1
|
Jones DAB, Rybak K, Hossain M, Bertazzoni S, Williams A, Tan KC, Phan HTT, Hane JK. Repeat-induced point mutations driving Parastagonospora nodorum genomic diversity are balanced by selection against non-synonymous mutations. Commun Biol 2024; 7:1614. [PMID: 39627497 PMCID: PMC11615325 DOI: 10.1038/s42003-024-07327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Parastagonospora nodorum is necrotrophic fungal pathogen of wheat with significant genomic resources. Population-level pangenome data for 173 isolates, of which 156 were from Western Australia (WA) and 17 were international, were examined for overall genomic diversity and effector gene content. A heterothallic core population occurred across all regions of WA, with asexually-reproducing clonal clusters in dryer northern regions. High potential for SNP diversity in the form of repeat-induced point mutation (RIP)-like transitions, was observed across the genome, suggesting widespread 'RIP-leakage' from transposon-rich repetitive sequences into non-repetitive regions. The strong potential for RIP-like mutations was balanced by negative selection against non-synonymous SNPs, that was observed within protein-coding regions. Protein isoform profiles of known effector loci (SnToxA, SnTox1, SnTox3, SnTox267, and SnTox5) indicated low-levels of non-synonymous and high-levels of silent RIP-like mutations. Effector predictions identified 186 candidate secreted predicted effector proteins (CSEPs), 69 of which had functional annotations and included confirmed effectors. Pangenome-based effector isoform profiles across WA were distinct from global isolates and were conserved relative to population structure, and may enable new approaches for monitoring crop disease pathotypes.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Kasia Rybak
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Mohitul Hossain
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Stefania Bertazzoni
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Angela Williams
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Huyen T T Phan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
2
|
John E, Verdonk C, Singh KB, Oliver RP, Lenzo L, Morikawa S, Soyer JL, Muria-Gonzalez J, Soo D, Mousley C, Jacques S, Tan KC. Regulatory insight for a Zn2Cys6 transcription factor controlling effector-mediated virulence in a fungal pathogen of wheat. PLoS Pathog 2024; 20:e1012536. [PMID: 39312592 PMCID: PMC11419344 DOI: 10.1371/journal.ppat.1012536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
The regulation of virulence in plant-pathogenic fungi has emerged as a key area of importance underlying host infections. Recent work has highlighted individual transcription factors (TFs) that serve important roles. A prominent example is PnPf2, a member of the Zn2Cys6 family of fungal TFs, which controls the expression of effectors and other virulence-associated genes in Parastagonospora nodorum during infection of wheat. PnPf2 orthologues are similarly important for other major fungal pathogens during infection of their respective host plants, and have also been shown to control polysaccharide metabolism in model saprophytes. In each case, the direct genomic targets and associated regulatory mechanisms were unknown. Significant insight was made here by investigating PnPf2 through chromatin-immunoprecipitation (ChIP) and mutagenesis approaches in P. nodorum. Two distinct binding motifs were characterised as positive regulatory elements and direct PnPf2 targets identified. These encompass known effectors and other components associated with the P. nodorum pathogenic lifestyle, such as carbohydrate-active enzymes and nutrient assimilators. The results support a direct involvement of PnPf2 in coordinating virulence on wheat. Other prominent PnPf2 targets included TF-encoding genes. While novel functions were observed for the TFs PnPro1, PnAda1, PnEbr1 and the carbon-catabolite repressor PnCreA, our investigation upheld PnPf2 as the predominant transcriptional regulator characterised in terms of direct and specific coordination of virulence on wheat, and provides important mechanistic insights that may be conserved for homologous TFs in other fungi.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Callum Verdonk
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Karam B. Singh
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Perth, Australia
| | - Richard P. Oliver
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Leon Lenzo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Shota Morikawa
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Jessica L. Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Jordi Muria-Gonzalez
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Daniel Soo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Carl Mousley
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
3
|
Kariyawasam GK, Nelson AC, Williams SJ, Solomon PS, Faris JD, Friesen TL. The Necrotrophic Pathogen Parastagonospora nodorum Is a Master Manipulator of Wheat Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:764-773. [PMID: 37581456 DOI: 10.1094/mpmi-05-23-0067-irw] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Parastagonospora nodorum is a necrotrophic pathogen of wheat that is particularly destructive in major wheat-growing regions of the United States, northern Europe, Australia, and South America. P. nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD), resulting in increased colonization of host tissue and, ultimately, sporulation to complete its pathogenic life cycle. Intensive research over the last two decades has led to the functional characterization of five proteinaceous necrotrophic effectors, SnTox1, SnToxA, SnTox267, SnTox3, and SnTox5, and three wheat susceptibility genes, Tsn1, Snn1, and Snn3D-1. Functional characterization has revealed that these effectors, in addition to inducing PCD, have additional roles in pathogenesis, including chitin binding that results in protection from wheat chitinases, blocking defense response signaling, and facilitating plant colonization. There are still large gaps in our understanding of how this necrotrophic pathogen is successfully manipulating wheat defense to complete its life cycle. This review summarizes our current knowledge, identifies knowledge gaps, and provides a summary of well-developed tools and resources currently available to study the P. nodorum-wheat interaction, which has become a model for necrotrophic specialist interactions. Further functional characterization of the effectors involved in this interaction and work toward a complete understanding of how P. nodorum manipulates wheat defense will provide fundamental knowledge about this and other necrotrophic interactions. Additionally, a broader understanding of this interaction will contribute to the successful management of Septoria nodorum blotch disease on wheat. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Ashley C Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Justin D Faris
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| |
Collapse
|
4
|
Liu Z, Du Y, Sun Z, Cheng B, Bi Z, Yao Z, Liang Y, Zhang H, Yao R, Kang S, Shi Y, Wan H, Qin D, Xiang L, Leng L, Chen S. Manual correction of genome annotation improved alternative splicing identification of Artemisia annua. PLANTA 2023; 258:83. [PMID: 37721598 DOI: 10.1007/s00425-023-04237-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Gene annotation is essential for genome-based studies. However, algorithm-based genome annotation is difficult to fully and correctly reveal genomic information, especially for species with complex genomes. Artemisia annua L. is the only commercial resource of artemisinin production though the content of artemisinin is still to be improved. Genome-based genetic modification and breeding are useful strategies to boost artemisinin content and therefore, ensure the supply of artemisinin and reduce costs, but better gene annotation is urgently needed. In this study, we manually corrected the newly released genome annotation of A. annua using second- and third-generation transcriptome data. We found that incorrect gene information may lead to differences in structural, functional, and expression levels compared to the original expectations. We also identified alternative splicing events and found that genome annotation information impacted identifying alternative splicing genes. We further demonstrated that genome annotation information and alternative splicing could affect gene expression estimation and gene function prediction. Finally, we provided a valuable version of A. annua genome annotation and demonstrated the importance of gene annotation in future research.
Collapse
Affiliation(s)
- Zhaoyu Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yupeng Du
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhihao Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bohan Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zenghao Bi
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhicheng Yao
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yuting Liang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Run Yao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shen Kang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dou Qin
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China
| | - Li Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China.
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shilin Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Gupta PK, Vasistha NK, Singh S, Joshi AK. Genetics and breeding for resistance against four leaf spot diseases in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1023824. [PMID: 37063191 PMCID: PMC10096043 DOI: 10.3389/fpls.2023.1023824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
In wheat, major yield losses are caused by a variety of diseases including rusts, spike diseases, leaf spot and root diseases. The genetics of resistance against all these diseases have been studied in great detail and utilized for breeding resistant cultivars. The resistance against leaf spot diseases caused by each individual necrotroph/hemi-biotroph involves a complex system involving resistance (R) genes, sensitivity (S) genes, small secreted protein (SSP) genes and quantitative resistance loci (QRLs). This review deals with resistance for the following four-leaf spot diseases: (i) Septoria nodorum blotch (SNB) caused by Parastagonospora nodorum; (ii) Tan spot (TS) caused by Pyrenophora tritici-repentis; (iii) Spot blotch (SB) caused by Bipolaris sorokiniana and (iv) Septoria tritici blotch (STB) caused by Zymoseptoria tritici.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Murdoch’s Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| | - Neeraj Kumar Vasistha
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Genetics-Plant Breeding and Biotechnology, Dr Khem Singh Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Sahadev Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
- The International Maize and Wheat Improvement Center (CIMMYT), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| |
Collapse
|
6
|
Moolhuijzen PM, See PT, Shi G, Powell HR, Cockram J, Jørgensen LN, Benslimane H, Strelkov SE, Turner J, Liu Z, Moffat CS. A global pangenome for the wheat fungal pathogen Pyrenophora tritici-repentis and prediction of effector protein structural homology. Microb Genom 2022; 8:mgen000872. [PMID: 36214662 PMCID: PMC9676058 DOI: 10.1099/mgen.0.000872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The adaptive potential of plant fungal pathogens is largely governed by the gene content of a species, consisting of core and accessory genes across the pathogen isolate repertoire. To approximate the complete gene repertoire of a globally significant crop fungal pathogen, a pan genomic analysis was undertaken for Pyrenophora tritici-repentis (Ptr), the causal agent of tan (or yellow) spot disease in wheat. In this study, 15 new Ptr genomes were sequenced, assembled and annotated, including isolates from three races not previously sequenced. Together with 11 previously published Ptr genomes, a pangenome for 26 Ptr isolates from Australia, Europe, North Africa and America, representing nearly all known races, revealed a conserved core-gene content of 57 % and presents a new Ptr resource for searching natural homologues (orthologues not acquired by horizontal transfer from another species) using remote protein structural homology. Here, we identify for the first time a non-synonymous mutation in the Ptr necrotrophic effector gene ToxB, multiple copies of the inactive toxb within an isolate, a distant natural Pyrenophora homologue of a known Parastagonopora nodorum necrotrophic effector (SnTox3), and clear genomic break points for the ToxA effector horizontal transfer region. This comprehensive genomic analysis of Ptr races includes nine isolates sequenced via long read technologies. Accordingly, these resources provide a more complete representation of the species, and serve as a resource to monitor variations potentially involved in pathogenicity.
Collapse
Affiliation(s)
- Paula M. Moolhuijzen
- Centre for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- *Correspondence: Paula M. Moolhuijzen,
| | - Pao Theen See
- Centre for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Harold R. Powell
- Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, England, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Hamida Benslimane
- Département de Botanique, Ecole Nationale Supérieure Agronomique (ENSA), Hassan Badi, El-Harrach, Algiers, Algeria
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
- *Correspondence: Zhaohui Liu,
| | - Caroline S. Moffat
- Centre for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
7
|
Does Abiotic Host Stress Favour Dothideomycete-Induced Disease Development? PLANTS 2022; 11:plants11121615. [PMID: 35736766 PMCID: PMC9227157 DOI: 10.3390/plants11121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022]
Abstract
Dothideomycetes represent one of the largest and diverse class of fungi. This class exhibits a wide diversity of lifestyles, including endophytic, saprophytic, pathogenic and parasitic organisms. Plant pathogenic fungi are particularly common within the Dothideomycetes and are primarily found within the orders of Pleosporales, Botryosphaeriales and Capnodiales. As many Dothideomycetes can infect crops used as staple foods around the world, such as rice, wheat, maize or banana, this class of fungi is highly relevant to food security. In the context of climate change, food security faces unprecedented pressure. The benefits of a more plant-based diet to both health and climate have long been established, therefore the demand for crop production is expected to increase. Further adding pressure on food security, both the prevalence of diseases caused by fungi and the yield losses associated with abiotic stresses on crops are forecast to increase in all climate change scenarios. Furthermore, abiotic stresses can greatly influence the outcome of the host-pathogen interaction. This review focuses on the impact of abiotic stresses on the host in the development of diseases caused by Dothideomycete fungi.
Collapse
|
8
|
John E, Jacques S, Phan HTT, Liu L, Pereira D, Croll D, Singh KB, Oliver RP, Tan KC. Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat. PLoS Pathog 2022; 18:e1010149. [PMID: 34990464 PMCID: PMC8735624 DOI: 10.1371/journal.ppat.1010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both 'selfish' and 'altruistic' characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Huyen T. T. Phan
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Lifang Liu
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Danilo Pereira
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Karam B. Singh
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Katoch S, Sharma V, Sharma D, Salwan R, Rana SK. Biology and molecular interactions of Parastagonospora nodorum blotch of wheat. PLANTA 2021; 255:21. [PMID: 34914013 DOI: 10.1007/s00425-021-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Parastagonospora nodorum is one of the important necrotrophic pathogens of wheat which causes severe economical loss to crop yield. So far, a number of effectors of Parastagonospora nodorum origin and their target interacting genes on the host plant have been characterized. Since targeting effector-sensitive gene carefully can be helpful in breeding for resistance. Therefore, constant efforts are required to further characterize the effectors, their interacting genes, and underlying biochemical pathways. Furthermore, to develop effective counter-strategies against emerging diseases, continuous efforts are required to determine the qualitative resistance that demands to screen of diverse genotypes for host resistance. Stagonospora nodorum blotch also refers to as Stagonospora glume blotch and leaf is caused by Parastagonospora nodorum. The pathogen deploys necrotrophic effectors for the establishment and development on wheat plants. The necrotrophic effectors and their interaction with host receptors lead to the establishment of infection on leaves and extensive lesions formation which either results in host cell death or suppression/activation of host defence mechanisms. The wheat Stagonospora nodorum interaction involves a set of nine host gene-necrotrophic effector interactions. Out of these, Snn1-SnTox1, Tsn1-SnToxA and Snn-SnTox3 are one of the most studied interaction, due to its role in the suppression of reactive oxygen species production, regulating the cytokinin content through ethylene-dependent wayduring initial infection stage. Further, although the molecular basis is not fully unveiled, these effectors regulate the redox state and influence the ethylene biosynthesis in infected wheat plants. Here, we have discussed the biology of the wheat pathogen Parastagonospora nodorum, role of its necrotrophic effectors and their interacting sensitivity genes on the redox state, how they hijack the resistance mechanisms, hormonal regulated immunity and other signalling pathways in susceptible wheat plants. The information generated from effectors and their corresponding sensitivity genes and other biological processes could be utilized effectively for disease management strategies.
Collapse
Affiliation(s)
- Shabnam Katoch
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India.
| | - Devender Sharma
- Crop Improvement Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Richa Salwan
- College of Horticulture and Forestry, Neri, Dr YS Parmar University of Horticulture and Forestry, Solan, Hamirpur, 177 001, India
| | - S K Rana
- Department of Plant Pathology, CSK HPKV Palampur, Palampur, 176062, Himachal Pradesh, India
| |
Collapse
|
10
|
Andronis CE, Hane JK, Bringans S, Hardy GESJ, Jacques S, Lipscombe R, Tan KC. Gene Validation and Remodelling Using Proteogenomics of Phytophthora cinnamomi, the Causal Agent of Dieback. Front Microbiol 2021; 12:665396. [PMID: 34394023 PMCID: PMC8360494 DOI: 10.3389/fmicb.2021.665396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Phytophthora cinnamomi is a pathogenic oomycete that causes plant dieback disease across a range of natural ecosystems and in many agriculturally important crops on a global scale. An annotated draft genome sequence is publicly available (JGI Mycocosm) and suggests 26,131 gene models. In this study, soluble mycelial, extracellular (secretome), and zoospore proteins of P. cinnamomi were exploited to refine the genome by correcting gene annotations and discovering novel genes. By implementing the diverse set of sub-proteomes into a generated proteogenomics pipeline, we were able to improve the P. cinnamomi genome annotation. Liquid chromatography mass spectrometry was used to obtain high confidence peptides with spectral matching to both the annotated genome and a generated 6-frame translation. Two thousand seven hundred sixty-four annotations from the draft genome were confirmed by spectral matching. Using a proteogenomic pipeline, mass spectra were used to edit the P. cinnamomi genome and allowed identification of 23 new gene models and 60 edited gene features using high confidence peptides obtained by mass spectrometry, suggesting a rate of incorrect annotations of 3% of the detectable proteome. The novel features were further validated by total peptide support, alongside functional analysis including the use of Gene Ontology and functional domain identification. We demonstrated the use of spectral data in combination with our proteogenomics pipeline can be used to improve the genome annotation of important plant diseases and identify missed genes. This study presents the first use of spectral data to edit and manually annotate an oomycete pathogen.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,Proteomics International, Nedlands, WA, Australia
| | - James K Hane
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,Faculty of Science and Engineering, Curtin Institute for Computation, Curtin University, Perth, WA, Australia
| | | | - Giles E S J Hardy
- Centre for Phytophthora Science and Management, Murdoch University, Murdoch, WA, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| |
Collapse
|
11
|
Kariyawasam GK, Wyatt N, Shi G, Liu S, Yan C, Ma Y, Zhong S, Rasmussen JB, Moolhuijzen P, Moffat CS, Friesen TL, Liu Z. A genome-wide genetic linkage map and reference quality genome sequence for a new race in the wheat pathogen Pyrenophora tritici-repentis. Fungal Genet Biol 2021; 152:103571. [PMID: 34015431 DOI: 10.1016/j.fgb.2021.103571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Pyrenophora tritici-repentis is an ascomycete fungus that causes tan spot of wheat. The disease has a worldwide distribution and can cause significant yield and quality losses in wheat production. The fungal pathogen is homothallic in nature, which means it can undergo sexual reproduction by selfing to produce pseudothecia on wheat stubble for seasonal survival. Since homothallism precludes the development of bi-parental fungal populations, no genetic linkage map has been developed for P. tritici-repentis for mapping and map-based cloning of fungal virulence genes. In this work, we created two heterothallic strains by deleting one of the mating type genes in each of two parental isolates 86-124 (race 2) and AR CrossB10 (a new race) and developed a bi-parental fungal population between them. The draft genome sequences of the two parental isolates were aligned to the Pt-1C-BFP reference sequence to mine single nucleotide polymorphisms (SNPs). A total of 225 SNP markers were developed for genotyping the entire population. Additionally, 75 simple sequence repeat, and two gene markers were also developed and used in the genotyping. The resulting linkage map consisted of 13 linkage groups spanning 5,075.83 cM in genetic distance. Because the parental isolate AR CrossB10 is a new race and produces Ptr ToxC, it was sequenced using long-read sequencing platforms and de novo assembled into contigs. The majority of the contigs were further anchored into chromosomes with the aid of the linkage maps. The whole genome comparison of AR CrossB10 to the reference genome of M4 revealed a few chromosomal rearrangements. The genetic linkage map and the new AR CrossB10 genome sequence are valuable tools for gene cloning in P. tritici-repentis.
Collapse
Affiliation(s)
- Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | - Nathan Wyatt
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND 58108, USA
| | - Yongchao Ma
- Department of Computer Science, North Dakota State University, Fargo, ND 58108, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | - Paula Moolhuijzen
- Center for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Caroline S Moffat
- Center for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA; USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
12
|
Derbyshire MC. Bioinformatic Detection of Positive Selection Pressure in Plant Pathogens: The Neutral Theory of Molecular Sequence Evolution in Action. Front Microbiol 2020; 11:644. [PMID: 32328056 PMCID: PMC7160247 DOI: 10.3389/fmicb.2020.00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
The genomes of plant pathogenic fungi and oomycetes are often exposed to strong positive selection pressure. During speciation, shifts in host range and preference can lead to major adaptive changes. Furthermore, evolution of total host resistance to most isolates can force rapid evolutionary changes in host-specific pathogens. Crop pathogens are subjected to particularly intense selective pressures from monocultures and fungicides. Detection of the footprints of positive selection in plant pathogen genomes is a worthwhile endeavor as it aids understanding of the fundamental biology of these important organisms. There are two main classes of test for detection of positively selected alleles. Tests based on the ratio of non-synonymous to synonymous substitutions per site detect the footprints of multiple fixation events between divergent lineages. Thus, they are well-suited to the study of ancient adaptation events spanning speciations. On the other hand, tests that scan genomes for local fluctuations in allelic diversity within populations are suitable for detection of recent positive selection in populations. In this review, I briefly describe some of the more widely used tests of positive selection and the theory underlying them. I then discuss various examples of their application to plant pathogen genomes, emphasizing the types of genes that are associated with signatures of positive selection. I conclude with a discussion of the practicality of such tests for identification of pathogen genes of interest and the important features of pathogen ecology that must be taken into account for accurate interpretation.
Collapse
Affiliation(s)
- Mark C. Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
13
|
Phan HTT, Jones DAB, Rybak K, Dodhia KN, Lopez-Ruiz FJ, Valade R, Gout L, Lebrun MH, Brunner PC, Oliver RP, Tan KC. Low Amplitude Boom-and-Bust Cycles Define the Septoria Nodorum Blotch Interaction. FRONTIERS IN PLANT SCIENCE 2020; 10:1785. [PMID: 32082346 PMCID: PMC7005668 DOI: 10.3389/fpls.2019.01785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/20/2019] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Septoria nodorum blotch (SNB) is a complex fungal disease of wheat caused by the Dothideomycete fungal pathogen Parastagonospora nodorum. The fungus infects through the use of necrotrophic effectors (NEs) that cause necrosis on hosts carrying matching dominant susceptibility genes. The Western Australia (WA) wheatbelt is a SNB "hot spot" and experiences significant under favorable conditions. Consequently, SNB has been a major target for breeders in WA for many years. MATERIALS AND METHODS In this study, we assembled a panel of 155 WA P. nodorum isolates collected over a 44-year period and compared them to 23 isolates from France and the USA using 28 SSR loci. RESULTS The WA P. nodorum population was clustered into five groups with contrasting properties. 80% of the studied isolates were assigned to two core groups found throughout the collection location and time. The other three non-core groups that encompassed transient and emergent populations were found in restricted locations and time. Changes in group genotypes occurred during periods that coincided with the mass adoption of a single or a small group of widely planted wheat cultivars. When introduced, these cultivars had high scores for SNB resistance. However, the field resistance of these new cultivars often declined over subsequent seasons prompting their replacement with new, more resistant varieties. Pathogenicity assays showed that newly emerged isolates non-core are more pathogenic than old isolates. It is likely that the non-core groups were repeatedly selected for increased virulence on the contemporary popular cultivars. DISCUSSION The low level of genetic diversity within the non-core groups, difference in virulence, low abundance, and restriction to limited locations suggest that these populations more vulnerable to a population crash when the cultivar was replaced by one that was genetically different and more resistant. We characterize the observed pattern as a low-amplitude boom-and-bust cycle in contrast with the classical high amplitude boom-and-bust cycles seen for biotrophic pathogens where the contrast between resistance and susceptibility is typically much greater. Implications of the results are discussed relating to breeding strategies for more sustainable SNB resistance and more generally for pathogens with NEs.
Collapse
Affiliation(s)
- Huyen T. T. Phan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Darcy A. B. Jones
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Kasia Rybak
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Kejal N. Dodhia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Francisco J. Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Romain Valade
- ARVALIS Institut du Végétal Avenue Lucien Brétignières, Bâtiment INRA Bioger, Thiverval-Grignon, France
| | - Lilian Gout
- UMR INRA Bioger Agro-ParisTech, Thiverval-Grignon, France
| | | | - Patrick C. Brunner
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Richard P. Oliver
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
14
|
Pedro H, Yates AD, Kersey PJ, De Silva NH. Collaborative Annotation Redefines Gene Sets for Crucial Phytopathogens. Front Microbiol 2019; 10:2477. [PMID: 31787936 PMCID: PMC6854995 DOI: 10.3389/fmicb.2019.02477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 11/15/2022] Open
Abstract
Accurate and comprehensive annotation of genomic sequences underpins advances in managing plant disease. However, important plant pathogens still have incomplete and inconsistent gene sets and lack dedicated funding or teams to improve this annotation. This paper describes a collaborative approach to gene curation to address this shortcoming. In the first instance, over 40 members of the Botrytis cinerea community from eight countries, with training and infrastructural support from Ensembl Fungi, used the gene editing tool Apollo to systematically review the entire gene set (11,707 protein coding genes) in 6-7 months. This has subsequently been checked and disseminated. Following this, a similar project for another pathogen, Blumeria graminis f. sp. hordei, also led to a completely redefined gene set. Currently, we are working with the Zymoseptoria tritici community to enable them to achieve the same. While the tangible outcome of these projects is improved gene sets, it is apparent that the inherent agreement and ownership of a single gene set by research teams as they undergo this curation process are consequential to the acceleration of research in the field. With the generation of large data sets increasingly affordable, there is value in unifying both the divergent data sets and their associated research teams, pooling time, expertise, and resources. Community-driven annotation efforts can pave the way for a new kind of collaboration among pathogen research communities to generate well-annotated reference data sets, beneficial not just for the genome being examined but for related species and the refinement of automatic gene prediction tools.
Collapse
Affiliation(s)
| | | | | | - Nishadi H. De Silva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| |
Collapse
|
15
|
A specific fungal transcription factor controls effector gene expression and orchestrates the establishment of the necrotrophic pathogen lifestyle on wheat. Sci Rep 2019; 9:15884. [PMID: 31685928 PMCID: PMC6828707 DOI: 10.1038/s41598-019-52444-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
The fungus Parastagonospora nodorum infects wheat through the use of necrotrophic effector (NE) proteins that cause host-specific tissue necrosis. The Zn2Cys6 transcription factor PnPf2 positively regulates NE gene expression and is required for virulence on wheat. Little is known about other downstream targets of PnPf2. We compared the transcriptomes of the P. nodorum wildtype and a strain deleted in PnPf2 (pf2-69) during in vitro growth and host infection to further elucidate targets of PnPf2 signalling. Gene ontology enrichment analysis of the differentially expressed (DE) genes revealed that genes associated with plant cell wall degradation and proteolysis were enriched in down-regulated DE gene sets in pf2-69 compared to SN15. In contrast, genes associated with redox control, nutrient and ion transport were up-regulated in the mutant. Further analysis of the DE gene set revealed that PnPf2 positively regulates twelve genes that encode effector-like proteins. Two of these genes encode proteins with homology to previously characterised effectors in other fungal phytopathogens. In addition to modulating effector gene expression, PnPf2 may play a broader role in the establishment of a necrotrophic lifestyle by orchestrating the expression of genes associated with plant cell wall degradation and nutrient assimilation.
Collapse
|
16
|
Richards JK, Stukenbrock EH, Carpenter J, Liu Z, Cowger C, Faris JD, Friesen TL. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet 2019; 15:e1008223. [PMID: 31626626 PMCID: PMC6821140 DOI: 10.1371/journal.pgen.1008223] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/30/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi rapidly evolve in response to environmental selection pressures in part due to their genomic plasticity. Parastagonospora nodorum, a fungal pathogen of wheat and causal agent of septoria nodorum blotch, responds to selection pressure exerted by its host, influencing the gain, loss, or functional diversification of virulence determinants, known as effector genes. Whole genome resequencing of 197 P. nodorum isolates collected from spring, durum, and winter wheat production regions of the United States enabled the examination of effector diversity and genomic regions under selection specific to geographically discrete populations. 1,026,859 SNPs/InDels were used to identify novel loci, as well as SnToxA and SnTox3 as factors in disease. Genes displaying presence/absence variation, predicted effector genes, and genes localized on an accessory chromosome had significantly higher pN/pS ratios, indicating a higher rate of sequence evolution. Population structure analyses indicated two P. nodorum populations corresponding to the Upper Midwest (Population 1) and Southern/Eastern United States (Population 2). Prevalence of SnToxA varied greatly between the two populations which correlated with presence of the host sensitivity gene Tsn1 in the most prevalent cultivars in the corresponding regions. Additionally, 12 and 5 candidate effector genes were observed to be under diversifying selection among isolates from Population 1 and 2, respectively, but under purifying selection or neutrally evolving in the opposite population. Selective sweep analysis revealed 10 and 19 regions that had recently undergone positive selection in Population 1 and 2, respectively, involving 92 genes in total. When comparing genes with and without presence/absence variation, those genes exhibiting this variation were significantly closer to transposable elements. Taken together, these results indicate that P. nodorum is rapidly adapting to distinct selection pressures unique to spring and winter wheat production regions by rapid adaptive evolution and various routes of genomic diversification, potentially facilitated through transposable element activity.
Collapse
Affiliation(s)
- Jonathan K. Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Eva H. Stukenbrock
- Department of Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jessica Carpenter
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Christina Cowger
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
| | - Justin D. Faris
- Cereal Crops Research Unit, Edward T. Schaefer Agricultural Research Center, USDA-ARS, Fargo, North Dakota, United States of America
| | - Timothy L. Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
- Cereal Crops Research Unit, Edward T. Schaefer Agricultural Research Center, USDA-ARS, Fargo, North Dakota, United States of America
| |
Collapse
|
17
|
Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. MOLECULAR PLANT PATHOLOGY 2019; 20:1279-1297. [PMID: 31361080 PMCID: PMC6715603 DOI: 10.1111/mpp.12841] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fungal plant pathogens secrete effector proteins and metabolites to cause disease. Additionally, some species transfer small RNAs (sRNAs) into plant cells to silence host mRNAs through complementary base pairing and suppress plant immunity. The fungus Sclerotinia sclerotiorum infects over 600 plant species, but little is known about the molecular processes that govern interactions with its many hosts. In particular, evidence for the production of sRNAs by S. sclerotiorum during infection is lacking. We sequenced sRNAs produced by S. sclerotiorum in vitro and during infection of two host species, Arabidopsis thaliana and Phaseolus vulgaris. We found that S. sclerotiorum produces at least 374 distinct highly abundant sRNAs during infection, mostly originating from repeat-rich plastic genomic regions. We predicted the targets of these sRNAs in A. thaliana and found that these genes were significantly more down-regulated during infection than the rest of the genome. Predicted targets of S. sclerotiorum sRNAs in A. thaliana were enriched for functional domains associated with plant immunity and were more strongly associated with quantitative disease resistance in a genome-wide association study (GWAS) than the rest of the genome. Mutants in A. thaliana predicted sRNA target genes SERK2 and SNAK2 were more susceptible to S. sclerotiorum than wild-type, suggesting that S. sclerotiorum sRNAs may contribute to the silencing of immune components in plants. The prediction of fungal sRNA targets in plant genomes can be combined with other global approaches, such as GWAS, to assist in the identification of plant genes involved in quantitative disease resistance.
Collapse
Affiliation(s)
- Mark Derbyshire
- Centre for Crop and Disease ManagementCurtin UniversityPerthWestern AustraliaAustralia
| | - Malick Mbengue
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Marielle Barascud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Olivier Navaud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| |
Collapse
|
18
|
Peters Haugrud AR, Zhang Z, Richards JK, Friesen TL, Faris JD. Genetics of Variable Disease Expression Conferred by Inverse Gene-For-Gene Interactions in the Wheat- Parastagonospora nodorum Pathosystem. PLANT PHYSIOLOGY 2019; 180:420-434. [PMID: 30858234 PMCID: PMC6501074 DOI: 10.1104/pp.19.00149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 05/18/2023]
Abstract
The wheat-Parastagonospora nodorum pathosystem involves the recognition of pathogen-secreted necrotrophic effectors (NEs) by corresponding wheat NE sensitivity genes. This inverse gene-for-gene recognition leads to necrotrophic effector-triggered susceptibility and ultimately septoria nodorum blotch disease. Here, we used multiple pathogen isolates to individually evaluate the effects of the host gene-NE interactions Tan spot necrosis1-Stagonospora nodorum ToxinA (Tsn1-SnToxA), Stagonospora nodorum necrosis1-Stagonospora nodorum Toxin1 (Snn1-SnTox1), and Stagonospora nodorum necrosis3-B genome homeolog1-Stagonospora nodorum Toxin3 (Snn3-B1-SnTox3), alone and in various combinations, to determine the relative importance of these interactions in causing disease. Genetic analysis of a recombinant inbred wheat population inoculated separately with three P. nodorum isolates, all of which produce all three NEs, indicated that the Tsn1-SnToxA and Snn3-B1-SnTox3 interactions contributed to disease caused by all four isolates, but their effects varied and ranged from epistatic to additive. The Snn1-SnTox1 interaction was associated with increased disease for one isolate, but for other isolates, there was evidence that this interaction inhibited the expression of other host gene-NE interactions. RNA sequencing analysis in planta showed that SnTox1 was differentially expressed between these three isolates after infection. Further analysis of NE gene-knockout isolates showed that the effect of some interactions could be masked or inhibited by other compatible interactions, and the regulation of this occurs at the level of NE gene transcription. Collectively, these results show that the inverse gene-for-gene interactions leading to necrotrophic effector-triggered susceptibility in the wheat-P. nodorum pathosystem vary in their effects depending on the genetic backgrounds of the pathogen and host, and interplay among the interactions is complex and intricately regulated.
Collapse
Affiliation(s)
| | - Zengcui Zhang
- United States Department of Agriculture-Agriculture Research Service, Cereal Crops Research Unit, Eduard T. Schafer Agricultural Research Center, Fargo, North Dakota 58102
| | - Jonathan K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Timothy L Friesen
- United States Department of Agriculture-Agriculture Research Service, Cereal Crops Research Unit, Eduard T. Schafer Agricultural Research Center, Fargo, North Dakota 58102
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Justin D Faris
- United States Department of Agriculture-Agriculture Research Service, Cereal Crops Research Unit, Eduard T. Schafer Agricultural Research Center, Fargo, North Dakota 58102
| |
Collapse
|
19
|
Apollo: Democratizing genome annotation. PLoS Comput Biol 2019; 15:e1006790. [PMID: 30726205 PMCID: PMC6380598 DOI: 10.1371/journal.pcbi.1006790] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 01/10/2019] [Indexed: 12/05/2022] Open
Abstract
Genome annotation is the process of identifying the location and function of a genome's encoded features. Improving the biological accuracy of annotation is a complex and iterative process requiring researchers to review and incorporate multiple sources of information such as transcriptome alignments, predictive models based on sequence profiles, and comparisons to features found in related organisms. Because rapidly decreasing costs are enabling an ever-growing number of scientists to incorporate sequencing as a routine laboratory technique, there is widespread demand for tools that can assist in the deliberative analytical review of genomic information. To this end, we present Apollo, an open source software package that enables researchers to efficiently inspect and refine the precise structure and role of genomic features in a graphical browser-based platform. Some of Apollo’s newer user interface features include support for real-time collaboration, allowing distributed users to simultaneously edit the same encoded features while also instantly seeing the updates made by other researchers on the same region in a manner similar to Google Docs. Its technical architecture enables Apollo to be integrated into multiple existing genomic analysis pipelines and heterogeneous laboratory workflow platforms. Finally, we consider the implications that Apollo and related applications may have on how the results of genome research are published and made accessible.
Collapse
|
20
|
Low TY, Mohtar MA, Ang MY, Jamal R. Connecting Proteomics to Next‐Generation Sequencing: Proteogenomics and Its Current Applications in Biology. Proteomics 2018; 19:e1800235. [DOI: 10.1002/pmic.201800235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI)Universiti Kebangsaan Malaysia 56000 Kuala Lumpur Malaysia
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI)Universiti Kebangsaan Malaysia 56000 Kuala Lumpur Malaysia
| | - Mia Yang Ang
- UKM Medical Molecular Biology Institute (UMBI)Universiti Kebangsaan Malaysia 56000 Kuala Lumpur Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI)Universiti Kebangsaan Malaysia 56000 Kuala Lumpur Malaysia
| |
Collapse
|
21
|
Syme RA, Tan KC, Rybak K, Friesen TL, McDonald BA, Oliver RP, Hane JK. Pan-Parastagonospora Comparative Genome Analysis-Effector Prediction and Genome Evolution. Genome Biol Evol 2018; 10:2443-2457. [PMID: 30184068 PMCID: PMC6152946 DOI: 10.1093/gbe/evy192] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
We report a fungal pan-genome study involving Parastagonospora spp., including 21 isolates of the wheat (Triticum aestivum) pathogen Parastagonospora nodorum, 10 of the grass-infecting Parastagonospora avenae, and 2 of a closely related undefined sister species. We observed substantial variation in the distribution of polymorphisms across the pan-genome, including repeat-induced point mutations, diversifying selection and gene gains and losses. We also discovered chromosome-scale inter and intraspecific presence/absence variation of some sequences, suggesting the occurrence of one or more accessory chromosomes or regions that may play a role in host-pathogen interactions. The presence of known pathogenicity effector loci SnToxA, SnTox1, and SnTox3 varied substantially among isolates. Three P. nodorum isolates lacked functional versions for all three loci, whereas three P. avenae isolates carried one or both of the SnTox1 and SnTox3 genes, indicating previously unrecognized potential for discovering additional effectors in the P. nodorum-wheat pathosystem. We utilized the pan-genomic comparative analysis to improve the prediction of pathogenicity effector candidates, recovering the three confirmed effectors among our top-ranked candidates. We propose applying this pan-genomic approach to identify the effector repertoire involved in other host-microbe interactions involving necrotrophic pathogens in the Pezizomycotina.
Collapse
Affiliation(s)
- Robert A Syme
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Kasia Rybak
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Timothy L Friesen
- Cereal Crops Research Unit, USDA-ARS Red River Valley Agricultural Research Center, Fargo, North Dakota
| | - Bruce A McDonald
- Plant Pathology Group, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Richard P Oliver
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
22
|
Lin SY, Chooi YH, Solomon PS. The global regulator of pathogenesis PnCon7 positively regulates Tox3 effector gene expression through direct interaction in the wheat pathogen Parastagonospora nodorum. Mol Microbiol 2018; 109:78-90. [PMID: 29722915 DOI: 10.1111/mmi.13968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
To investigate effector gene regulation in the wheat pathogenic fungus Parastagonospora nodorum, the promoter and expression of Tox3 was characterised through a series of complementary approaches. Promoter deletion and DNase I footprinting experiments identified a 25 bp region in the Tox3 promoter as being required for transcription. Subsequent yeast one-hybrid analysis using the DNA sequence as bait identified that interacting partner as the C2H2 zinc finger transcription factor PnCon7, a putative master regulator of pathogenesis. Silencing of PnCon7 resulted in the down-regulation of Tox3 demonstrating that the transcription factor has a positive regulatory role on gene expression. Analysis of Tox3 expression in the PnCon7 silenced strains revealed a strong correlation with PnCon7 transcript levels, supportive of a direct regulatory role. Subsequent pathogenicity assays using PnCon7-silenced isolates revealed that the transcription factor was required for Tox3-mediated disease. The expression of two other necrotrophic effectors (ToxA and Tox1) was also affected but in a non-dose dependent manner suggesting that the regulatory role of PnCon7 on these genes was indirect. Collectively, these data have advanced our fundamental understanding of the Con7 master regulator of pathogenesis by demonstrating its positive regulatory role on the Tox3 effector in P. nodorum through direct interaction.
Collapse
Affiliation(s)
- Shao-Yu Lin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
23
|
Moolhuijzen P, See PT, Hane JK, Shi G, Liu Z, Oliver RP, Moffat CS. Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genomics 2018; 19:279. [PMID: 29685100 PMCID: PMC5913888 DOI: 10.1186/s12864-018-4680-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/16/2018] [Indexed: 02/08/2023] Open
Abstract
Background Pyrenophora tritici-repentis (Ptr) is a necrotrophic fungal pathogen that causes the major wheat disease, tan spot. We set out to provide essential genomics-based resources in order to better understand the pathogenicity mechanisms of this important pathogen. Results Here, we present eight new Ptr isolate genomes, assembled and annotated; representing races 1, 2 and 5, and a new race. We report a high quality Ptr reference genome, sequenced by PacBio technology with Illumina paired-end data support and optical mapping. An estimated 98% of the genome coverage was mapped to 10 chromosomal groups, using a two-enzyme hybrid approach. The final reference genome was 40.9 Mb and contained a total of 13,797 annotated genes, supported by transcriptomic and proteogenomics data sets. Conclusions Whole genome comparative analysis revealed major chromosomal segmental rearrangements and fusions, highlighting intraspecific genome plasticity in this species. Furthermore, the Ptr race classification was not supported at the whole genome level, as phylogenetic analysis did not cluster the ToxA producing isolates. This expansion of available Ptr genomics resources will directly facilitate research aimed at controlling tan spot disease. Electronic supplementary material The online version of this article (10.1186/s12864-018-4680-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia.
| | - Pao Theen See
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - James K Hane
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Richard P Oliver
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Caroline S Moffat
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
24
|
Richards JK, Wyatt NA, Liu Z, Faris JD, Friesen TL. Reference Quality Genome Assemblies of Three Parastagonospora nodorum Isolates Differing in Virulence on Wheat. G3 (BETHESDA, MD.) 2018; 8:393-399. [PMID: 29233913 PMCID: PMC5919747 DOI: 10.1534/g3.117.300462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023]
Abstract
Parastagonospora nodorum, the causal agent of Septoria nodorum blotch in wheat, has emerged as a model necrotrophic fungal organism for the study of host-microbe interactions. To date, three necrotrophic effectors have been identified and characterized from this pathogen, including SnToxA, SnTox1, and SnTox3. Necrotrophic effector identification was greatly aided by the development of a draft genome of Australian isolate SN15 via Sanger sequencing, yet it remained largely fragmented. This research presents the development of nearly finished genomes of P. nodorum isolates Sn4, Sn2000, and Sn79-1087 using long-read sequencing technology. RNAseq analysis of isolate Sn4, consisting of eight time points covering various developmental and infection stages, mediated the annotation of 13,379 genes. Analysis of these genomes revealed large-scale polymorphism between the three isolates, including the complete absence of contig 23 from isolate Sn79-1087, and a region of genome expansion on contig 10 in isolates Sn4 and Sn2000. Additionally, these genomes exhibit the hallmark characteristics of a "two-speed" genome, being partitioned into two distinct GC-equilibrated and AT-rich compartments. Interestingly, isolate Sn79-1087 contains a lower proportion of AT-rich segments, indicating a potential lack of evolutionary hotspots. These newly sequenced genomes, consisting of telomere-to-telomere assemblies of nearly all 23 P. nodorum chromosomes, provide a robust foundation for the further examination of effector biology and genome evolution.
Collapse
Affiliation(s)
- Jonathan K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Nathan A Wyatt
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Justin D Faris
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fargo, North Dakota 58102
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fargo, North Dakota 58102
| |
Collapse
|
25
|
McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS. The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana. MOLECULAR PLANT PATHOLOGY 2018; 19:432-439. [PMID: 28093843 PMCID: PMC6638140 DOI: 10.1111/mpp.12535] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 05/18/2023]
Abstract
Bipolaris sorokiniana is the causal agent of multiple diseases on wheat and barley and is the primary constraint to cereal production throughout South Asia. Despite its significance, the molecular basis of disease is poorly understood. To address this, the genomes of three Australian isolates of B. sorokiniana were sequenced and screened for known pathogenicity genes. Sequence analysis revealed that the isolate BRIP10943 harboured the ToxA gene, which has been associated previously with disease in the wheat pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis. Analysis of the regions flanking ToxA within B. sorokiniana revealed that it was embedded within a 12-kb genomic element nearly identical to the corresponding regions in P. nodorum and P. tritici-repentis. A screen of 35 Australian B. sorokiniana isolates confirmed that ToxA was present in 12 isolates. Sequencing of the ToxA genes within these isolates revealed two haplotypes, which differed by a single non-synonymous nucleotide substitution. Pathogenicity assays showed that a B. sorokiniana isolate harbouring ToxA was more virulent on wheat lines that contained the sensitivity gene when compared with a non-ToxA isolate. This work demonstrates that proteins that confer host-specific virulence can be horizontally acquired across multiple species. This acquisition can dramatically increase the virulence of pathogenic strains on susceptible cultivars, which, in an agricultural setting, can have devastating economic and social impacts.
Collapse
Affiliation(s)
- Megan C. McDonald
- Plant Sciences Division, Research School of BiologyThe Australian National UniversityCanberra2601Australia
| | - Dag Ahren
- Department of BiologyLund UniversityLund22101Sweden
| | - Steven Simpfendorfer
- SW Department of Primary IndustriesTamworth Agricultural InstituteTamworthNSW2340Australia
| | - Andrew Milgate
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSW2650Australia
| | - Peter S. Solomon
- Plant Sciences Division, Research School of BiologyThe Australian National UniversityCanberra2601Australia
| |
Collapse
|
26
|
Reference Assembly and Annotation of the Pyrenophora teres f. teres Isolate 0-1. G3-GENES GENOMES GENETICS 2018; 8:1-8. [PMID: 29167271 PMCID: PMC5765338 DOI: 10.1534/g3.117.300196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pyrenophora teres f. teres, the causal agent of net form net blotch (NFNB) of barley, is a destructive pathogen in barley-growing regions throughout the world. Typical yield losses due to NFNB range from 10 to 40%; however, complete loss has been observed on highly susceptible barley lines where environmental conditions favor the pathogen. Currently, genomic resources for this economically important pathogen are limited to a fragmented draft genome assembly and annotation, with limited RNA support of the P. teres f. teres isolate 0-1. This research presents an updated 0-1 reference assembly facilitated by long-read sequencing and scaffolding with the assistance of genetic linkage maps. Additionally, genome annotation was mediated by RNAseq analysis using three infection time points and a pure culture sample, resulting in 11,541 high-confidence gene models. The 0-1 genome assembly and annotation presented here now contains the majority of the repetitive content of the genome. Analysis of the 0-1 genome revealed classic characteristics of a “two-speed” genome, being compartmentalized into GC-equilibrated and AT-rich compartments. The assembly of repetitive AT-rich regions will be important for future investigation of genes known as effectors, which often reside in close proximity to repetitive regions. These effectors are responsible for manipulation of the host defense during infection. This updated P. teres f. teres isolate 0-1 reference genome assembly and annotation provides a robust resource for the examination of the barley–P. teres f. teres host–pathogen coevolution.
Collapse
|
27
|
Rybak K, See PT, Phan HTT, Syme RA, Moffat CS, Oliver RP, Tan K. A functionally conserved Zn 2 Cys 6 binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host-specific virulence of two major Pleosporales fungal pathogens of wheat. MOLECULAR PLANT PATHOLOGY 2017; 18:420-434. [PMID: 27860150 PMCID: PMC6638278 DOI: 10.1111/mpp.12511] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch of wheat (Triticum aestivum). The interaction is mediated by multiple fungal necrotrophic effector-dominant host sensitivity gene interactions. The three best-characterized effector-sensitivity gene systems are SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. These effector genes are highly expressed during early infection, but expression decreases as the infection progresses to tissue necrosis and sporulation. However, the mechanism of regulation is unknown. We have identified and functionally characterized a gene, referred to as PnPf2, which encodes a putative zinc finger transcription factor. PnPf2 deletion resulted in the down-regulation of SnToxA and SnTox3 expression. Virulence on Tsn1 and Snn3 wheat cultivars was strongly reduced. The SnTox1-Snn1 interaction remained unaffected. Furthermore, we have also identified and deleted an orthologous PtrPf2 from the tan spot fungus Pyrenophora tritici-repentis which possesses a near-identical ToxA that was acquired from P. nodorum via horizontal gene transfer. PtrPf2 deletion also resulted in the down-regulation of PtrToxA expression and a near-complete loss of virulence on Tsn1 wheat. We have demonstrated, for the first time, evidence for a functionally conserved signalling component that plays a role in the regulation of a common/horizontally transferred effector found in two major fungal pathogens of wheat.
Collapse
Affiliation(s)
- Kasia Rybak
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Pao Theen See
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Huyen T. T. Phan
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Robert A. Syme
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Caroline S. Moffat
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Richard P. Oliver
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Kar‐Chun Tan
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| |
Collapse
|
28
|
Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghy S, Rollins J, van Kan J, Seidl MF, Faino L, Mbengue M, Navaud O, Raffaele S, Hammond-Kosack K, Heard S, Oliver R. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol 2017; 9:593-618. [PMID: 28204478 PMCID: PMC5381539 DOI: 10.1093/gbe/evx030] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
Sclerotinia sclerotiorum is a phytopathogenic fungus with over 400 hosts including numerous economically important cultivated species. This contrasts many economically destructive pathogens that only exhibit a single or very few hosts. Many plant pathogens exhibit a “two-speed” genome. So described because their genomes contain alternating gene rich, repeat sparse and gene poor, repeat-rich regions. In fungi, the repeat-rich regions may be subjected to a process termed repeat-induced point mutation (RIP). Both repeat activity and RIP are thought to play a significant role in evolution of secreted virulence proteins, termed effectors. We present a complete genome sequence of S. sclerotiorum generated using Single Molecule Real-Time Sequencing technology with highly accurate annotations produced using an extensive RNA sequencing data set. We identified 70 effector candidates and have highlighted their in planta expression profiles. Furthermore, we characterized the genome architecture of S. sclerotiorum in comparison to plant pathogens that exhibit “two-speed” genomes. We show that there is a significant association between positions of secreted proteins and regions with a high RIP index in S. sclerotiorum but we did not detect a correlation between secreted protein proportion and GC content. Neither did we detect a negative correlation between CDS content and secreted protein proportion across the S. sclerotiorum genome. We conclude that S. sclerotiorum exhibits subtle signatures of enhanced mutation of secreted proteins in specific genomic compartments as a result of transposition and RIP activity. However, these signatures are not observable at the whole-genome scale.
Collapse
Affiliation(s)
- Mark Derbyshire
- Centre for Crop and Disease Management Department of Environment and Agriculture, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Matthew Denton-Giles
- Centre for Crop and Disease Management Department of Environment and Agriculture, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | | | - Jeffrey Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL
| | - Jan van Kan
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - Luigi Faino
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - Malick Mbengue
- LIPM Université de Toulouse INRA CNRS, Castanet-Tolosan, France
| | - Olivier Navaud
- LIPM Université de Toulouse INRA CNRS, Castanet-Tolosan, France
| | | | - Kim Hammond-Kosack
- Department of Plant Biology and Crop Sciences, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Stephanie Heard
- Department of Plant Pathology, University of Florida, Gainesville, FL
- Department of Plant Biology and Crop Sciences, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Richard Oliver
- Centre for Crop and Disease Management Department of Environment and Agriculture, Curtin University, Bentley, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Abstract
Omics approaches have become popular in biology as powerful discovery tools, and currently gain in interest for diagnostic applications. Establishing the accurate genome sequence of any organism is easy, but the outcome of its annotation by means of automatic pipelines remains imprecise. Some protein-encoding genes may be missed as soon as they are specific and poorly conserved in a given taxon, while important to explain the specific traits of the organism. Translational starts are also poorly predicted in a relatively important number of cases, thus impacting the protein sequence database used in proteomics, comparative genomics, and systems biology. The use of high-throughput proteomics data to improve genome annotation is an attractive option to obtain a more comprehensive molecular picture of a given organism. Here, protocols for reannotating prokaryote genomes are described based on shotgun proteomics and derivatization of protein N-termini with a positively charged reagent coupled to high-resolution tandem mass spectrometry.
Collapse
|
30
|
Gao Y, Liu Z, Faris JD, Richards J, Brueggeman RS, Li X, Oliver RP, McDonald BA, Friesen TL. Validation of Genome-Wide Association Studies as a Tool to Identify Virulence Factors in Parastagonospora nodorum. PHYTOPATHOLOGY 2016; 106:1177-1185. [PMID: 27442533 DOI: 10.1094/phyto-02-16-0113-fi] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parastagonospora nodorum is a necrotrophic fungal pathogen causing Septoria nodorum blotch on wheat. We have identified nine necrotrophic effector-host dominant sensitivity gene interactions, and we have cloned three of the necrotrophic effector genes, including SnToxA, SnTox1, and SnTox3. Because sexual populations of P. nodorum are difficult to develop under lab conditions, genome-wide association study (GWAS) is the best population genomic approach to identify genomic regions associated with traits using natural populations. In this article, we used a global collection of 191 P. nodorum isolates from which we identified 2,983 single-nucleotide polymorphism (SNP) markers and gene markers for SnToxA and SnTox3 to evaluate the power of GWAS on two popular wheat breeding lines that were sensitive to SnToxA and SnTox3. Strong marker trait associations (MTA) with P. nodorum virulence that mapped to SnTox3 and SnToxA were first identified using the marker set described above. A novel locus in the P. nodorum genome associated with virulence was also identified as a result of this analysis. To evaluate whether a sufficient level of marker saturation was available, we designed a set of primers every 1 kb in the genomic regions containing SnToxA and SnTox3. Polymerase chain reaction amplification was performed across the 191 isolates and the presence/absence polymorphism was scored and used as the genotype. The marker proximity necessary to identify MTA flanking SnToxA and SnTox3 ranged from 4 to 5 and 1 to 7 kb, respectively. Similar analysis was performed on the novel locus. Using a 45% missing data threshold, two more SNP were identified spanning a 4.6-kb genomic region at the novel locus. These results showed that the rate of linkage disequilibrium (LD) decay in P. nodorum and, likely, other fungi is high compared with plants and animals. The fast LD decay in P. nodorum is an advantage only if sufficient marker density is attained. Based on our results with the SnToxA and SnTox3 regions, markers are needed every 9 or 8 kb, respectively, or in every gene, to guarantee that genes associated with a quantitative trait such as virulence are not missed.
Collapse
Affiliation(s)
- Yuanyuan Gao
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Zhaohui Liu
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Justin D Faris
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Jonathan Richards
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Robert S Brueggeman
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Xuehui Li
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Richard P Oliver
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Bruce A McDonald
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Timothy L Friesen
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| |
Collapse
|