1
|
Janthong A, Utama K, Khamto N, Chawapun P, Siriphong S, Van Doan H, Meerak J, Meepowpan P, Sangthong P. Semi-synthetic flavonoid derivatives from Boesenbergiarotunda induce extrinsic apoptosis pathway via Caspase-3 and Caspase-8 in HCT116 Colon Cancer cell lines. Bioorg Chem 2025; 159:108343. [PMID: 40096806 DOI: 10.1016/j.bioorg.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Colorectal cancer ranks as the second most common cancer and the leading cause of cancer-related deaths globally. Phytochemicals like flavonoids from Boesenbergia rotunda showed potential anti-cancer activities. Chemical structures of the parental compounds of flavonoids were modified by conjugating with an acryloyl group to form semi-synthetic flavonoid derivatives to increasing in anti-colon cancer activities. 7-Acryloyloxypinocembrin (5) showed potential antiproliferative activities of IC50 value of 1.87 ± 0.17 μM in HCT116. In addition, compound 5 showed low cytotoxicity in Vero cells with an IC50 value of 2.84 ± 0.13 μM which is two-fold less cytotoxic than osimertinib. Biological mechanisms studies indicated that compound 5, HCT116 cells demonstrated a two-fold increase in apoptotic cell death. Subsequently, compound 5 upregulated caspase-8 and LC3, triggering the upregulation of caspase-3 and leading to the activation of both the extrinsic apoptosis pathway and the autophagy pathway. Network pharmacology analysis highlighted TNF-α receptor is a key gene associated with the extrinsic apoptosis pathway in HCT116 cells treated with compound 5. Molecular dynamics simulation confirmed the strong interaction between compound 5 and TACE, a crucial element in the EGFR and IL-6 signaling pathway's reduction which may lead to a decline in the survival rate of colon cancer. These findings indicate compound 5 as a promising anti-colon cancer drug candidate.
Collapse
Affiliation(s)
- Atchara Janthong
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kraikrit Utama
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornthip Chawapun
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sandanon Siriphong
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jomkhwan Meerak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Biochemistry and Biochemical innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Wang C, Dong T, Rong X, Yang Y, Mou J, Li J, Ge J, Mu X, Jiang J. Microbiome in prostate cancer: pathogenic mechanisms, multi-omics diagnostics, and synergistic therapies. J Cancer Res Clin Oncol 2025; 151:178. [PMID: 40450182 DOI: 10.1007/s00432-025-06187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/31/2025] [Indexed: 06/03/2025]
Abstract
BACKGROUND Prostate cancer (PCa) is a leading cause of cancer-related deaths in men, with the microbiome emerging as a significant factor in its development and progression. Understanding the microbiome's role could provide new insights into PCa pathogenesis and treatment. OBJECTIVE This review aims to explore the interactions between the microbiome and PCa, focusing on microbial imbalances and their effects on immune responses, inflammation, and hormone levels. It also discusses advanced research techniques and the potential for microbiome modulation in PCa management. METHODS The review synthesizes current literature on the microbiome's role in PCa, highlighting differences in microbial composition between cancerous and healthy prostate tissues. It examines techniques such as high-throughput sequencing and metagenomics and explores the mechanisms through which the microbiome influences PCa. CONCLUSIONS The review reveals substantial microbial differences in prostate tissues of PCa patients compared to healthy individuals, indicating a potential link between microbiome alterations and disease progression. It highlights the promise of microbiome-based strategies for diagnosis and treatment and underscores the need for further research into personalized, microbiome-centric approaches for PCa management.
Collapse
Affiliation(s)
- Chengran Wang
- Department of' Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, , 130033, Jilin Province, China
| | - Tianqi Dong
- Department of' Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, , 130033, Jilin Province, China
| | - Xin'ao Rong
- Department of' Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, , 130033, Jilin Province, China
| | - Yuce Yang
- Department of' Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, , 130033, Jilin Province, China
| | - Jianhui Mou
- Department of' Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, , 130033, Jilin Province, China
| | - Jiaqi Li
- Department of' Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, , 130033, Jilin Province, China
| | - Jianli Ge
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Xupeng Mu
- Department of' Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, , 130033, Jilin Province, China.
| | - Jinlan Jiang
- Department of' Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, , 130033, Jilin Province, China.
| |
Collapse
|
3
|
Yang SF, Chen XC, Pan YJ. Microbiota-derived metabolites in tumorigenesis: mechanistic insights and therapeutic implications. Front Pharmacol 2025; 16:1598009. [PMID: 40444051 PMCID: PMC12119621 DOI: 10.3389/fphar.2025.1598009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 05/06/2025] [Indexed: 06/02/2025] Open
Abstract
Intestinal microbiota is a complex ecosystem of microorganisms that perform diverse metabolic activities to maintain gastrointestinal homeostasis. These microorganisms provide energy and nutrients for growth and reproduction while producing numerous metabolites including lipopolysaccharides (LPS), Bacteroides fragilis toxin (BFT), bile acids (BAs), polyamines (PAs), and short-chain fatty acids (SCFAs). These metabolites are linked to inflammation and various metabolic diseases, such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, cardiometabolic disease, and malnutrition. In addition, they may contribute to tumorigenesis. Evidence suggests that these microbes can increase the susceptibility to certain cancers and affect treatment responses. In this review, we discuss the current knowledge on how the gut microbiome and its metabolites influence tumorigenesis, highlighting the potential molecular mechanisms and prospects for basic and translational research in this emerging field.
Collapse
Affiliation(s)
| | | | - Yao-Jie Pan
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Konishi H, Saito T, Takahashi S, Tanaka H, Okuda K, Akutsu H, Dokoshi T, Sakatani A, Takahashi K, Ando K, Kashima S, Ueno N, Moriichi K, Ogawa N, Fujiya M. The butyrate derived from probiotic Clostridium butyricum exhibits an inhibitory effect on multiple myeloma through cell death induction. Sci Rep 2025; 15:11919. [PMID: 40195469 PMCID: PMC11976985 DOI: 10.1038/s41598-025-97038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by a poor prognosis. While certain probiotics have been shown to produce antitumor molecules that inhibit solid tumor progression, it remains unclear whether probiotic-derived compounds can exert similar effects on hematological tumors, such as MM. In this study, we screened the cell-free culture supernatants (CFCS) of 24 probiotic strains for antitumor effects against multiple myeloma (MM) cells and identified that the CFCS from Clostridium butyricum (C. butyricum) demonstrated the most significant reduction in MM cell viability. Further fractionation of this CFCS through reverse-phase and gel filtration chromatography revealed a high enrichment of butyrate in the antitumor fraction, as confirmed by gas chromatography-mass spectrometry. Butyrate reduced MM cell viability in a concentration-dependent manner. Butyrate was significantly more cytotoxic to RPMI-8226 cells than peripheral blood mononuclear cells (PBMCs) isolated from two non-cancerous individuals. In the xenograft model of RPMI-8226 cells, butyrate showed significant inhibition of tumor formation. Cell cycle analysis showed that butyrate induced G1 phase arrest and increased sub-G1 phase, suggesting DNA fragmentation. Western blot analysis demonstrated that butyrate treatment led to cleaved poly ADP-ribose polymerase (PARP) accumulation. Additionally, flow cytometry showed an increase in annexin V positive MM cells, indicating apoptosis. Butyrate also exhibited synergistic antitumor activity when combined with bortezomib, a proteasome inhibitor. These findings suggest that probiotic-derived molecules, including butyrate, may enhance the therapeutic effect of hematological malignancy, such as MM.
Collapse
Affiliation(s)
- Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Takeshi Saito
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shuichiro Takahashi
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, 2-1 -1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Katsuhiro Okuda
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroaki Akutsu
- Central Laboratory for Research and Education, Research Technology Support Center, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tatsuya Dokoshi
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Aki Sakatani
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Keitaro Takahashi
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Katsuyoshi Ando
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shin Kashima
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Nobuhiro Ueno
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kentaro Moriichi
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Naoki Ogawa
- Central Laboratory for Research and Education, Research Technology Support Center, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mikihiro Fujiya
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
5
|
Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 2025; 21:260-282. [PMID: 39291740 PMCID: PMC11759520 DOI: 10.1080/15548627.2024.2403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs. Probiotics are live bacteria that protect the host through various mechanisms. One of the processes through which probiotics exert their beneficial effects on various cells and tissues is autophagy. Autophagy can assist in maintaining host homeostasis by stimulating the immune system and affecting numerous physiological and pathological responses. In this review, we particularly focus on autophagy impairments occurring in several human illnesses and investigate how probiotics affect the autophagy process under various circumstances.Abbreviation: AD: Alzheimer disease; AKT: AKT serine/threonine kinase; AMPK: 5'AMP-activated protein kinase; ATG: autophagy related; CCl4: carbon tetrachloride; CFS: cell-free supernatant; CMA: chaperone-mediated autophagy; CRC: colorectal cancer; EPS: L. plantarum H31 exopolysaccharide; HD: Huntington disease; HFD: high-fat diet; HPV: human papillomavirus; IFNG/IFN-γ: interferon gamma; IL6: interleukin 6; LGG: L. rhamnosus GG; LPS: lipopolysaccharide; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PD: Parkinson disease; Pg3G: pelargonidin-3-O-glucoside; PI3K: phosphoinositide 3-kinase; PolyQ: polyglutamine; ROS: reactive oxygen species; SCFAs: short-chain fatty acids; SLAB51: a novel formulation of lactic acid bacteria and bifidobacteria; Slp: surface layer protein (of acidophilus NCFM); SNCA: synuclein alpha; ULK1: unc-51 like autophagy-activating kinase 1; YB: B. longum subsp. infantis YB0411; YFP: yeast fermentate prebiotic.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Mederle AL, Semenescu A, Drăghici GA, Dehelean CA, Vlăduț NV, Nica DV. Sodium Butyrate: A Multifaceted Modulator in Colorectal Cancer Therapy. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:136. [PMID: 39859117 PMCID: PMC11766496 DOI: 10.3390/medicina61010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Background and Objectives: Sodium butyrate (NaB) is a potent modulator of cancer-related gene networks. However, its precise mechanisms of action and effects at elevated doses remain insufficiently explored. This study investigated the impact of NaB at physiologically relevant doses on key cellular metrics (viability, confluence, cell number, morphology, nuclear integrity) and a comprehensive set of apoptosis and proliferation regulators (including underexplored genes) in colorectal cancer (CRC) cells. Materials and Methods: Human HCT-116 cells were treated with increasing NaB concentrations (0-20 mM). Cell viability, confluence, number, morphology, and nuclear integrity were assessed using MTT and imaging assays. RT-PCR was used to determine changes in the expression of critical pro-apoptotic players (BAX, CASP3, PUMA, TP53), anti-apoptotic facilitators (BCL-2, MCL-1), cell division regulators (PCNA, Ki-67, CDKN1), and inflammation genes (NF-κB). Results: This study provides the first exploration of MCL-1 and PCNA modulation by NaB in the context of CRC and HCT-116 cells, offering significant translational insights. All treatments reduced cell viability, confluence, and number in a dose-dependent manner (p < 0.0001). Gene expression revealed dose-related increases in most pro-apoptotic markers (BAX, CASP3, PUMA; p < 0.001), and decreases for the other genes (p < 0.001). BAX emerged as the most responsive gene to NaB, while TP53 showed minimal sensitivity, supporting NaB's effectiveness in p53-compromised phenotypes. Nuclear condensation and fragmentation at higher NaB doses confirmed apoptotic induction. Conclusions: NaB can modulate critical apoptotic and cell cycle genes, disrupt tumor cell proliferation, and overcome resistance mechanisms associated with anti-apoptotic regulators such as MCL-1. By targeting both short-term and long-term anti-apoptotic defenses, NaB shows promise as a preventive and therapeutic agent in CRC, particularly in high-risk phenotypes with compromised p53 functionality. These findings support its potential for integration into combination therapies or dietary interventions aimed at enhancing colonic butyrate levels.
Collapse
Affiliation(s)
- Alexandra Laura Mederle
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy Timişoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| | - Alexandra Semenescu
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (A.S.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy,“Victor Babeş” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| | - George Andrei Drăghici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (A.S.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy,“Victor Babeş” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (A.S.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy,“Victor Babeş” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| | - Nicolae-Valentin Vlăduț
- The National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry (INMA), Bulevardul Ion Ionescu de la Brad 6, 077190 București, Romania;
| | - Dragoş Vasile Nica
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy,“Victor Babeş” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
- The National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry (INMA), Bulevardul Ion Ionescu de la Brad 6, 077190 București, Romania;
| |
Collapse
|
7
|
Rajendran D, Oon CE. Navigating therapeutic prospects by modulating autophagy in colorectal cancer. Life Sci 2024; 358:123121. [PMID: 39389340 DOI: 10.1016/j.lfs.2024.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Colorectal cancer (CRC) remains a leading cause of death globally despite the improvements in cancer treatment. Autophagy is an evolutionarily conserved lysosomal-dependent degradation pathway that is critical in maintaining cellular homeostasis. However, in cancer, autophagy may have conflicting functions in preventing early tumour formation versus the maintenance of advanced-stage tumours. Defective autophagy has a broad and dynamic effect not just on cancer cells, but also on the tumour microenvironment which influences tumour progression and response to treatment. To add to the layer of complexity, somatic mutations in CRC including tumour protein p53 (TP53), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), Kirsten rat sarcoma viral oncogene homolog (KRAS), and phosphatase and tensin homolog (PTEN) can render chemoresistance by promoting a pro-survival advantage through autophagy. Recent studies have also reported autophagy-related cell deaths that are distinct from classical autophagy by employing parts of the autophagic machinery, which impacts strategies for autophagy regulation in cancer therapy. This review discusses the molecular processes of autophagy in the evolution of CRC and its role in the tumour microenvironment, as well as prospective therapeutic methods based on autophagy suppression or promotion. It also highlights clinical trials using autophagy modulators for treating CRC, underscoring the importance of autophagy regulation in CRC therapy.
Collapse
Affiliation(s)
- Deepa Rajendran
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
8
|
Liu G, Tang J, Zhou J, Dong M. Short-chain fatty acids play a positive role in colorectal cancer. Discov Oncol 2024; 15:425. [PMID: 39256239 PMCID: PMC11387572 DOI: 10.1007/s12672-024-01313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are produced by bacterial fermentation in the colon and are thought to be protective against gastrointestinal disease. SCFAs such as acetate, propionate and butyrate are important metabolites in the maintenance of intestinal homeostasis and have been shown to be beneficial in colorectal cancer (CRC). SCFAs are responsible for maintaining a normal intestinal barrier and exhibit numerous immunomodulatory functions. In this review article, we will discuss the metabolism and mechanism of action of SCFAs and their effects on the CRC, with particular emphasis on dietary fiber treatment and the clinical research progress.
Collapse
Affiliation(s)
- Gang Liu
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China.
| | - Ming Dong
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China
| |
Collapse
|
9
|
Jiang M, Wang J, Li Z, Xu D, Jing J, Li F, Ding J, Li Q. Dietary Fiber-Derived Microbial Butyrate Suppresses ILC2-Dependent Airway Inflammation in COPD. Mediators Inflamm 2024; 2024:6263447. [PMID: 39015676 PMCID: PMC11251798 DOI: 10.1155/2024/6263447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 07/18/2024] Open
Abstract
Group 2 innate lymphoid cells (ILC2) strongly modulate COPD pathogenesis. However, the significance of microbiota in ILC2s remains unelucidated. Herein, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) in regulating ILC2-associated airway inflammation and explores its associated mechanism in COPD. In particular, we assessed the SCFA-mediated regulation of survival, proliferation, and cytokine production in lung sorted ILC2s. To elucidate butyrate action in ILC2-driven inflammatory response in COPD models, we administered butyrate to BALB/c mice via drinking water. We revealed that SCFAs, especially butyrate, derived from dietary fiber fermentation by gut microbiota inhibited pulmonary ILC2 functions and suppressed both IL-13 and IL-5 synthesis by murine ILC2s. Using in vivo and in vitro experimentation, we validated that butyrate significantly ameliorated ILC2-induced inflammation. We further demonstrated that butyrate suppressed ILC2 proliferation and GATA3 expression. Additionally, butyrate potentially utilized histone deacetylase (HDAC) inhibition to enhance NFIL3 promoter acetylation, thereby augmenting its expression, which eventually inhibited cytokine production in ILC2s. Taken together, the aforementioned evidences demonstrated a previously unrecognized role of microbial-derived SCFAs on pulmonary ILC2s in COPD. Moreover, our evidences suggest that metabolomics and gut microbiota modulation may prevent lung inflammation of COPD.
Collapse
Affiliation(s)
- Min Jiang
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jing Wang
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Zheng Li
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Dan Xu
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jing Jing
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Fengsen Li
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jianbing Ding
- Department of ImmunologyCollege of Basic MedicineXinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Qifeng Li
- Xinjiang Institute of PediatricsXinjiang Hospital of Beijing Children's HospitalChildren's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| |
Collapse
|
10
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
11
|
Zhao L, Cheng L, Hu Y, Li X, Yang Y, Mu J, Shen L, Hu G, He K, Yan H, Liu Q, Yang S. Dietary sodium acetate and sodium butyrate attenuate intestinal damage and improve lipid metabolism in juvenile largemouth bass ( Micropterus salmoides) fed a high carbohydrate diet by reducing endoplasmic reticulum stress. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:443-456. [PMID: 38425445 PMCID: PMC10901750 DOI: 10.1016/j.aninu.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024]
Abstract
High-carbohydrate (HC) diets decrease the intestinal levels of sodium acetate (SA) and sodium butyrate (SB) and impair the gut health of largemouth bass; however, SA and SB have been shown to enhance immunity and improve intestinal health in farmed animals. Thus, the present study was to investigate the effects of dietary SA and SB on HC diet-induced intestinal injury and the potential mechanisms in juvenile largemouth bass. The experiment set five isonitrogenous and isolipidic diets, including a low-carbohydrate diet (9% starch) (LC), a high carbohydrate diet (18% starch) (HC), and the HC diet supplemented with 2 g/kg SA (HCSA), 2 g/kg SB (HCSB) or a combination of 1 g/kg SA and 1 g/kg SB (HCSASB). The feeding experiment was conducted for 8 weeks. A total of 525 juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were used. The results showed that dietary SA and SB improved the weight gain rate and specific growth rate (P < 0.05) and ameliorated serum parameters (alkaline phosphatase, acid phosphatase, glutamate transaminase, and glutamic oxaloacetic transaminase) (P < 0.05). And, importantly, dietary SA and SB repaired the intestinal barrier by increasing the expression levels of zonula occludens-1, occludin, and claudin-7 (P < 0.05), reduced HC-induced intestinal damage, and alleviated intestinal inflammation and cell apoptosis by attenuating HC-induced intestinal endoplasmic reticulum stress (P < 0.05). Further results revealed that dietary SA and SB reduced HC-induced intestinal fat deposition by inhibiting adipogenesis and promoting lipolysis (P < 0.05). In summary, this study demonstrated that dietary SA and SB attenuated HC-induced intestinal damage and reduced excessive intestinal fat deposition in largemouth bass.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yihui Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jin Mu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lianfeng Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guojun Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
12
|
Kim N, Yang C. Sodium Butyrate Inhibits the Expression of Thymidylate Synthase and Induces Cell Death in Colorectal Cancer Cells. Int J Mol Sci 2024; 25:1572. [PMID: 38338851 PMCID: PMC10855029 DOI: 10.3390/ijms25031572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The most commonly used chemotherapy for colorectal cancer (CRC) is the application of 5-fluorouracil (5-FU). Inhibition of thymidylate synthase (TYMS) expression appears to be a promising strategy to overcome the decreased sensitivity to 5-FU caused by high expression of TYMS, which can be induced by 5-FU treatment. Several compounds have been shown to potentially inhibit the expression of TYMS, but it is unclear whether short-chain fatty acids (SCFAs), which are naturally produced by bacteria in the human intestine, can regulate the expression of TYMS. Sodium butyrate (NaB) is the most widely known SCFA for its beneficial effects. Therefore, we investigated the enhancing effects on inhibition of cell viability and induction of apoptosis after co-treatment of NaB with 5-FU in two CRC cell lines, HCT116 and LoVo. This study suggests that the effect of NaB in improving therapeutic sensitivity to 5-FU in CRC cells may result from a mechanism that strongly inhibits the expression of TYMS. This study also shows that NaB inhibits the migration of CRC cells and can cause cell cycle arrest in the G2/M phase. These results suggest that NaB could be developed as a potential therapeutic adjuvant to improve the therapeutic effect of 5-FU in CRC.
Collapse
Affiliation(s)
| | - Changwon Yang
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea;
| |
Collapse
|
13
|
Guseva EA, Pavlova JA, Dontsova OA, Sergiev PV. Synthetic Activators of Autophagy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:27-52. [PMID: 38467544 DOI: 10.1134/s0006297924010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 03/13/2024]
Abstract
Autophagy is a central process for degradation of intracellular components that do not operate correctly. Molecular mechanisms underlying this process are extremely difficult to study, since they involve a large number of participants. The main task of autophagy is redistribution of cellular resources in response to environmental changes, such as starvation. Recent studies show that autophagy regulation could be the key to achieve healthy longevity, as well as to create therapeutic agents for treatment of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Thus, development of autophagy activators with established detailed mechanism of action is a really important area of research. Several commercial companies are at various stages of development of such molecules, and some of them have already begun to introduce autophagy activators to the market.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Julia A Pavlova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
14
|
Hoveizi E, Rafienia B, Shahriari A. A free fatty acid receptor agonist inducing autophagy in HT-29 cells by downregulating the AKT/mTOR signaling pathway. J Cancer Res Ther 2023; 19:1931-1938. [PMID: 38376299 DOI: 10.4103/jcrt.jcrt_1184_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/29/2022] [Indexed: 02/21/2024]
Abstract
AIMS GW9508, a free fatty acid receptor agonist acts in a G-coupled protein receptor 40 (GPR40)-dependent pathway. Here, we investigated the induction of stress oxidative and autophagy by GW9508 in the human colorectal cancer cell line (HT-29) and the crosstalk between autophagy and apoptotic in HT-29 cells. METHODS HT-29 was treated with GW9508 at a concentrations range of 50-500 μM in fibrin gel. Cell viability was investigated using an MTT assay. Induction of autophagy and apoptosis was assessed through Western blotting for associated proteins, acridine orange staining, MDC staining, qRT-PCR, and electron microscopy. Also, we estimated the molecular interactions between GW9805 and some markers through molecular docking. RESULTS GW9508 inhibited HT-29 cell proliferation, induced apoptosis, and resulted in autophagy. The induced autophagy in cells was confirmed by the observation of autophagosomes, the presence of autophagy markers, including beclin-1, LC3, AMPK, and lack expression of mTOR and AKT. Moreover, GW9508 treatment significantly increased the expression of catalase and superoxide dismutase in cells. DISCUSSION Our results indicated that GW9508 could induce autophagy by inhibiting the Akt/mTOR in HT-29. Hence, GW9508 is suggested as a novel anticancer reagent.
Collapse
Affiliation(s)
- Elham Hoveizi
- Associate Professor, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Behnoosh Rafienia
- Associate Professor, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
15
|
Kudra A, Kaźmierczak-Siedlecka K, Sobocki BK, Muszyński D, Połom J, Carbone L, Marano L, Roviello F, Kalinowski L, Stachowska E. Postbiotics in oncology: science or science fiction? Front Microbiol 2023; 14:1182547. [PMID: 37608943 PMCID: PMC10440707 DOI: 10.3389/fmicb.2023.1182547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
The gut microbiome has been increasingly understood to play a critical role in carcinogenesis and cancer disease progression. The most recent research advancements have shown that different tools of microbiota manipulation contribute to gut microbiome-immune-oncology axis modulation, offering exciting opportunities for targeted interventions aimed at improving the efficacy of established anti-cancer therapy. Postbiotics are a new entry among the biotics showing beneficial effects on human health while not requiring living cells to obtain the health effect and therefore not subjected to food safety rules for live microorganisms. Postbiotics are recently defined as the "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host" and have gradually become the focus of the scientific community. Since the beginning of research on this topic, numerous studies about postbiotics have been proven to strengthen the gut barrier, reduce inflammation, and promote antimicrobial activity. However, research on the potential application of cancer therapy is still at the early stages of its efforts to uncover all the secrets surrounding postbiotics. This review aims to increase our understanding of the anti-cancer effect of postbiotics throughout a "bibliographic journey" on the biological activity of their components, including exopolysaccharides, cell wall fragments, tryptophan metabolites, enzymes, bacterial lysates, extracellular vesicles, and short-chain fatty acids, highlighting their perspective as a new supportive therapeutic method of treatment and identifying the literature gaps where further research is needed.
Collapse
Affiliation(s)
- Anna Kudra
- Scientific Circle of Studies Regarding Personalized Medicine Associated With Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Bartosz Kamil Sobocki
- Scientific Circle of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Damian Muszyński
- Scientific Circle of Studies Regarding Personalized Medicine Associated With Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Połom
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | - Ludovico Carbone
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Luigi Marano
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Franco Roviello
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdańsk University of Technology, Gdańsk, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
16
|
Ahn MA, Lee J, Hyun TK. Histone Deacetylase Inhibitor, Sodium Butyrate-Induced Metabolic Modulation in Platycodon grandiflorus Roots Enhances Anti-Melanogenic Properties. Int J Mol Sci 2023; 24:11804. [PMID: 37511563 PMCID: PMC10380954 DOI: 10.3390/ijms241411804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
While the status of histone acetylation is a critical regulator of chromatin's structure with a significant impact on plant physiology, our understanding of epigenetic regulation in the biosynthesis of active compounds in plants is limited. In this study, Platycodon grandiflorus was treated with sodium butyrate (NaB), a histone deacetylase inhibitor, to investigate the influence of histone acetylation on secondary metabolism. Its treatment with NaB increased the acetylation of histone H3 at lysine 9, 14, and 27 and enhanced the anti-melanogenic properties of P. grandiflorus roots. Through transcriptome and differentially expressed gene analyses, we found that NaB influenced the expression of genes that were involved in both primary and secondary metabolic pathways. In addition, NaB treatment caused the accumulation of polyphenolic compounds, including dihydroquercetin, gallic acid, and 2,4-dihydroxybenzoic acid. The NaB-induced transcriptional activation of genes in the phenylpropanoid biosynthetic pathway influenced the anti-melanogenic properties of P. grandiflorus roots. Overall, these findings suggest the potential of an epigenomic approach to enhance the medicinal qualities of medicinal plants.
Collapse
Affiliation(s)
- Min-A Ahn
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jinsu Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
17
|
Fukumori C, Branco PC, Barreto T, Ishida K, Lopes LB. Development and cytotoxicity evaluation of multiple nanoemulsions for oral co-delivery of 5-fluorouracil and short chain triglycerides for colorectal cancer. Eur J Pharm Sci 2023; 187:106465. [PMID: 37178734 DOI: 10.1016/j.ejps.2023.106465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, but current chemotherapy options are limited due to adverse effects and low oral bioavailability of drugs. In this study, we investigated the obtainment parameters and composition of new multiple nanoemulsions (MN) based on microemulsions for oral co-delivery of 5-fluorouracil (5FU) and short-chain triglycerides (SCT, either tributyrin or tripropionin). The area of microemulsion formation was increased from 14% to 38% when monocaprylin was mixed with tricaprylin as oil phase. Addition of SCT reduced this value to 24-26%. Using sodium alginate aqueous dispersion as internal aqueous phase (to avoid phase inversion) did not further affected the area but increased microemulsion viscosity by 1.5-fold. To obtain the MN, selected microemulsions were diluted in an external aqueous phase; droplet size was 500 nm and stability improved using polyoxyethylene (den Besten et al., 2013) oleyl ether at 1-2.5% as surfactant in the external phase and a dilution ratio of 1:1 (v/v). 5FU in vitro release could be better described by the Korsmeyer-Peppas model. No pronounced changes in droplet size were observed when selected MNs were incubated in buffers mimicking gastrointestinal fluids. The 5FU cytotoxicity in monolayer cell lines presenting various mutations was influenced by its incorporation in the nanocarrier, presence of SCT and cell mutation status. The MNs selected reduced the viability of tumor spheroids (employed as 3D tumor models) by 2.2-fold compared to 5FU solution and did not affect the survival of the G. mellonella, suggesting effectiveness and safety.
Collapse
Affiliation(s)
- Claudio Fukumori
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Paola Cristina Branco
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Thayná Barreto
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
18
|
Senchukova MA. Genetic heterogeneity of colorectal cancer and the microbiome. World J Gastrointest Oncol 2023; 15:443-463. [PMID: 37009315 PMCID: PMC10052667 DOI: 10.4251/wjgo.v15.i3.443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
In 2020, the International Agency for Research on Cancer and the World Health Organization's GLOBOCAN database ranked colorectal cancer (CRC) as the third most common cancer in the world. Most cases of CRC (> 95%) are sporadic and develop from colorectal polyps that can progress to intramucosal carcinoma and CRC. Increasing evidence is accumulating that the gut microbiota can play a key role in the initiation and progression of CRC, as well as in the treatment of CRC, acting as an important metabolic and immunological regulator. Factors that may determine the microbiota role in CRC carcinogenesis include inflammation, changes in intestinal stem cell function, impact of bacterial metabolites on gut mucosa, accumulation of genetic mutations and other factors. In this review, I discuss the major mechanisms of the development of sporadic CRC, provide detailed characteristics of the bacteria that are most often associated with CRC, and analyze the role of the microbiome and microbial metabolites in inflammation initiation, activation of proliferative activity in intestinal epithelial and stem cells, and the development of genetic and epigenetic changes in CRC. I consider long-term studies in this direction to be very important, as they open up new opportunities for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
19
|
Hou Q, Huang J, Zhao L, Pan X, Liao C, Jiang Q, Lei J, Guo F, Cui J, Guo Y, Zhang B. Dietary genistein increases microbiota-derived short chain fatty acid levels, modulates homeostasis of the aging gut, and extends healthspan and lifespan. Pharmacol Res 2023; 188:106676. [PMID: 36693599 DOI: 10.1016/j.phrs.2023.106676] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Age-related gastrointestinal decline contributes to whole-organism frailty and mortality. Genistein is known to have beneficial effects on age-related diseases, but its precise role in homeostasis of the aging gut remains to be elucidated. Here, wild-type aging mice and Zmpste24-/- progeroid mice were used to investigate the role of genistein in lifespan and homeostasis of the aging gut in mammals. A series of longitudinal, clinically relevant measurements were performed to evaluate the effect of genistein on healthspan. It was found that dietary genistein promoted a healthier and longer life and was associated with a decrease in the levels of systemic inflammatory cytokines in aging mice. Furthermore, dietary genistein ameliorated gut dysfunctions, such as intestinal inflammation, leaky gut, and impaired epithelial regeneration. A distinct genistein-mediated alteration in gut microbiota was observed by increasing Lachnospira abundance and short-chain fatty acid (SCFA) production. Further fecal microbiota transplantation and dirty cage sharing experiments indicated that the gut microbiota from genistein-fed mice rejuvenated the aging gut and extended the lifespan of progeroid mice. It was demonstrated that genistein-associated SCFAs alleviated tumor necrosis factor alpha-induced intestinal organoid damage. Moreover, genistein-associated propionate promoted regulatory T cell-derived interleukin 10 production, which alleviated macrophage-derived inflammation. This study provided the first data, to the authors' knowledge, indicating that dietary genistein modulates homeostasis in the aging gut and extends the healthspan and lifespan of aging mammals. Moreover, the existence of a link between genistein and the gut microbiota provides a rationale for dietary interventions against age-associated frailty.
Collapse
Affiliation(s)
- Qihang Hou
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jingxi Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Lihua Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Xianjie Pan
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
20
|
Kustrimovic N, Bombelli R, Baci D, Mortara L. Microbiome and Prostate Cancer: A Novel Target for Prevention and Treatment. Int J Mol Sci 2023; 24:ijms24021511. [PMID: 36675055 PMCID: PMC9860633 DOI: 10.3390/ijms24021511] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Growing evidence of the microbiome's role in human health and disease has emerged since the creation of the Human Microbiome Project. Recent studies suggest that alterations in microbiota composition (dysbiosis) may play an essential role in the occurrence, development, and prognosis of prostate cancer (PCa), which remains the second most frequent male malignancy worldwide. Current advances in biological technologies, such as high-throughput sequencing, transcriptomics, and metabolomics, have enabled research on the gut, urinary, and intra-prostate microbiome signature and the correlation with local and systemic inflammation, host immunity response, and PCa progression. Several microbial species and their metabolites facilitate PCa insurgence through genotoxin-mediated mutagenesis or by driving tumor-promoting inflammation and dysfunctional immunosurveillance. However, the impact of the microbiome on PCa development, progression, and response to treatment is complex and needs to be fully understood. This review addresses the current knowledge on the host-microbe interaction and the risk of PCa, providing novel insights into the intraprostatic, gut, and urinary microbiome mechanisms leading to PCa carcinogenesis and treatment response. In this paper, we provide a detailed overview of diet changes, gut microbiome, and emerging therapeutic approaches related to the microbiome and PCa. Further investigation on the prostate-related microbiome and large-scale clinical trials testing the efficacy of microbiota modulation approaches may improve patient outcomes while fulfilling the literature gap of microbial-immune-cancer-cell mechanistic interactions.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Raffaella Bombelli
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence:
| |
Collapse
|
21
|
Potential Role of ROS in Butyrate- and Dietary Fiber-Mediated Growth Inhibition and Modulation of Cell Cycle-, Apoptosis- and Antioxidant-Relevant Proteins in LT97 Colon Adenoma and HT29 Colon Carcinoma Cells. Cancers (Basel) 2023; 15:cancers15020440. [PMID: 36672389 PMCID: PMC9857069 DOI: 10.3390/cancers15020440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to examine whether reactive oxygen species (ROS) contribute to chemopreventive effects of fermentation supernatants (FS) of different dietary fibers (Synergy1®, oat-, barley-, yeast β-glucan, Curdlan) and butyrate as a fermentation metabolite. LT97 and HT29 cells were treated with butyrate and FS alone or with N-acetyl-cysteine (NAC) and their impact on ROS formation, cell growth, and protein expression (Cyclin D2, p21, PARP, Bid, GPx2) was investigated. Butyrate and FS significantly decreased cell growth. ROS levels were significantly increased, particularly in LT97 cells, while co-treatment with NAC decreased ROS formation and growth inhibitory effects in both cell lines. After treatment with butyrate and FS, Cyclin D2 expression was reduced in LT97 cells and p21 expression was increased in both cell lines. Levels of full-length PARP and Bid were decreased, while levels of cleaved PARP were enhanced. GPx2 expression was significantly reduced by fiber FS in HT29 cells. A notable effect of NAC on butyrate- and FS-modulated protein expression was observed exclusively for PARP and Bid in HT29 cells. From the present results, a contribution of ROS to growth inhibitory and apoptotic effects of butyrate and FS on LT97 and HT29 cells cannot be excluded.
Collapse
|
22
|
Buffet-Bataillon S, Bouguen G, Fleury F, Cattoir V, Le Cunff Y. Gut microbiota analysis for prediction of clinical relapse in Crohn's disease. Sci Rep 2022; 12:19929. [PMID: 36402792 PMCID: PMC9675750 DOI: 10.1038/s41598-022-23757-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/04/2022] [Indexed: 11/20/2022] Open
Abstract
The role of intestinal bacterial microbiota has been described as key in the pathophysiology of Crohn's disease (CD). CD is characterized by frequent relapses after periods of remission which are not entirely understood. In this paper, we investigate whether the heterogeneity in microbiota profiles in CD patients could be a suitable predictor for these relapses. This prospective observational study involved 259 CD patients, in which 41 provided an additional total of 62 consecutive fecal samples, with an average interval of 25 weeks in between each of these samples. Fecal microbiota was analyzed by massive genomic sequencing through 16 S rRNA amplicon sampling. We found that our 259 CD patients could be split into three distinct subgroups of microbiota (G1, G2, G3). From G1 to G3, we noticed a progressive decrease in alpha diversity (p ≤ 0.0001) but no change in the fecal calprotectin (FC) level. Focusing on the 103 consecutive samples from 41 CD patients, we showed that the patients microbiota profiles were remarkably stable over time and associated with increasing symptom severity. Investigating further this microbiota/severity association revealed that the first signs of aggravation are (1) a loss of the main anti-inflammatory Short-Chain Fatty Acids (SCFAs) Roseburia, Eubacterium, Subdoligranumum, Ruminococcus (P < 0.05), (2) an increase in pro-inflammatory pathogens Proteus, Finegoldia (P < 0.05) while (3) an increase of other minor SCFA producers such as Ezakiella, Anaerococcus, Megasphaera, Anaeroglobus, Fenollaria (P < 0.05). Further aggravation of clinical signs is significantly linked to the subsequent loss of these minor SCFAs species and to an increase in other proinflammatory Proteobacteria such as Klebsiella, Pseudomonas, Salmonella, Acinetobacter, Hafnia and proinflammatory Firmicutes such as Staphylococcus, Enterococcus, Streptococcus. (P < 0.05). To our knowledge, this is the first study (1) specifically identifying subgroups of microbiota profiles in CD patients, (2) relating these groups to the evolution of symptoms over time and (3) showing a two-step process in CD symptoms' worsening. This paves the way towards a better understanding of patient-to-patient heterogeneity, as well as providing early warning signals of future aggravation of the symptoms and eventually adapting empirically treatments.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- grid.410368.80000 0001 2191 9284INSERM, Institut NUMECAN (Nutrition Metabolisms and Cancer), CHU Rennes, Université Rennes 1, 35000 Rennes, France
| | - Guillaume Bouguen
- grid.410368.80000 0001 2191 9284CIC 1414, INSERM, Institut NUMECAN (Nutrition Metabolisms and Cancer), CHU Rennes, Université Rennes 1, 35000 Rennes, France
| | - François Fleury
- grid.410368.80000 0001 2191 9284INSERM, Institut NUMECAN (Nutrition Metabolisms and Cancer), CHU Rennes, Université Rennes 1, 35000 Rennes, France
| | - Vincent Cattoir
- grid.410368.80000 0001 2191 9284U1230, INSERM, CHU Rennes, Université Rennes 1, 35000 Rennes, France
| | - Yann Le Cunff
- grid.410368.80000 0001 2191 9284Dyliss - Dynamics, Logics and Inference for biological Systems and Sequences, Inria Rennes – Bretagne Atlantique, Université Rennes 1, Rennes, France
| |
Collapse
|
23
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration ( Gallus gallus) of Catechin and Its Derivatives. Nutrients 2022; 14:nu14193924. [PMID: 36235576 PMCID: PMC9572352 DOI: 10.3390/nu14193924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Catechin is a flavonoid naturally present in numerous dietary products and fruits (e.g., apples, berries, grape seeds, kiwis, green tea, red wine, etc.) and has previously been shown to be an antioxidant and beneficial for the gut microbiome. To further enhance the health benefits, bioavailability, and stability of catechin, we synthesized and characterized catechin pentaacetate and catechin pentabutanoate as two new ester derivatives of catechin. Catechin and its derivatives were assessed in vivo via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); (2) deionized H2O (control); (3) Tween (0.004 mg/mL dose); (4) inulin (50 mg/mL dose); (5) Catechin (6.2 mg/mL dose); (6) Catechin pentaacetate (10 mg/mL dose); and (7) Catechin pentabutanoate (12.8 mg/mL dose). The effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Compared to the controls, our results demonstrated a significant (p < 0.05) decrease in Clostridium genera and E. coli species density with catechin and its synthetic derivative exposure. Furthermore, catechin and its derivatives decreased iron and zinc transporter (Ferroportin and ZnT1, respectively) gene expression in the duodenum compared to the controls. In conclusion, catechin and its synthetic derivatives have the potential to improve intestinal morphology and functionality and positively modulate the microbiome.
Collapse
|
24
|
The Effect of Short-Chain Fatty Acids on Growth of Cryptosporidium parvum In Vitro. Microorganisms 2022; 10:microorganisms10091822. [PMID: 36144424 PMCID: PMC9505670 DOI: 10.3390/microorganisms10091822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
In a previous study, we observed an increase in the severity of cryptosporidial infection corresponding to decreased levels of short-chain fatty acids (SCFAs). Therefore, we decided to examine the effect of SCFAs on Cryptosporidium growth in human ileocecal adenocarcinoma (HTC-8) cells. HTC-8 cells were infected with 1 × 105 C. parvum oocysts. After 48 h of incubation with selected SCFAs, cells were fixed and labeled with monoclonal antibody directed to all intracellular stages, and the number of parasites was quantitated using a fluorescent microscope. Acetate, butyrate, propionate and valproate significantly inhibited growth, with an EC50 between 4 and 10 mM. Additionally, when combined, butyrate, acetate and propionate showed increased efficacy. Butyrate also inhibited growth when incubated with sporozoites prior to infection of host cell monolayers. In addition, we looked at possible mechanisms of action of inhibition. A combination of C. parvum infection and butyrate treatment led to increases in apoptosis and certain inflammatory cytokines. We conclude that acetate, propionate and butyrate have direct inhibitory activities in host cells against C. parvum, and butyrate can also affect sporozoite infectivity directly. While not preventing infection, SCFAs may help in keeping the infection low or in check.
Collapse
|
25
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
26
|
Cheng X, Zhou T, He Y, Xie Y, Xu Y, Huang W. The role and mechanism of butyrate in the prevention and treatment of diabetic kidney disease. Front Microbiol 2022; 13:961536. [PMID: 36016798 PMCID: PMC9396028 DOI: 10.3389/fmicb.2022.961536] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of the end-stage renal disease and is a major burden on the healthcare system. The current understanding of the mechanisms responsible for the progression of DKD recognizes the involvement of oxidative stress, low-grade inflammation, and fibrosis. Several circulating metabolites that are the end products of the fermentation process, released by the gut microbiota, are known to be associated with systemic immune-inflammatory responses and kidney injury. This phenomenon has been recognized as the “gut–kidney axis.” Butyrate is produced predominantly by gut microbiota fermentation of dietary fiber and undigested carbohydrates. In addition to its important role as a fuel for colonic epithelial cells, butyrate has been demonstrated to ameliorate obesity, diabetes, and kidney diseases via G-protein coupled receptors (GPCRs). It also acts as an epigenetic regulator by inhibiting histone deacetylase (HDAC), up-regulation of miRNAs, or induction of the histone butyrylation and autophagy processes. This review aims to outline the existing literature on the treatment of DKD by butyrate in animal models and cell culture experiments, and to explore the protective effects of butyrate on DKD and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Tingting Zhou,
| | - Yanqiu He
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yumei Xie
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- *Correspondence: Yong Xu,
| | - Wei Huang
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Wei Huang,
| |
Collapse
|
27
|
Weber-Stiehl S, Järke L, Castrillón-Betancur JC, Gilbert F, Sommer F. Mitochondrial Function and Microbial Metabolites as Central Regulators of Intestinal Immune Responses and Cancer. Front Microbiol 2022; 13:919424. [PMID: 35847099 PMCID: PMC9277123 DOI: 10.3389/fmicb.2022.919424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Energy and anabolic metabolism are essential for normal cellular homeostasis but also play an important role in regulating immune responses and cancer development as active immune and cancer cells show an altered metabolic profile. Mitochondria take a prominent position in these metabolic reactions. First, most key energetic reactions take place within or in conjunction with mitochondria. Second, mitochondria react to internal cues from within the cell but also to external cues originating from the microbiota, a vast diversity of associated microorganisms. The impact of the microbiota on host physiology has been largely investigated in the last decade revealing that the microbiota contributes to the extraction of calories from the diet, energy metabolism, maturation of the immune system and cellular differentiation. Thus, changes in the microbiota termed dysbiosis have been associated with disease development including metabolic diseases, inflammation and cancer. Targeting the microbiota to modulate interactions with the mitochondria and cellular metabolism to delay or inhibit disease development and pathogenesis appears an attractive therapeutic approach. Here, we summarize recent advances in developing the therapeutic potential of microbiota-mitochondria interactions for inflammation and cancer.
Collapse
|
28
|
Cai K, Ma Y, Cai F, Huang X, Xiao L, Zhong C, Ren P, Luo Q, Chen J, Han F. Changes of gut microbiota in diabetic nephropathy and its effect on the progression of kidney injury. Endocrine 2022; 76:294-303. [PMID: 35246764 DOI: 10.1007/s12020-022-03002-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE We aimed to illustrate gut microbiota and short chain fatty acid (SCFA) levels in diabetic nephropathy (DN) patients, and investigate the mechanism of sodium butyrate in diabetic mellitus (DM) rats. METHODS Gut microbiota and serum SCFA levels were measured by 16S rDNA and GC-MS. After being built by streptozotocin (DM rats), the DM rats were administered 300 mg/kg sodium butyrate for 12 weeks (DM + BU rats). Gut microbiota, serum and fecal butyrate level were measured. RT-PCR, WB and transmission electron microscopy were performed to explore LC3mRNA or LC3B protein expression, and autophagosomes in kidney tissues. AMPK/mTOR protein expression in renal tissue were also measured. RESULTS The gut microbial dysbiosis was found in DM and DN groups, and some SCFAs-producing bacteria were decreased in DN group. The serum butyrate concentrations were lower in SCFA-DN group compared with SCFA-HC group and SCFA-DM group in the other cohort. Serum butyrate level was positively correlated with eGFR. Sodium butyrate increased serum and fecal butyrate levels, and improved the enlargement of glomerular area and fibronectin and collagen IV expressions in renal tissues in DM + BU rats. The LC3 mRNA, LC3BII/I ratio and number of autophagosomes were increased in renal tissue of DM + BU rats. Higher p-AMPK/AMPK ratio and lower p-mTOR/ mTOR ratio were shown in renal tissue of DM + BU rats compared with DM rats. CONCLUSIONS We found the decrease in SCFAs-producing bacteria and low SCFAs concentrations in DN patients. Oral butyrate supplementation may improve kidney injury in DM rats, possibly by increasing autophagy via activating AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Kedan Cai
- HwaMei Hospital, University of Chinese Academy of Sciences; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
| | - Yanhong Ma
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
| | - Xiaohan Huang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
| | - Liang Xiao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
| | - Chenyu Zhong
- HwaMei Hospital, University of Chinese Academy of Sciences; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Pingping Ren
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
| | - Qun Luo
- HwaMei Hospital, University of Chinese Academy of Sciences; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
29
|
Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual Relationship. Animals (Basel) 2022; 12:ani12020145. [PMID: 35049768 PMCID: PMC8772550 DOI: 10.3390/ani12020145] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The gastrointestinal tract is a complex organization of various types of epithelial cells forming a single layer of the mucosal barrier, the host mucosal immune system, and microorganisms termed as gut microbiota inhabiting this area. The mucosal barrier, including physical and chemical factors, spatially segregates gut microbiota and the host immune system preventing the development of immune response directed towards non-pathogenic commensals and dietary antigens. However, for the maintenance of the integrity of the mucosal surfaces, cross-talk between epithelial cells and microbiota is required. The microbiome and the intestinal epithelium developed a complex dependence necessary for sustaining intestinal homeostasis. In this review, we highlight the role of specific epithelial cell subtypes and their role in barrier arrangement, the mechanisms employed by them to control intestinal microbiota as well as the mechanisms utilized by the microbiome to regulate intestinal epithelial function. This review will provide information regarding the development of inflammatory disorders dependent on the loss of intestinal barrier function and composition of the intestinal microbiota. Abstract The gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host. Various populations of epithelial cells provide the first line of chemical and physical defense against external factors acting as the interface between luminal microorganisms and immunocompetent cells in lamina propria. In this review, we focus on some essential, innate mechanisms protecting mucosal integrity, thus responsible for maintaining intestine homeostasis. The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented. We emphasize the importance of cross-talk between gut microbiota and epithelial cells as a factor vital for the maintenance of the homeostasis of the GI tract. Finally, we discuss how the imbalance of these regulations leads to the compromised barrier integrity and dysbiosis considered to contribute to inflammatory disorders and metabolic diseases.
Collapse
|
30
|
Mirzaei R, Dehkhodaie E, Bouzari B, Rahimi M, Gholestani A, Hosseini-Fard SR, Keyvani H, Teimoori A, Karampoor S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed Pharmacother 2022; 145:112352. [PMID: 34840032 DOI: 10.1016/j.biopha.2021.112352] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of documents shows microbiota produce metabolites such as short-chain fatty acids (SCFAs) as crucial executors of diet-based microbial influence the host and bacterial pathogens. The production of SCFAs depends on the metabolic activity of intestinal microflora and is also affected by dietary changes. SCFAs play important roles in maintaining colonic health as an energy source, as a regulator of gene expression and cell differentiation, and as an anti-inflammatory agent. Additionally, the regulated expression of virulence genes is critical for successful infection by an intestinal pathogen. Bacteria rely on sensing environmental signals to find preferable niches and reach the infectious state. This review will present data supporting the diverse functional roles of microbiota-derived butyrate, propionate, and acetate on host cellular activities such as immune modulation, energy metabolism, nervous system, inflammation, cellular differentiation, and anti-tumor effects, among others. On the other hand, we will discuss and summarize data about the role of these SCFAs on the virulence factor of bacterial pathogens. In this regard, receptors and signaling routes for SCFAs metabolites in host and pathogens will be introduced.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Elahe Dehkhodaie
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gholestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
32
|
Liu H, Bian Z, Zhang Q, Xiao Z, Cao Y, Sun X, Qin Y, Mao L, Chu X, Liao W, Zha L, Sun S. Sodium butyrate inhibits colitis-associated colorectal cancer through preventing the gut microbiota dysbiosis and reducing the expression of NLRP3 and IL-1β. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Piotrowska M, Binienda A, Fichna J. The role of fatty acids in Crohn's disease pathophysiology - An overview. Mol Cell Endocrinol 2021; 538:111448. [PMID: 34480991 DOI: 10.1016/j.mce.2021.111448] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) which is characterized by chronic and relapsing inflammation of the gastrointestinal (GI) tract. The etiology of CD is unknown, but factors such as epithelial barrier dysfunction, immune system imbalance, microbiota dysbiosis and environmental influences are thought to be involved in its pathogenesis. Recent studies have shown that short chain fatty acids (SCFAs) and long chain fatty acids (LCFAs) play a vital role in pathophysiology and development of CD by various mechanisms affecting pro- and anti-inflammatory mediators, and maintaining the intestinal homeostasis and regulation of gene expression. SCFAs and LCFAs activate signaling cascades that control immune functions through interaction with cell surface free fatty acid receptors (FFARs), i.e. FFAR1, FFAR2, FFAR3, and FFAR4. This review highlights the role of fatty acids in maintenance of intestinal and immune homeostasis and supports the supplementation of fatty acids as a promising adjunctive treatment for CD.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
34
|
Yoo HY, Park SY, Chang SY, Kim SH. Regulation of Butyrate-Induced Resistance through AMPK Signaling Pathway in Human Colon Cancer Cells. Biomedicines 2021; 9:biomedicines9111604. [PMID: 34829834 PMCID: PMC8615665 DOI: 10.3390/biomedicines9111604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Butyrates inhibit cell growth in colon cancer cells by inhibiting histone deacetylases. However, chronic exposure to butyrates induces butyrate resistance in colon cancer cells. The mechanism underlying the acquisition of resistance is not yet fully understood. Here, butyrate-resistant (BR) colon cancer cells were developed in HCT116, HT29, and SW480 human colon cancer cells and were confirmed by the increase in the inhibitory concentrations of cell growth by 50% (IC50) compared to their respective parental (PT) cells. Chronic exposure to butyrate induced autophagy via higher expression of Beclin-1 and LC3B-II. The AMP-activated protein kinase (AMPK) was downregulated along with the activation of Akt and mammalian target of rapamycin (mTOR) and decrease in acetyl-CoA carboxylase (ACC) in BR colon cancer cells compared to those in their respective PT cells. Activation of AMPK by AICAR treatment in BR colon cancer cells suppressed cell proliferation by inhibiting Akt and mTOR and activating ACC. Taken together, chronic exposure to butyrate increased butyrate resistance in human colon cancer by inducing protective autophagy through the downregulation of AMPK/ACC and activation of Akt/mTOR signaling. Activation of AMPK restored sensitivity to butyrate by the inhibition of Akt/mTOR, suggesting that AMPK could be a therapeutic target for BR colon cancers.
Collapse
Affiliation(s)
| | | | | | - So Hee Kim
- Correspondence: ; Tel.: +82-31-219-3451; Fax: +82-31-219-3435
| |
Collapse
|
35
|
Anticancer Effects of Propionic Acid Inducing Cell Death in Cervical Cancer Cells. Molecules 2021; 26:molecules26164951. [PMID: 34443546 PMCID: PMC8399869 DOI: 10.3390/molecules26164951] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies found that short-chain fatty acids (SCFAs), which are produced through bacterial fermentation in the gastrointestinal tract, have oncoprotective effects against cervical cancer. The most common SCFAs that are well known include acetic acid, butyric acid, and propionic acid, among which propionic acid (PA) has been reported to induce apoptosis in HeLa cells. However, the mechanism in which SCFAs suppress HeLa cell viability remain poorly understood. Our study aims to provide a more detailed look into the mechanism of PA in HeLa cells. Flow cytometry analysis revealed that PA induces reactive oxygen species (ROS), leading to the dysfunction of the mitochondrial membrane. Moreover, PA inhibits NF-κB and AKT/mTOR signaling pathways and induces LC3B protein levels, resulting in autophagy. PA also increased the sub-G1 cell population that is characteristic of cell death. Therefore, the results of this study propose that PA inhibits HeLa cell viability through a mechanism mediated by the induction of autophagy. The study also suggests a new approach for cervical cancer therapeutics.
Collapse
|
36
|
Kakoty V, K C S, Dubey SK, Yang CH, Taliyan R. Neuroprotective Effects of Trehalose and Sodium Butyrate on Preformed Fibrillar Form of α-Synuclein-Induced Rat Model of Parkinson's Disease. ACS Chem Neurosci 2021; 12:2643-2660. [PMID: 34197084 DOI: 10.1021/acschemneuro.1c00144] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Therapeutic options for Parkinson's disease (PD) are limited to a symptomatic approach, making it a global threat. Targeting aggregated alpha-synuclein (α-syn) clearance is a gold standard for ameliorating PD pathology, bringing autophagy into the limelight. Expression of autophagy related genes are under the regulation by histone modifications, however, its relevance in PD is yet to be established. Here, preformed fibrillar form (PFF) of α-syn was used to induce PD in wistar rats, which were thereafter subjected to treatment with trehalose (tre, 4g/kg, orally), a potent autophagy inducer and sodium butyrate (SB, 300 mg/kg, orally), a pan histone deacetylase inhibitor alone as well as in combination. The combination treatment significantly reduced motor deficits as evidenced after rotarod, narrow beam walk, and open field tests. Novel object location and recognition tests were performed to govern cognitive abnormality associated with advanced stage PD, which was overcome by the combination treatment. Additionally, with the combination, the level of pro-inflammatory cytokines were significantly reduced, along with elevated levels of dopamine and histone H3 acetylation. Further, mRNA analysis revealed that levels of certain autophagy related genes and proteins implicated in PD pathogenesis significantly improved after administration of both tre and SB. Immunofluorescence and H&E staining in the substantia nigra region mirrored a potential improvement after treatment with both tre and SB. Therefore, outcomes of the present study were adequate to prove that combinatorial efficacy with tre and SB may prove to be a formidable insight into ameliorating PD exacerbated by PFF α-syn as compared to its individual efficacy.
Collapse
Affiliation(s)
- Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, 333031 Pilani, Rajasthan, India
| | - Sarathlal K C
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, 333031 Pilani, Rajasthan, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, 333031 Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei 110, Taiwan
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, 333031 Pilani, Rajasthan, India
| |
Collapse
|
37
|
Markiewicz LH, Ogrodowczyk AM, Wiczkowski W, Wróblewska B. Phytate and Butyrate Differently Influence the Proliferation, Apoptosis and Survival Pathways in Human Cancer and Healthy Colonocytes. Nutrients 2021; 13:1887. [PMID: 34072741 PMCID: PMC8230256 DOI: 10.3390/nu13061887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The colonic epithelium is never exposed to a single factor, therefore studies on the effect of combinations of factors naturally and persistently present in the intestines are of special importance for understanding the phenomena occurring at this place. The aim of the study was to investigate the combined effect of 1 mM phytate and 1 mM butyrate (PA1B1) on cell lines derived from cancer (HCT116 and HT-29) and healthy (NCM460D) human colonic epithelium. Colorimetric and flow cytometry methods were used to determine the proliferation rate, cell cycle, and apoptosis. Selected markers of proliferation, inflammatory, and survival pathways were investigated at the mRNA and/or protein level. The combination of phytate and butyrate disturbed the cell cycle and triggered apoptosis and/or death in both studied cancer colonocytes to a higher extent compared to healthy colonocytes. Moreover, in healthy colonocytes, phytate activated the survival pathway without stimulation of inflammatory response. This may indicate that the response of healthy colonocytes to phytate protects colonic epithelium from the loss of integrity and tightness that would occur if inflammation developed. Based on the obtained results we postulate that studies on both cancer and/or healthy colonocytes should be carried out in the presence of butyrate as the permanent component of colonic contents. This should be of special importance when anti-proliferative/pro-apoptotic activity or inflammatory status of colonocytes is to be investigated.
Collapse
Affiliation(s)
- Lidia Hanna Markiewicz
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| | - Anna Maria Ogrodowczyk
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| |
Collapse
|
38
|
miRNA-mRNA Regulatory Network Reveals miRNAs in HCT116 in Response to Folic Acid Deficiency via Regulating Vital Genes of Endoplasmic Reticulum Stress Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650181. [PMID: 33997035 PMCID: PMC8096553 DOI: 10.1155/2021/6650181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Moderate folic acid (FA) intake is an effective strategy that slows colorectal cancer (CRC) progression. However, high consumption of FA may trigger the transition of precancerous tissue towards malignancy. MicroRNAs (miRNAs) are considered to be potential biomarkers of CRC. Thus, identification of miRNAs of dysregulated genes in CRC cells by detailed analysis of mRNA and miRNA expression profile in the context of FA deficiency could substantially increase our understanding of its oncogenesis. mRNA-seq and miRNA-seq analyses were utilized to investigate the expression of miRNAs in FA-deficient CRC cell line–HCT116 through massive parallel sequencing technology. A total of 38 mRNAs and 168 miRNAs were identified to be differentially expressed between CRC groups with or without FA deficiency. We constructed an miRNA-mRNA network for the vital regulatory miRNAs altered in FA-deficient CRC cells. The mRNAs and miRNAs validated by Western blotting and RT-qPCR were consistent with the sequencing results. Results showed that FA deficiency upregulated some miRNAs thereby inhibiting the expression of critical genes in the endoplasmic reticulum (ER) stress pathway. Dysregulated miRNAs in our miRNA-mRNA network could contribute to CRC cell in response to deficient FA. This work reveals novel molecular targets that are likely to provide therapeutic interventions for CRC.
Collapse
|
39
|
Zhou H, Li G, Wang Y, Jiang R, Li Y, Wang H, Wang F, Ma H, Cao L. Microbial Metabolite Sodium Butyrate Attenuates Cartilage Degradation by Restoring Impaired Autophagy and Autophagic Flux in Osteoarthritis Development. Front Pharmacol 2021; 12:659597. [PMID: 33897442 PMCID: PMC8062861 DOI: 10.3389/fphar.2021.659597] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with multiple etiologies that affects individuals worldwide. No effective interventions are currently available to reverse the pathological process of OA. Sodium butyrate (NaB), a component of short-chain fatty acids (SCFAs), has multiple biological activities, including the attenuation of inflammation and anti-tumor activities in various diseases. However, whether the protective effects of NaB in OA are associated with the promotion of autophagy had not been investigated. Here, we explored the chondroprotective properties of NaB in an interleukin (IL)-1β-induced inflammatory chondrocyte model and an anterior cruciate ligament transection (ACLT) mouse model. Hematoxylin and eosin (HE), Safranin O, and immunohistochemical staining were performed to evaluate the effects of NaB treatment on articular cartilage. An optimal NaB dose for chondrocyte treatment was determined via cell counting kit-8 assays. Immunofluorescence and transmission electron microscopy were used to detect autophagy in chondrocytes. Flow cytometry was utilized to detect reactive oxygen species (ROS), cell cycle activity, and apoptosis in chondrocytes. Western blot and immunostaining were performed to evaluate the protein expression levels of relevant indicators. We found that the administration of NaB by oral gavage could attenuate cartilage degradation. In parallel, NaB treatment could enhance the activation of autophagy, increase autophagic flux, decrease extracellular matrix degradation, and reduce apoptosis by restraining inflammation, ROS production, and cell cycle arrest in IL-1β-treated chondrocytes. The protective effects of NaB could be partially abolished by the autophagy inhibitor 3-methyladenine (3-MA), which indicated that the protective effects of NaB against OA were partially governed by the enhancement of autophagy to restrain the formation of inflammatory mediators and ROS and regulate cell cycle progression and apoptosis in chondrocytes. In conclusion, NaB could attenuate OA progression by restoring impaired autophagy and autophagic flux via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, both in vitro and in vivo, implying that NaB could represent a novel therapeutic approach for OA.
Collapse
Affiliation(s)
- Haikang Zhou
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guoqing Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yang Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rendong Jiang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huhu Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fei Wang
- Xinjiang Uygur Autonomous Region Clinical Research Center for Orthopedic Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hairong Ma
- Xinjiang Uygur Autonomous Region Clinical Research Center for Orthopedic Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
40
|
Vrzáčková N, Ruml T, Zelenka J. Postbiotics, Metabolic Signaling, and Cancer. Molecules 2021; 26:molecules26061528. [PMID: 33799580 PMCID: PMC8000401 DOI: 10.3390/molecules26061528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and β-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.
Collapse
|
41
|
Caicedo-Lopez LH, Cuellar-Nuñez ML, Luzardo-Ocampo I, Campos-Vega R, Lóarca-Piña G. Colonic metabolites from digested Moringa oleifera leaves induced HT-29 cell death via apoptosis, necrosis, and autophagy. Int J Food Sci Nutr 2020; 72:485-498. [PMID: 33302731 DOI: 10.1080/09637486.2020.1849039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Colorectal cancer is an important concern in modern society. Risk factors such as the diet indicate the need to find healthy food products displaying additional health benefits. This study aimed to characterise and evaluate the impact of the colonic metabolites from the fermented non-digestible fraction of Moringa oleifera (MO) leaves (FNFM) on cell death mechanisms from HT-29 cells. MO leaves were digested in vitro, and the 12 h-colonic extract was obtained. FNFM mainly contained morin and chlorogenic acids (41.97 and 25.33 µg/g sample). Butyric acid was ranked as the most important metabolite of FNFM. The FNFM exerted antiproliferative effect against HT-29 colorectal cancer cells (half lethal concentration, LC50: 5.9 mL/100 mL). Compared to untreated control, LC50 increased H2O2 production (149.43%); induced apoptosis (119.02%), autophagy (75.60%), and necrosis (87.72%). These results suggested that digested MO colonic metabolites exert antiproliferative effect against HT-29 cells, providing additional health benefits associated with MO consumption.
Collapse
Affiliation(s)
- Laura H Caicedo-Lopez
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico.,Biosystems Engineering Group, School of Engineering, Universidad Autonoma de Queretaro, Qro, Mexico
| | | | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| | - Rocio Campos-Vega
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| | - Guadalupe Lóarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| |
Collapse
|
42
|
Ashokkumar K, Govindaraj M, Vellaikumar S, Shobhana VG, Karthikeyan A, Akilan M, Sathishkumar J. Comparative Profiling of Volatile Compounds in Popular South Indian Traditional and Modern Rice Varieties by Gas Chromatography-Mass Spectrometry Analysis. Front Nutr 2020; 7:599119. [PMID: 33363195 PMCID: PMC7755633 DOI: 10.3389/fnut.2020.599119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023] Open
Abstract
Rice (Oryza sativa L.) is one of the major cereal crops cultivated across the world, particularly in Southeast Asia with 95% of global production. The present study was aimed to evaluate the total phenolic content (TPC) and to profile all the volatile organic compounds (VOCs) of eight popular traditional and two modern rice varieties cultivated in South India. Thirty-one VOCs were estimated by gas chromatography–mass spectrometry (GC-MS). The identified volatile compounds in the 10 rice varieties belong to the chemical classes of fatty acids, terpenes, alkanes, alkenes, alcohols, phenols, esters, amides, and others. Interestingly, most of the identified predominant components were not identical, which indicate the latent variation among the rice varieties. Significant variations exist for fatty acids (46.9–76.2%), total terpenes (12.6–30.7%), total phenols (0.9–10.0%), total aliphatic alcohols (0.8–5.9%), total alkanes (0.5–5.1%), and total alkenes (1.0–4.9%) among the rice varieties. Of all the fatty acid compounds, palmitic acid, elaidic acid, linoleic acid, and oleic acid predominantly varied in the range of 11.1–33.7, 6.1–31.1, 6.0–28.0, and 0.7–15.1%, respectively. The modern varieties recorded the highest palmitic acid contents (28.7–33.7%) than the traditional varieties (11.1–20.6%). However, all the traditional varieties had higher linoleic acid (10.0–28.0%) than the modern varieties (6.0–8.5%). Traditional varieties had key phenolic compounds, stearic acid, butyric acid, and glycidyl oleate, which are absent in the modern varieties. The traditional varieties Seeraga samba and Kichilli samba had the highest azulene and oleic acid, respectively. All these indicate the higher variability for nutrients and aroma in traditional varieties. These varieties can be used as potential parents to improve the largely cultivated high-yielding varieties for the evolving nutritional market. The hierarchical cluster analysis showed three different clusters implying the distinctness of the traditional and modern varieties. This study provided a comprehensive volatile profile of traditional and modern rice as a staple food for energy as well as for aroma with nutrition.
Collapse
Affiliation(s)
- Kaliyaperumal Ashokkumar
- Crop Improvement, Cardamom Research Station, Kerala Agricultural University, Pampadumpara, India.,School of Agriculture, PRIST Deemed University, Thanjavur, India
| | - Mahalingam Govindaraj
- Crop Improvement Program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - V G Shobhana
- Crop Improvement Program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - Manoharan Akilan
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | | |
Collapse
|
43
|
Bie XM, Dong L, Li XH, Wang H, Gao XQ, Li XG. Trichostatin A and sodium butyrate promotes plant regeneration in common wheat. PLANT SIGNALING & BEHAVIOR 2020; 15:1820681. [PMID: 32962515 PMCID: PMC7671042 DOI: 10.1080/15592324.2020.1820681] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Histone acetylation modification plays a vital role in plant cell division and differentiation. However, the function on wheat mature embryo culture has not been reported. Here, we used the mature embryo of wheat genotypes including CB037, Fielder, and Chinese Spring (CS) as materials to analyze the effects of different concentrations of trichostatin A (TSA) and sodium butyrate (SB) on plant regeneration efficiency. The results showed that, compared with the control group, the induction rates of embryogenic callus and green shoot were significantly increased with the addition of 0.5 µM TSA, while they were reduced under treatment of 2.5 µM TSA on wheat mature embryo. With the respective addition of 200 µM and 1000 µM SB, regeneration frequency of three genotypes was enhanced, especially in Fielder, which reached significant difference compared with the control group. Unfortunately, 0.5 µM TSA and 200 µM SB combination had no apparent effect on wheat regeneration frequency. The results indicated that TSA and SB increase plant regeneration in common wheat. In addition, TSA had a common effect and SB had different effect among genotypes on wheat regeneration frequency. The mechanism of action needs further investigation.
Collapse
Affiliation(s)
- Xiao Min Bie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai′an, Shandong, China
- CONTACT Xiao Min Bie
| | - Luhao Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai′an, Shandong, China
| | - Xiao Hui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai′an, Shandong, China
| | - He Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai′an, Shandong, China
| | - Xi-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai′an, Shandong, China
| | - Xing Guo Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai′an, Shandong, China
- Xing Guo Li State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai′an, Shandong271018, China
| |
Collapse
|
44
|
Grbčić P, Sedić M. Sphingosine 1-Phosphate Signaling and Metabolism in Chemoprevention and Chemoresistance in Colon Cancer. Molecules 2020; 25:E2436. [PMID: 32456134 PMCID: PMC7287727 DOI: 10.3390/molecules25102436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinoma (CRC) is the leading cause of cancer-related deaths worldwide. Despite advances in prevention and treatment modalities for CRC, rapidly developing resistance to chemotherapy limits its effectiveness. For that reason, it is important to better understand the mechanisms that undergird the process of chemoresistance to enable design of novel anticancer agents specifically targeting malignant properties of cancer cells. Over recent decades, bioactive sphingolipid species have come under the spotlight for their recognized role in cancer development and progression, and the evidence has surfaced to support their role as regulators of anti-cancer drug resistance. Colon cancer is characterized by a shift in sphingolipid balance that favors the production and accumulation of oncogenic species such as sphingosine 1-phosphate (S1P). S1P is known to govern the processes that facilitate cancer cell growth and progression including proliferation, survival, migration, invasion and inflammation. In this review paper, we will give a comprehensive overview of current literature findings on the molecular mechanisms by which S1P turnover, transport and signaling via receptor-dependent and independent pathways shape colon cancer cell behavior and influence treatment outcome in colon cancer. Combining available modulators of S1P metabolism and signaling with standard chemotherapy drugs could provide a rational approach to achieve enhanced therapeutic response, diminish chemoresistance development and improve the survival outcome in CRC patients.
Collapse
Affiliation(s)
| | - Mirela Sedić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| |
Collapse
|
45
|
Abstract
The gastrointestinal microbiome plays a pivotal role in physiological homeostasis of the intestine as well as in the pathophysiology of diseases including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Emerging evidence suggests that gut microbiota signal to the mitochondria of mucosal cells, including epithelial cells and immune cells. Gut microbiota signaling to mitochondria has been shown to alter mitochondrial metabolism, activate immune cells, induce inflammasome signaling, and alter epithelial barrier function. Both dysbiosis of the gut microbiota and mitochondrial dysfunction are associated with chronic intestinal inflammation and CRC. This review discusses mitochondrial metabolism of gut mucosal cells, mitochondrial dysfunction, and known gut microbiota-mediated mitochondrial alterations during IBD and CRC.
Collapse
Affiliation(s)
- Dakota N. Jackson
- Department of Internal Medicine, Division of Gastroenterology, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Arianne L. Theiss
- Department of Internal Medicine, Division of Gastroenterology, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, TX, USA,CONTACT Arianne L. Theiss Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, 250 Hoblitzelle, 3500 Gaston Avenue, Dallas, TX75246, USA
| |
Collapse
|
46
|
Guarino MPL, Altomare A, Emerenziani S, Di Rosa C, Ribolsi M, Balestrieri P, Iovino P, Rocchi G, Cicala M. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients 2020; 12:1037. [PMID: 32283802 PMCID: PMC7231265 DOI: 10.3390/nu12041037] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, research has focused on the use of dietary fibers and prebiotics, since many of these polysaccharides can be metabolized by intestinal microbiota, leading to the production of short-chain fatty acids. The metabolites of prebiotic fermentation also show anti-inflammatory and immunomodulatory capabilities, suggesting an interesting role in the treatment of several pathological conditions. Galacto-oligosaccharide and short- and long-chain fructans (Fructo-oligosaccharides and inulin) are the most studied prebiotics, even if other dietary compounds seem to show the same features. There is an increasing interest in dietary strategies to modulate microbiota. The aim of this review is to explore the mechanisms of action of prebiotics and their effects on the principal gastro-intestinal disorders in adults, with a special focus on Galacto-oligosaccharides, Fructo-oligosaccharides, lactulose and new emerging substances which currently have evidence of prebiotics effects, such as xilooligosaccharides, soybean oligosaccharides, isomaltooligosaccharides, lactobionic acid, resistant starch and polyphenols.
Collapse
Affiliation(s)
- Michele Pier Luca Guarino
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Annamaria Altomare
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Sara Emerenziani
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Claudia Di Rosa
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Mentore Ribolsi
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Paola Balestrieri
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Paola Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081 Salerno, Italy;
| | - Giulia Rocchi
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Michele Cicala
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| |
Collapse
|
47
|
Hatzidaki E, Ntanovasilis DA, Papasotiriou I. Novel antibody against TMX2 and its effects on breast cancer cells. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 11:1-10. [PMID: 32211211 PMCID: PMC7076318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Although monoclonal antibodies are promising, a truly fully human antibody is yet to be produced. Current human antibodies have the human sequence, but are produced in either transgenic animals or in phages. The aim of this paper was to produce a truly human antibody directed against an epitope of our choice, secreted by human plasma cells. The target protein was TMX2 one of the least studied disulfide isomerases. IgG and anti-TMX2 antibody were determined by both Elisa and western blot. TMX2 KD was evaluated by Surface Plasmon Resonance. TMX2 localization was determined by flow cytometry in MCF-7 cells. Efficiency was evaluated by MTT. Gene expression was evaluated by PCR. We have managed to produce two fully human antibodies directed against TMX2 protein. TMX2 protein was found both in the cytoplasm and cell membrane of breast cancer cells. RGCC TMX2 antibody recognizing an extracellular epitope increased cell proliferation. RGCC TMX2 antibody recognizing an intracellular epitope decreased cell proliferation and gene expression related to cancer survival, differentiation and metastasis. These findings suggest this platform is very promising for novel personalized therapies. TMX2 could be a novel target for cancer treatment.
Collapse
|
48
|
Fernandes MF, de Oliveira S, Portovedo M, Rodrigues PB, Vinolo MAR. Effect of Short Chain Fatty Acids on Age-Related Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:85-105. [PMID: 32304031 DOI: 10.1007/978-3-030-42667-5_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have indicated a prominent role of intestinal microbiota in regulation of several physiological aspects of the host including development and activation of the immune system and control of metabolism. In this review, we focused our discussion on bacterial metabolites produced from dietary fiber fermentation called short-chain fatty acids, which act as a link between the microbiota and host cells. Specifically, we described how modifications in their intestinal levels are associated with development of age-related pathologies including metabolic diseases and type 2 diabetes, hypertension, cardiovascular and neurodegenerative diseases. We also highlight their impact on the development of cancer.
Collapse
Affiliation(s)
- Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariana Portovedo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Patrícia Brito Rodrigues
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
49
|
Zhao Y, Shi L, Hu C, Sang S. Wheat Bran for Colon Cancer Prevention: The Synergy between Phytochemical Alkylresorcinol C21 and Intestinal Microbial Metabolite Butyrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12761-12769. [PMID: 31675233 DOI: 10.1021/acs.jafc.9b05666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
There is convincing evidence that consuming whole grains (WGs) may decrease the risk of colorectal cancer (CRC). Wheat bran (WB) is a rich source of dietary fiber and phytochemicals with health-promoting properties. However, the active components especially the interaction between different components in WG wheat have not been fully explored. Here, we investigated whether one of the major WB phytochemicals, alkylresorcinol (AR) C21, and the major active intestinal microbial metabolite of fiber, butyrate, could synergistically suppress human colon cancer cells. Our results demonstrated for the first time that the combination of C21 and butyrate synergistically inhibited the growth of human colon cancer cells and induced apoptosis. Further mechanistic studies demonstrated that the cotreatment of C21 and butyrate induced significant up-regulations in cleaved Poly(ADP-ribose) polymerase (PARP), cleaved caspase 3, p53 upregulated modulator of apoptosis (PUMA), cytochrome C, lipid-conjugated membrane-bound form of microtubule-associated protein 1A/1B-light chain 3 (LC3-II), and C/EBP homologous protein (CHOP) expressions, indicating the synergistic anticancer effects of C21 and butyrate were associated with induction of apoptosis, autophagy, and ER stress pathways. Notably, the C21 concentrations in the large intestinal tract of mice treated with human relevant doses of C21, were from 0.86 to 1.78 μmol/g, suggesting the C21 doses used in vitro may be achievable after daily WG wheat intake. These results provide novel insights into the dietary prevention of CRC regarding the potential interaction of bioactive WG wheat phytochemicals and the microbial metabolites of fiber.
Collapse
Affiliation(s)
- Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University, North Carolina Research Campus , 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Lei Shi
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University, North Carolina Research Campus , 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
- Department of Colorectal Surgery , General Hospital of Ningxia Medical University , Yinchuan 750004 , P. R. China
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University, North Carolina Research Campus , 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University, North Carolina Research Campus , 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| |
Collapse
|
50
|
Ha TK, Hansen AH, Kildegaard HF, Lee GM. BiP Inducer X: An ER Stress Inhibitor for Enhancing Recombinant Antibody Production in CHO Cell Culture. Biotechnol J 2019; 14:e1900130. [PMID: 31161665 DOI: 10.1002/biot.201900130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Prolonged endoplasmic reticulum (ER) stress reduces protein synthesis and induces apoptosis in mammalian cells. When dimethyl sulfoxide (DMSO), a specific monoclonal antibody productivity (qmAb )-enhancing reagent, is added to recombinant Chinese hamster ovary (rCHO) cell cultures (GSR cell line), it induces ER stress and apoptosis in a dose-dependent manner. To determine an effective ER stress inhibitor, three ER stress inhibitors (BiP inducer X [BIX], tauroursodeoxycholic acid, and carbazole) are examined and BIX shows the best production performance. Coaddition of BIX (50 μm) with DMSO extends the culture longevity and enhances qmAb . As a result, the maximum mAb concentration is significantly increased with improved galactosylation. Coaddition of BIX significantly increases the expression level of binding immunoglobulin protein (BiP) followed by increased expression of chaperones (calnexin and GRP94) and galactosyltransferase. Furthermore, the expression levels of CHOP, a well-known ER stress marker, and cleaved caspase-3 are significantly reduced, suggesting that BIX addition reduces ER stress-induced cell death by relieving ER stress. The beneficial effect of BIX on mAb production is also demonstrated with another qmAb -enhancing reagent (sodium butyrate) and a different rCHO cell line (CS13-1.00). Taken together, BIX is an effective ER stress inhibitor that can be used to increase mAb production in rCHO cells.
Collapse
Affiliation(s)
- Tae Kwang Ha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Anders H Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Helene F Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.,Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|