1
|
Li J, Ma J, Cao R, Zhang Q, Li M, Wang W, Wang Y, Li W, Zhu Y, Leng L. A skin organoid-based infection platform identifies an inhibitor specific for HFMD. Nat Commun 2025; 16:2513. [PMID: 40082449 PMCID: PMC11906866 DOI: 10.1038/s41467-025-57610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
The EV-A71 poses a serious threat to the health and lives of children. The EV-A71 can be transmitted by direct and indirect skin contact. Therefore, there is an urgent need to create novel skin models using human-derived cells to study the biology and pathogenesis of the virus and facilitate drug screening. Here, we use human induced pluripotent stem cells-derived skin organoids (hiPSC-SOs) as a model for EV-A71 infection and find that multiple cell types within the skin organoids, including epidermal cells, hair follicle cells, fibroblasts, and nerve cells, express EV-A71 receptors and are susceptible to EV-A71 infection. We elucidate the specific response of different cell types to EV-A71 and reveal that EV-A71 infection can degrade extracellular collagen and affect fibroblasts. We find that EV-A71 can mediate epidermal cell damage through autophagy and Integrin/Hippo-YAP/TAZ signaling pathways, thereby promoting hyperproliferation of progenitor cells. Based on this finding, we identify an autophagy-associated protein as a drug target of EV-A71 and discover an EV-A71 replication inhibitor. Altogether, these data suggest that hiPSC-SOs can be used as an infectious disease model to study skin infectious diseases, providing a valuable resource for drug screening to identify candidate virus therapeutics.
Collapse
Affiliation(s)
- Jun Li
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qiyu Zhang
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wenwen Wang
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Yujie Wang
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yunping Zhu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ling Leng
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Wong KT, Hooi YT, Tan SH, Ong KC. Emerging and re-emerging viral infections of the central nervous system in Australasia and beyond. Pathology 2025; 57:230-240. [PMID: 39799084 DOI: 10.1016/j.pathol.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025]
Abstract
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country. Another orthoflavivirus, Murray Valley encephalitis virus, has re-emerged in Australia. The Hendra henipavirus together with Nipah henipavirus are listed as high-risk pathogens by the World Health Organization because both can cause lethal encephalitis. The former remains a health threat in Australasia because bats may still be able to spread the infection to unvaccinated Australian horses and other animals acting as intermediate hosts, and thence to humans. The global COVID-19 pandemic, caused by the emerging severe acute respiratory syndrome coronavirus-2, a virus transmitted from animals to humans that was first described and first arose in China, is associated with acute and long-lasting CNS pathology. Fortunately, the pathology and pathogenesis of these important neurotropic viruses are now better understood, leading to better management protocols and prevention strategies. Pathologists are in a unique position to contribute to the diagnosis and advancement in our knowledge of infectious diseases. This review summarises some of the current knowledge about a few important emerging and re-emerging CNS infections in Australasia and beyond.
Collapse
Affiliation(s)
- Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| | - Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Hooi YT, Fu TL, Tan SH, Ong KC, Tan CY, Wong KT. Neuroinvasion via Peripheral Nerves in Epidemic Viral Encephalitis Caused by Enterovirus, Orthoflavivirus and SARS-Coronavirus. Neuropathol Appl Neurobiol 2025; 51:e70005. [PMID: 39989030 DOI: 10.1111/nan.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Pathogens invade the central nervous system (CNS) and cause infections either through the haematogenous route or via peripheral nerves. Neuroinvasion via peripheral nerves, involving spinal or cranial somatic nerves, is well-established for certain viral encephalitides such as rabies, herpes simplex encephalitis, and poliomyelitis. Advances in understanding emerging and re-emerging viruses that cause epidemic CNS infections have highlighted the growing importance of peripheral nerve pathways in viral neuroinvasion. This review focuses on epidemic viral encephalitides caused by three groups of RNA viruses, viz., enteroviruses (enterovirus A71 and enterovirus D68), orthoflaviviruses (West Nile virus and Japanese encephalitis virus), and severe acute respiratory syndrome coronaviruses (mainly severe acute respiratory coronavirus-2). We examine evidence supporting the hypothesis that peripheral nerve viral transmission may play an increasingly significant if not more critical role than the haematogenous route in neuroinvasion.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Tzeh Long Fu
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Yang Tan
- MBBS Class of 2017/2022, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
4
|
Kalam N, Balasubramaniam V. Changing Epidemiology of Hand, Foot, and Mouth Disease Causative Agents and Contributing Factors. Am J Trop Med Hyg 2024; 111:740-755. [PMID: 39106854 PMCID: PMC11448535 DOI: 10.4269/ajtmh.23-0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/18/2024] [Indexed: 08/09/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common viral infection primarily affecting children. It causes vesicles on the skin and inside the mouth. Although most cases get better on their own, severe cases can lead to complications such as brain stem encephalitis, meningoencephalitis, acute flaccid paralysis, and pulmonary edema. Hand, foot, and mouth disease is caused by various enteroviruses, with enterovirus A71 (EV-A71) and coxsackievirus A16 being the most common. However, recent studies have shown a shift in the molecular epidemiology of HFMD-causing pathogens, with coxsackievirus A6 and coxsackievirus A10 causing more infections. In addition, extensive recombination events have been identified among enterovirus strains, which may have a role in faster evolution and extinction of dominant enterovirus serotypes. Other strains of enterovirus can also cause severe complications, and there has been an increase in mortality associated with brain stem encephalitis in children under 3 years of age and teenagers. Currently, there are no effective antiviral therapies available to treat enterovirus infections. Vaccines against EV-A71 have been approved and are now used in mainland China. Studying the changing epidemiology of HFMD pathogens and the evolution patterns of its causative agents is crucial in developing effective prevention and control strategies. Increased interest in the molecular epidemiology of HFMD causative agents has led to a better understanding of the critical drivers of HFMD outbreaks, which can inform efforts to prevent and control the disease.
Collapse
Affiliation(s)
- Nida Kalam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
5
|
Svyatchenko VA, Legostaev SS, Lutkovskiy RY, Protopopova EV, Ponomareva EP, Omigov VV, Taranov OS, Ternovoi VA, Agafonov AP, Loktev VB. Coxsackievirus A7 and Enterovirus A71 Significantly Reduce SARS-CoV-2 Infection in Cell and Animal Models. Viruses 2024; 16:909. [PMID: 38932201 PMCID: PMC11209502 DOI: 10.3390/v16060909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we investigated the features of co-infection with SARS-CoV-2 and the enterovirus vaccine strain LEV8 of coxsackievirus A7 or enterovirus A71 for Vero E6 cells and Syrian hamsters. The investigation of co-infection with SARS-CoV-2 and LEV-8 or EV-A71 in the cell model showed that a competitive inhibitory effect for these viruses was especially significant against SARS-CoV-2. Pre-infection with enteroviruses in the animals caused more than a 100-fold decrease in the levels of SARS-CoV-2 virus replication in the respiratory tract and more rapid clearance of infectious SARS-CoV-2 from the lower respiratory tract. Co-infection with SARS-CoV-2 and LEV-8 or EV-A71 also reduced the severity of clinical manifestations of the SARS-CoV-2 infection in the animals. Additionally, the histological data illustrated that co-infection with strain LEV8 of coxsackievirus A7 decreased the level of pathological changes induced by SARS-CoV-2 in the lungs. Research into the chemokine/cytokine profile demonstrated that the studied enteroviruses efficiently triggered this part of the antiviral immune response, which is associated with the significant inhibition of SARS-CoV-2 infection. These results demonstrate that there is significant viral interference between the studied strain LEV-8 of coxsackievirus A7 or enterovirus A71 and SARS-CoV-2 in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Valery B. Loktev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia; (V.A.S.); (S.S.L.); (R.Y.L.); (E.V.P.); (E.P.P.); (V.V.O.); (O.S.T.); (V.A.T.); (A.P.A.)
| |
Collapse
|
6
|
A Review with Updated Perspectives on the Antiviral Potentials of Traditional Medicinal Plants and Their Prospects in Antiviral Therapy. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081287. [PMID: 36013466 PMCID: PMC9410304 DOI: 10.3390/life12081287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023]
Abstract
Exploration of the traditional medicinal plants is essential for drug discovery and development for various pharmacological targets. Various phytochemicals derived from medicinal plants were extensively studied for antiviral activity. This review aims to highlight the role of medicinal plants against viral infections that remains to be the leading cause of human death globally. Antiviral properties of phytoconstituents isolated from 45 plants were discussed for five different types of viral infections. The ability of the plants’ active compounds with antiviral effects was highlighted as well as their mechanism of action, pharmacological studies, and toxicological data on a variety of cell lines. The experimental values, such as IC50, EC50, CC50, ED50, TD50, MIC100, and SI of the active compounds, were compiled and discussed to determine their potential. Among the plants mentioned, 11 plants showed the most promising medicinal plants against viral infections. Sambucus nigra and Clinacanthus nutans manifested antiviral activity against three different types of viral infections. Echinacea purpurea, Echinacea augustofolia, Echinacea pallida, Plantago major, Glycyrrhiza uralensis, Phyllanthus emblica, Camellia sinensis, and Cistus incanus exhibited antiviral activity against two different types of viral infections. Interestingly, Nicotiana benthamiana showed antiviral effects against mosquito-borne infections. The importance of phenolic acids, alkamides, alkylamides, glycyrrhizin, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epigallocatechin (EGC), protein-based plant-produced ZIKV Envelope (PzE), and anti-CHIKV monoclonal antibody was also reviewed. An exploratory approach to the published literature was conducted using a variety of books and online databases, including Scopus, Google Scholar, ScienceDirect, Web of Science, and PubMed Central, with the goal of obtaining, compiling, and reconstructing information on a variety of fundamental aspects, especially regarding medicinal plants. This evaluation gathered important information from all available library databases and Internet searches from 1992 to 2022.
Collapse
|
7
|
Abstract
Human enterovirus D68 (EV-D68) is a globally reemerging respiratory pathogen that is associated with the development of acute flaccid myelitis (AFM) in children. Currently, there are no approved vaccines or treatments for EV-D68 infection, and there is a paucity of data related to the virus and host-specific factors that predict disease severity and progression to the neurologic syndrome. EV-D68 infection of various animal models has served as an important platform for characterization and comparison of disease pathogenesis between historic and contemporary isolates. Still, there are significant gaps in our knowledge of EV-D68 pathogenesis that constrain the development and evaluation of targeted vaccines and antiviral therapies. Continued refinement and characterization of animal models that faithfully reproduce key elements of EV-D68 infection and disease is essential for ensuring public health preparedness for future EV-D68 outbreaks.
Collapse
|
8
|
Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. A novel orally infected hamster model for Coxsackievirus A16 hand-foot-and-mouth disease and encephalomyelitis. J Transl Med 2020; 100:1262-1275. [PMID: 32601355 DOI: 10.1038/s41374-020-0456-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - David Perera
- Institute of Health & Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Reverse Genetic Analysis of Adaptive Mutations within the Capsid Proteins of Enterovirus 71 (EV-A71) Strains Necessary for Infection of CHO-K1 Cells. Virol Sin 2019; 35:110-114. [PMID: 31637630 DOI: 10.1007/s12250-019-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022] Open
|
10
|
Gai X, Zhang Q, Lu H, Yang Z, Zhu L, Li X, Wang X. A neonatal murine model for evaluation of enterovirus E HY12 virus infection and pathogenicity. PLoS One 2018; 13:e0193155. [PMID: 29447290 PMCID: PMC5814063 DOI: 10.1371/journal.pone.0193155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/04/2018] [Indexed: 12/31/2022] Open
Abstract
Backgrounds HY12 viruses are enteroviruses recently isolated from cattle characterized by severe respiratory and digestive disease with high morbidity and mortality in China. While the viruses exhibit unique biological and molecular characters distinct from known enterovirus E, the pathogenicity and viral pathogenesis remains largely unknown. Methods Neonatal mice of Balb/C, ICR, and Kunming strain are infected with HY12 to determine the susceptible mouse strain. The minimal infection dose, the virus infection routes, the pathogenicity and tissue tropism for HY12 were determined by infecting susceptible mice with HY12 viruses, and confirmed by different approaches including virus isolation and recovery, virus detection, histopathology, and immunohistochemistry. Results A murine model for HY12 infection was successfully established and employed to investigate the pathogenicity of HY12 viruses. ICR mouse strain is the most susceptible strain for HY12 infection with a minimal infective dose as 2×106TCID50/mouse. HY12 viruses have the capability of infecting ICR suckling mice via all infection routes including intranasal administration, oral administration, intraperitoneal injection, subcutaneous injection, and intramuscular injection, which are confirmed by the isolation and recovery of viruses from HY12-infected mice; detection of viruses by RT-PCR; observations of pathological lesions and inflammatory cell infiltrations in the intestine, lung, liver, and brain; uncovering of HY12 virus antigens in majority of tissues, especially in intestine, lung, and infected brain of mice by immunohistochemistry assay. Conclusions A neonatal murine model for HY12 infection is successfully established for determining the susceptible mouse strain, the minimal infective dose, the infection route, the viral pathogenicity and the tropism of HY12, thus providing an invaluable model system for elucidating the pathogenesis of HY12 viruses and the elicited immunity.
Collapse
Affiliation(s)
- Xiaochun Gai
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qun Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haibing Lu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhanqing Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lisai Zhu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
- Key laboratory for Zoonosis, Ministry of Education, Institute of Zoonosis of the Jilin University, Changchun, China
- * E-mail: ,
| |
Collapse
|
11
|
Phyu WK, Ong KC, Wong KT. Modelling person-to-person transmission in an Enterovirus A71 orally infected hamster model of hand-foot-and-mouth disease and encephalomyelitis. Emerg Microbes Infect 2017; 6:e62. [PMID: 28698666 PMCID: PMC5567166 DOI: 10.1038/emi.2017.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 05/07/2017] [Indexed: 11/20/2022]
Abstract
Enterovirus A71 (EV-A71) causes hand-foot-and-mouth disease (HFMD), which may be complicated by fatal encephalomyelitis. Although fecal–oral or oral–oral routes are important in person-to-person transmission, how viral shedding and exposure may predispose individuals to infection remains unknown. We investigated person-to-person transmission by using a model of HFMD and encephalomyelitis based on EV-A71 oral infection of 2-week-old hamsters. Animals (index animals) infected with 104 50% cell culture infective doses of virus uniformly developed severe disease four days post-infection (dpi), whereas littermate contacts developed severe disease after six to seven days of exposure to index animals. Virus was detected in oral washes and feces at 3–4 dpi in index animals and at three to eight days after exposure to index animals in littermate contact animals. In a second experiment, non-littermate contact animals exposed for 8 or 12 h to index animals developed the disease six and four days post-exposure, respectively. Tissues from killed index and contact animals, studied by light microscopy, immunohistochemistry and in situ hybridization, exhibited mild inflammatory lesions and/or viral antigens/RNA in the squamous epithelia of the oral cavity, tongue, paws, skin, esophagus, gastric epithelium, salivary glands, lacrimal glands, central nervous system neurons, muscles (skeletal, cardiac and smooth muscles) and liver. Orally shed viruses were probably derived from infected oral mucosa and salivary glands, whereas fecal viruses may have derived from these sites as well as from esophageal and gastric epithelia. Asymptomatic seroconversion in exposed mother hamsters was demonstrated. Our hamster model should be useful in studying person-to-person EV-A71 transmission and how drugs and vaccines may interrupt transmission.
Collapse
Affiliation(s)
- Win Kyaw Phyu
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
12
|
Squamous epitheliotropism of Enterovirus A71 in human epidermis and oral mucosa. Sci Rep 2017; 7:45069. [PMID: 28322333 PMCID: PMC5359612 DOI: 10.1038/srep45069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/16/2017] [Indexed: 12/31/2022] Open
Abstract
Hand-foot-and-mouth disease is a self-limiting paediatric infectious disease commonly caused by Enterovirus A71 (Genus: Enterovirus, Family: Picornaviridae). Typical lesions in and around the hands, feet, oral cavity and other places may rarely be complicated by acute flaccid paralysis and acute encephalomyelitis. Although virus is readily cultured from skin vesicles and oral secretions, the cellular target/s of Enterovirus A71 in human skin and oral mucosa are unknown. In Enterovirus A71-infected human skin and oral mucosa organotypic cultures derived from the prepuce and lip biopsies, focal viral antigens and viral RNA were localized to cytoplasm of epidermal and mucosal squamous cells as early as 2 days post-infection. Viral antigens/RNA were associated with cytoplasmic vacuolation and cellular necrosis. Infected primary prepuce epidermal keratinocyte cultures showed cytopathic effects with concomitant detection of viral antigens from 2 days post-infection. Supernatant and/or tissue homogenates from prepuce skin organotypic cultures and primary prepuce keratinocyte cultures showed viral titres consistent with active viral replication. Our data strongly support Enterovirus A71 squamous epitheliotropism in the human epidermis and oral mucosa, and suggest that these organs are important primary and/or secondary viral replication sites that contribute significantly to oral and cutaneous viral shedding resulting in person-to-person transmission, and viraemia, which could lead to neuroinvasion.
Collapse
|
13
|
A clinically authentic mouse model of enterovirus 71 (EV-A71)-induced neurogenic pulmonary oedema. Sci Rep 2016; 6:28876. [PMID: 27357918 PMCID: PMC4928123 DOI: 10.1038/srep28876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
Enterovirus 71 (EV-A71) is a neurotropic virus that sporadically causes fatal neurologic illness among infected children. Animal models of EV-A71 infection exist, but they do not recapitulate in animals the spectrum of disease and pathology observed in fatal human cases. Specifically, neurogenic pulmonary oedema (NPE)—the main cause of EV-A71 infection-related mortality—is not observed in any of these models. This limits their utility in understanding viral pathogenesis of neurologic infections. We report the development of a mouse model of EV-A71 infection displaying NPE in severely affected animals. We inoculated one-week-old BALB/c mice with an adapted EV-A71 strain and identified clinical signs consistent with observations in human cases and other animal models. We also observed respiratory distress in some mice. At necropsy, we found their lungs to be heavier and incompletely collapsed compared to other mice. Serum levels of catecholamines and histopathology of lung and brain tissues of these mice strongly indicated onset of NPE. The localization of virally-induced brain lesions also suggested a potential pathogenic mechanism for EV-A71-induced NPE. This novel mouse model of virally-induced NPE represents a valuable resource for studying viral mechanisms of neuro-pathogenesis and pre-clinical testing of potential therapeutics and prophylactics against EV-A71-related neurologic complications.
Collapse
|