the complex interplay between C. trachomatis and host defense factors in the genital micro-environment as well as the key findings in chronic inflammatory diseases associated to C. pneumoniae.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| |
Collapse
|
28
|
Jones AT, Shen X, Walter KL, LaBranche CC, Wyatt LS, Tomaras GD, Montefiori DC, Moss B, Barouch DH, Clements JD, Kozlowski PA, Varadarajan R, Amara RR. HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nat Commun 2019; 10:798. [PMID: 30778066 PMCID: PMC6379385 DOI: 10.1038/s41467-019-08739-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/25/2019] [Indexed: 02/08/2023] Open
Abstract
The oral mucosa is an attractive site for mucosal vaccination, however the thick squamous epithelium limits antigen uptake. Here we utilize a modified needle-free injector to deliver immunizations to the sublingual and buccal (SL/B) tissue of rhesus macaques. Needle-free SL/B vaccination with modified vaccinia Ankara (MVA) and a recombinant trimeric gp120 protein generates strong vaccine-specific IgG responses in serum as well as vaginal, rectal and salivary secretions. Vaccine-induced IgG responses show a remarkable breadth against gp70-V1V2 sequences from multiple clades of HIV-1. In contrast, topical SL/B immunizations generates minimal IgG responses. Following six intrarectal pathogenic SHIV-SF162P3 challenges, needle-free but not topical immunization results in a significant delay of acquisition of infection. Delay of infection correlates with non-neutralizing antibody effector function, Env-specific CD4+ T-cell responses, and gp120 V2 loop specific antibodies. These results demonstrate needle-free MVA/gp120 oral vaccination as a practical and effective route to induce protective immunity against HIV-1.
Collapse
Affiliation(s)
- Andrew T Jones
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, 30329, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Korey L Walter
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Linda S Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 8638, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, 30329, USA.
| |
Collapse
|
29
|
Costa APF, Gonzaga dos Santos M, Sarmento ACA, Alcântara da Silva PH, Chaves GM, Crispim JCDO, Gonçalves AK, Cobucci RNO. Meta-Analysis of The Prevalence of Genital Infections Among Hiv Carriers and Uninfected Women. Open AIDS J 2018. [DOI: 10.2174/1874613601812010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background & Aim:The risk factors in acquiring genital co-infections associated with HIV infection still present many questions. We conducted a systematic review and meta-analysis to compare the prevalence of genital infection among HIV-infected and uninfected women.Methods:We searched PubMed, Web of Science, Scopus and Scielo for the relevant studies up until October 2017. Data were collected from the included studies and methodologically assessed. Odds ratios (OR) and 95% confidence intervals (CI) were pooled using fixed or random-effects models.Results:Thirty-six articles involving 23,863 women with retroviruses were included. HIV-infected women were significantly more diagnosed with the following genital infections:Herpes simplexvirus type 2 (HSV-2) (OR 3.70; 95% CI: 2.42–5.65),Neisseria gonorrhoeae(GC) (OR 4.18; 95% CI: 2.15-8.13),Chlamydia trachomatis(CT) (OR 2.25; 95% CI: 1.20-4.23) and Human papillomavirus (HPV) (OR 3.99, 95% CI: 3.35-4.75). There was no significant difference in the prevalence of bacterial vaginosis (OR 1.09; 95% CI: 0.91-1.30),Candida sp. (OR 1.51; 95% CI: 0.71-3.25),Treponema pallidum(OR 1.56; 95% CI: 1.00-2.45) andTrichomonas vaginalis(OR 1.00; 95% CI: 0.47-2.15).Conclusion:The prevalence of HPV, HSV-2, GC and CT genital infection was significantly higher among HIV-positive women.
Collapse
|
30
|
Anton L, Sierra LJ, DeVine A, Barila G, Heiser L, Brown AG, Elovitz MA. Common Cervicovaginal Microbial Supernatants Alter Cervical Epithelial Function: Mechanisms by Which Lactobacillus crispatus Contributes to Cervical Health. Front Microbiol 2018; 9:2181. [PMID: 30349508 PMCID: PMC6186799 DOI: 10.3389/fmicb.2018.02181] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
Cervicovaginal (CV) microbiota is associated with vaginal health and disease in non-pregnant women. Recent studies in pregnant women suggest that specific CV microbes are associated with preterm birth (PTB). While the associations between CV microbiota and adverse outcomes have been demonstrated, the mechanisms regulating the associations remain unclear. As the CV space contains an epithelial barrier, we postulate that CV microbiota can alter the epithelial barrier function. We investigated the biological, molecular, and epigenetic effects of Lactobacillus crispatus, Lactobacillus iners, and Gardnerella vaginalis on the cervical epithelial barrier function and determined whether L. crispatus mitigates the effects of lipopolysaccharide (LPS) and G. vaginalis on the cervical epithelial barrier as a possible mechanism by which CV microbiota mitigates disease risk. Ectocervical and endocervical cells treated with L. crispatus, L. iners, and G. vaginalis bacteria-free supernatants alone or combined were used to measure cell permeability, adherens junction proteins, inflammatory mediators, and miRNAs. Ectocervical and endocervical permeability increased after L. iners and G. vaginalis exposure. Soluble epithelial cadherin increased after exposure to L. iners but not G. vaginalis or L. crispatus. A Luminex cytokine/chemokine panel revealed increased proinflammatory mediators in all three bacteria-free supernatants with L. iners and G. vaginalis having more diverse inflammatory effects. L. iners and G. vaginalis altered the expression of cervical-, microbial-, and inflammatory-associated miRNAs. L. crispatus mitigated the LPS or G. vaginalis-induced disruption of the cervical epithelial barrier and reversed the G. vaginalis-mediated increase in miRNA expression. G. vaginalis colonization of the CV space of a pregnant C57/B6 mouse resulted in 100% PTB. These findings demonstrate that L. iners and G. vaginalis alter the cervical epithelial barrier by regulating adherens junction proteins, cervical immune responses, and miRNA expressions. These results provide evidence that L. crispatus confers protection to the cervical epithelial barrier by mitigating LPS- or G. vaginalis-induced miRNAs associated with cervical remodeling, inflammation, and PTB. This study provides further evidence that the CV microbiota plays a role in cervical function by altering the cervical epithelial barrier and initiating PTB. Thus, targeting the CV microbiota and/or its effects on the cervical epithelium may be a potential therapeutic strategy to prevent PTB.
Collapse
Affiliation(s)
- Lauren Anton
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Oliver VO, Otieno G, Gvetadze R, Desai MA, Makanga M, Akelo V, Gust DA, Nyagol B, McLellan-Lemal E. High prevalence of sexually transmitted infections among women screened for a contraceptive intravaginal ring study, Kisumu, Kenya, 2014. Int J STD AIDS 2018; 29:1390-1399. [PMID: 30071799 DOI: 10.1177/0956462418782810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We assessed prevalence and correlates of bacterial vaginosis (BV) and sexually transmitted infections (STIs) including herpes simplex virus type 2 (HSV-2), gonorrhoea (GC), syphilis (SYP), Chlamydia (CT) and HIV among Kenyan women aged 18–34 years who were screened for a contraceptive intravaginal ring study. Women provided demographic, behavioural and medical information, and underwent medical evaluation, including a pelvic exam. We computed crude and adjusted prevalence ratio (aPR) and 95% confidence interval (CI) using log-binomial regression. Of 463 women screened, 457 provided laboratory specimens and were included in the analysis. The median age was 25 years, interquartile range (21–28), and 68.5% had completed primary or lower education. Overall, 72.2% tested positive for any STI or BV. Point prevalence was 55.6, 38.5, 3.9, 2.0, 4.6, and 14.7% for HSV-2, BV, GC, SYP, CT, and HIV, respectively. Co-infection with HSV-2, BV, and HIV occurred in 28 (6.1%) participants. Having ≥1 STI/BV was associated with younger age at first sex (≤13 versus 17–19 years, aPR=1.27, 95% CI 1.07–1.51), history of exchange sex (aPR = 2.05, 95% CI 1.07–3.92), sexual intercourse in the past seven days (aPR = 1.17, 95% CI 1.01–1.36), and older age (30–34 versus 18–24 years, aPR = 1.26, 95% CI 1.06–1.48). STI/BV diagnosis was less likely for women reporting one lifetime sexual partner compared to women with ≥4 lifetime sexual partners (aPR = 0.70, 95% CI 0.54–0.92). Combination prevention approaches (biomedical, behavioural, social, and structural) tailored to women with diverse risk profiles may help mitigate STI/BV prevalence in this setting.
Collapse
Affiliation(s)
- Vincent O Oliver
- HIV Research Branch, Kenya Medical Research Institute, Kisumu, Kenya
| | - George Otieno
- HIV Research Branch, Kenya Medical Research Institute, Kisumu, Kenya
| | - Roman Gvetadze
- US Centers for Disease Control and Prevention, Office of Infectious Diseases, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of HIV/AIDS Prevention, Atlanta, GA, USA
| | - Mitesh A Desai
- US Centers for Disease Control and Prevention, Office of Infectious Diseases, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of HIV/AIDS Prevention, Atlanta, GA, USA
| | - Mumbi Makanga
- HIV Research Branch, Kenya Medical Research Institute, Kisumu, Kenya
| | - Victor Akelo
- HIV Research Branch, Kenya Medical Research Institute, Kisumu, Kenya
| | - Deborah A Gust
- US Centers for Disease Control and Prevention, Office of Infectious Diseases, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of HIV/AIDS Prevention, Atlanta, GA, USA
| | - Beatrice Nyagol
- HIV Research Branch, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eleanor McLellan-Lemal
- US Centers for Disease Control and Prevention, Office of Infectious Diseases, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of HIV/AIDS Prevention, Atlanta, GA, USA
| |
Collapse
|
32
|
Behzadi MA, Davarpanah MA, Namayandeh M, Pourabbas B, Allahyari S, Ziyaeyan M. Molecular diagnosis of genital tract infections among HIV-positive women in Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:233-241. [PMID: 30483375 PMCID: PMC6243152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Human immunodeficiency virus (HIV)-infected women are usually at a higher risk of sexually transmitted infections (STIs) than others. The objective of this study was to characterize the prevalence of human papilloma virus (HPV), herpes simplex virus (HSV), Chlamydia trachomatis (CT), and Neisseria gonorrhoeae (NG), and associated risk factors among HIV-infected women in Fars province, Iran. MATERIALS AND METHODS In this cross-sectional study, cervical swab samples were collected from 71 HIV-infected women, aged 17-45 years (mean ± standard deviation: 31.11 ± 6.58 years), and tested for HPV, HSV, CT, and NG using PCR assays. RESULTS Overall, 77.5% of patients were positive for the tested STIs with the following distribution: 36 (50.7%) HPV, 7 (9.9%) HSV, 4 (5.6%) NG, and 27 (38%) CT. From those, 39 (55%) were positive for only one infection, while 16 (22.5%) were positive for multiple infections. We observed that the prevalence of all tested STIs increased by age, except for HSV which showed a slight decrease, although not statistically significant. Socio-economic factors such as low educational level, multiple sex partners, and being a sex worker significantly correlated with higher positive prevalence of STIs in the studied population. CONCLUSION A high prevalence of STIs was observed among HIV-infected women in this region. These data might prompt policy makers and STI experts to focus on providing a comprehensive sex education, including participation in screening programs for STIs among high-risk groups.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mandana Namayandeh
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Pourabbas
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheyla Allahyari
- HIV Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazyar Ziyaeyan
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Corresponding author: Mazyar Ziyaeyan, Ph.D, Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Tel: +98-71-36474304, Fax: +98-71-36474303,
| |
Collapse
|
33
|
Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines 2017; 17:57-69. [PMID: 29264970 DOI: 10.1080/14760584.2018.1417044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The "cloaked" bacterial pathogen that is Chlamydia trachomatis continues to cause sexually transmitted infections (STIs) that adversely affect the health and well-being of children, adolescents and adults globally. The reproductive disease sequelae follow unresolved or untreated chronic or recurrent asymptomatic C.trachomatis infections of the lower female genital tract (FGT) and can include pelvic pain, pelvic inflammatory disease (PID) and ectopic pregnancy. Tubal Factor Infertility (TFI) can also occur since protective and long-term natural immunity to chlamydial infection is incomplete, allowing for ascension of the organism to the upper FGT. Developing countries including the WHO African (8.3 million cases) and South-East Asian regions (7.2 million cases) bear the highest burden of chlamydial STIs. AREAS COVERED Genetic advances for Chlamydia have provided tools for transformation (including dendrimer-enabled transformation), lateral gene transfer and chemical mutagenesis. Recent progress in these areas is reviewed with a focus on vaccine development for Chlamydia infections of the female genital tract. EXPERT COMMENTARY A vaccine that can elicit immuno-protective responses whilst avoiding adverse immuno-pathologic host responses is required. The current technological advances in chlamydial genetics and proteomics, as well as novel and improved adjuvants and delivery systems, provide new hope that the elusive chlamydial vaccine is an imminent and realistic goal.
Collapse
Affiliation(s)
- Louise M Hafner
- a School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Peter Timms
- b Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|
34
|
Filardo S, Di Pietro M, Porpora MG, Recine N, Farcomeni A, Latino MA, Sessa R. Diversity of Cervical Microbiota in Asymptomatic Chlamydia trachomatis Genital Infection: A Pilot Study. Front Cell Infect Microbiol 2017; 7:321. [PMID: 28770172 PMCID: PMC5509768 DOI: 10.3389/fcimb.2017.00321] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis genital infection continues to be an important public health problem worldwide due to its increasing incidence. C. trachomatis infection can lead to severe sequelae, such as pelvic inflammatory disease, obstructive infertility, and preterm birth. Recently, it has been suggested that the cervico-vaginal microbiota may be an important defense factor toward C. trachomatis infection as well as the development of chronic sequelae. Therefore, the investigation of microbial profiles associated to chlamydial infection is of the utmost importance. Here we present a pilot study aiming to characterize, through the metagenomic analysis of sequenced 16s rRNA gene amplicons, the cervical microbiota from reproductive age women positive to C. trachomatis infection. The main finding of our study showed a marked increase in bacterial diversity in asymptomatic C. trachomatis positive women as compared to healthy controls in terms of Shannon's diversity and Shannon's evenness (P = 0.031 and P = 0.026, respectively). More importantly, the cervical microbiota from C. trachomatis positive women and from healthy controls significantly separated into two clusters in the weighted UniFrac analysis (P = 0.0027), suggesting that differences between the two groups depended entirely on the relative abundance of bacterial taxa rather than on the types of bacterial taxa present. Furthermore, C. trachomatis positive women showed an overall decrease in Lactobacillus spp. and an increase in anaerobes. These findings are part of an ongoing larger epidemiological study that will evaluate the potential role of distinct bacterial communities of the cervical microbiota in C. trachomatis infection.
Collapse
Affiliation(s)
- Simone Filardo
- Section of Microbiology, Department of Public Health and Infectious Diseases, University of Rome "Sapienza"Rome, Italy
| | - Marisa Di Pietro
- Section of Microbiology, Department of Public Health and Infectious Diseases, University of Rome "Sapienza"Rome, Italy
| | - Maria G Porpora
- Department of Gynecology, Obstetrics and Urology, University of Rome "Sapienza"Rome, Italy
| | - Nadia Recine
- Department of Gynecology, Obstetrics and Urology, University of Rome "Sapienza"Rome, Italy
| | - Alessio Farcomeni
- Section of Statistics, Department of Public Health and Infectious Diseases, University of Rome "Sapienza"Rome, Italy
| | - Maria A Latino
- Unit of Bacteriology, STIs Diagnostic Centre, Sant'Anna HospitalTurin, Italy
| | - Rosa Sessa
- Section of Microbiology, Department of Public Health and Infectious Diseases, University of Rome "Sapienza"Rome, Italy
| |
Collapse
|
35
|
Poston TB, Gottlieb SL, Darville T. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection. Vaccine 2017; 37:7289-7294. [PMID: 28111145 DOI: 10.1016/j.vaccine.2017.01.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Genital infection with Chlamydia trachomatis, a gram-negative obligate intracellular bacterium, is the most common bacterial sexually transmitted infection globally. Ascension of chlamydial infection to the female upper genital tract can cause acute pelvic inflammatory disease, tubal factor infertility, ectopic pregnancy, and chronic pelvic pain. Shortcomings of current chlamydia control strategies, especially for low- and middle-income countries, highlight the need for an effective vaccine. Evidence from animal models, human epidemiological studies, and early trachoma vaccine trials suggest that a C. trachomatis vaccine is feasible. Vaccine development for genital chlamydial infection has been in the preclinical phase of testing for many years, but the first Phase I trials of chlamydial vaccine candidates are underway, and scientific advances hold promise for additional candidates to enter clinical evaluation in the coming years. We describe the clinical and public health need for a C. trachomatis vaccine, provide an overview of Chlamydia vaccine development efforts, and summarize current vaccine candidates in the development pipeline.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Abstract
Etiology, transmission and protection: Chlamydia
trachomatis is the leading cause of bacterial sexually transmitted
infection (STI) globally. However, C. trachomatis also causes
trachoma in endemic areas, mostly Africa and the Middle East, and is a leading
cause of preventable blindness worldwide. Epidemiology, incidence and
prevalence: The World Health Organization estimates 131 million
new cases of C. trachomatis genital infection occur annually.
Globally, infection is most prevalent in young women and men (14-25 years),
likely driven by asymptomatic infection, inadequate partner treatment and
delayed development of protective immunity.
Pathology/Symptomatology: C.
trachomatis infects susceptible squamocolumnar or transitional
epithelial cells, leading to cervicitis in women and urethritis in men. Symptoms
are often mild or absent but ascending infection in some women may lead to
Pelvic Inflammatory Disease (PID), resulting in reproductive sequelae such as
ectopic pregnancy, infertility and chronic pelvic pain. Complications of
infection in men include epididymitis and reactive arthritis.
Molecular mechanisms of infection: Chlamydiae
manipulate an array of host processes to support their obligate intracellular
developmental cycle. This leads to activation of signaling pathways resulting in
disproportionate influx of innate cells and the release of tissue damaging
proteins and pro-inflammatory cytokines. Treatment and
curability: Uncomplicated urogenital infection is treated with
azithromycin (1 g, single dose) or doxycycline (100 mg twice daily x 7 days).
However, antimicrobial treatment does not ameliorate established disease. Drug
resistance is rare but treatment failures have been described. Development of an
effective vaccine that protects against upper tract disease or that limits
transmission remains an important goal.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Morgan E Ferone
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Esra RT, Olivier AJ, Passmore JAS, Jaspan HB, Harryparsad R, Gray CM. Does HIV Exploit the Inflammatory Milieu of the Male Genital Tract for Successful Infection? Front Immunol 2016; 7:245. [PMID: 27446076 PMCID: PMC4919362 DOI: 10.3389/fimmu.2016.00245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
In many parts of the World, medical male circumcision (MMC) is used as standard prevention of care against HIV infection. This is based on seminal reports made over 10 years ago that removal of the foreskin provides up to 60% protection against HIV infection in males and seems currently the best antiretroviral-free prevention strategy yet against the global epidemic. We explore the potential mechanisms by which MMC protects against HIV-1 acquisition and that one of the oldest, albeit re-invented, rituals of removing a foreskin underscores the exploitative nature of HIV on the anatomy and tissue of the uncircumcised penis. Furthermore, foreskin removal also reveals how males acquire HIV, and in reality, the underlying mechanisms of MMC are not known. We argue that the normal sequelae of inflammation in the male genital tract (MGT) for protection from sexually transmitted infections (STI)-induced pathology represents a perfect immune and microbial ecosystem for HIV acquisition. The accumulation of HIV-1 target cells in foreskin tissue and within the urethra in response to STIs, both during and after resolution of infection, suggests that acquisition of HIV-1, through sexual contact, makes use of the natural immune milieu of the MGT. Understanding immunity in the MGT, the movement of HIV-1 target cells to the urethra and foreskin tissue upon encounter with microbial signals would provide more insight into viral acquisition and lay the foundation for further prevention strategies in males that would be critical to curb the epidemic in all sexual partners at risk of infection. The global female-centric focus of HIV-1 transmission and acquisition research has tended to leave gaps in our knowledge of what determines HIV-1 acquisition in men and such understanding would provide a more balanced and complete view of viral acquisition.
Collapse
Affiliation(s)
- Rachel T. Esra
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Abraham J. Olivier
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jo-Ann S. Passmore
- Department of Pathology, Division of Virology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| | - Heather B. Jaspan
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rushil Harryparsad
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clive M. Gray
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| |
Collapse
|