1
|
Nakagami S, Kajiwara T, Tsuda K, Sawa S. CLE peptide signaling in plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2024; 15:1481650. [PMID: 39507357 PMCID: PMC11538016 DOI: 10.3389/fpls.2024.1481650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Cell-cell communication is essential for both unicellular and multicellular organisms. Secreted peptides that act as diffusive ligands are utilized by eukaryotic organisms to transduce information between cells to coordinate developmental and physiological processes. In plants, The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes encode a family of secreted small peptides which play pivotal roles in stem cell homeostasis in various types of meristems. Accumulated evidence has revealed that CLE peptides mediate trans-kingdom interactions between plants and microbes, including pathogens and symbionts. This review highlights the emerging roles of CLE peptide signaling in plant-microbe interactions, focusing on their involvement in nodulation, immunity, and symbiosis with arbuscular mycorrhizal fungi. Understanding these interactions provides insights into the sophisticated regulatory networks to balance plant growth and defense, enhancing our knowledge of plant biology and potential agricultural applications.
Collapse
Affiliation(s)
- Satoru Nakagami
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Taiki Kajiwara
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Flores Francisco BG, Ponce IM, Plascencia Espinosa MÁ, Mendieta Moctezuma A, López Y López VE. Advances in the biological control of phytoparasitic nematodes via the use of nematophagous fungi. World J Microbiol Biotechnol 2021; 37:180. [PMID: 34562178 DOI: 10.1007/s11274-021-03151-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Agricultural production is one of most important activities for food supply and demand, that provides a source of raw materials, and generates commercial opportunities for other industries around the world. It may be both positively and negatively affected by climatic and biological factors. Negative biological factors are those caused by viruses, bacteria, or parasites. Given the serious problems posed by phytoparasitic nematodes for farmers, causing crop losses globally every year, the agrochemical industry has developed compounds with the capacity to inhibit their development; however, they can cause the death of other beneficial organisms and their lixiviation can contaminate the water table. On the other hand, the positive biological factors are found in biotechnology, the scientific discipline that develops products, such as nematophagous fungi (of which Purpureocillium lilacinum and Pochonia chlamydosporia have the greatest potential), for the control of pests and/or diseases. The present review focuses on the importance of nematophagous fungi, particularly sedentary endoparasitic nematodes, their research on the development of biological control agents, the mass production of fungi Purpureocillium lilacinum and Pochonia chlamydosporia, and their limited commercialization due to the lack of rigorous methods that enable the anticipation of complex interactions between plant and phytopathogenic agents.
Collapse
Affiliation(s)
- Bianca Guadalupe Flores Francisco
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Isabel Méndez Ponce
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Miguel Ángel Plascencia Espinosa
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Aarón Mendieta Moctezuma
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
3
|
Iqbal S, Jones MGK, Fosu-Nyarko J. RNA interference of an orthologue of Dicer of Meloidogyne incognita alludes to the gene's importance in nematode development. Sci Rep 2021; 11:11156. [PMID: 34045504 PMCID: PMC8160347 DOI: 10.1038/s41598-021-90363-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Dicers and dicer-like enzymes play an essential role in small RNA processing in eukaryotes. Nematodes are thought to encode one dicer, DCR-1; only that for Caenorhabditis spp. is well-characterised. Using genomic sequences of eight root-knot nematodes (Meloidogyne spp.), we identified putative coding sequences typical of eukaryotic DICERS. We noted that the primary and secondary structures of DICERS they encode were different for different Meloidogyne species and even for isolates of the same species, suggesting paralogy for the gene. One of the genes for M. incognita (Midcr-1.1) expressed in eggs, juvenile stage 2 and adults, with the highest expression in the adult females. All the Meloidogyne DICERS had seven major domains typical of those for Caenorhabditis spp. and humans with very similar protein folding. RNAi of Midcr-1.1 in J2s using seven dsRNAs, each based on sequences encoding the domains, induced mild paralysis but measurable knockdown was detected in J2s treated with five of the dsRNAs. For four of the dsRNAs, the RNAi effect lasted and reduced the nematode’s infectivity. Also, host plant delivery of dsRNAs complementary to coding sequences of the Dicer Dimerisation domain impaired development, reducing nematode infection by 71%. These results confirm the importance of the gene to nematode health.
Collapse
Affiliation(s)
- Sadia Iqbal
- Crop Biotechnology Research Group, College of Science, Health, Engineering and Education, WA State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia.
| | - Michael G K Jones
- Crop Biotechnology Research Group, College of Science, Health, Engineering and Education, WA State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia
| | - John Fosu-Nyarko
- Crop Biotechnology Research Group, College of Science, Health, Engineering and Education, WA State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia.
| |
Collapse
|
4
|
Ghaemi R, Pourjam E, Safaie N, Verstraeten B, Mahmoudi SB, Mehrabi R, De Meyer T, Kyndt T. Molecular insights into the compatible and incompatible interactions between sugar beet and the beet cyst nematode. BMC PLANT BIOLOGY 2020; 20:483. [PMID: 33092522 PMCID: PMC7583174 DOI: 10.1186/s12870-020-02706-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/18/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris subsp. vulgaris) is an economically important crop that provides nearly one third of the global sugar production. The beet cyst nematode (BCN), Heterodera schachtii, causes major yield losses in sugar beet and other crops worldwide. The most effective and economic approach to control this nematode is growing tolerant or resistant cultivars. To identify candidate genes involved in susceptibility and resistance, the transcriptome of sugar beet and BCN in compatible and incompatible interactions at two time points was studied using mRNA-seq. RESULTS In the susceptible cultivar, most defense-related genes were induced at 4 dai while suppressed at 10 dai but in the resistant cultivar Nemakill, induction of genes involved in the plant defense response was observed at both time points. In the compatible interaction, alterations in phytohormone-related genes were detected. The effect of exogenous application of Methyl Jasmonate and ET-generator ethephon on susceptible plants was therefore investigated and the results revealed significant reduction in plant susceptibility. Genes putatively involved in the resistance of Nemakill were identified, such as genes involved in phenylpropanoid pathway and genes encoding CYSTM domain-containing proteins, F-box proteins, chitinase, galactono-1,4-lactone dehydrogenase and CASP-like protein. Also, the transcriptome of the BCN was analyzed in infected root samples and several novel potential nematode effector genes were found. CONCLUSIONS Our data provides detailed insights into the plant and nematode transcriptional changes occurring during compatible and incompatible interactions between sugar beet and BCN. Many important genes playing potential roles in susceptibility or resistance of sugar beet against BCN, as well as some BCN effectors with a potential role as avr proteins were identified. In addition, our findings indicate the effective role of jasmonate and ethylene in enhancing sugar beet defense response against BCN. This research provides new molecular insights into the plant-nematode interactions that can be used to design novel management strategies against BCN.
Collapse
Affiliation(s)
- Razieh Ghaemi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Pourjam
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Bruno Verstraeten
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Seyed Bagher Mahmoudi
- Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, P.O. Box 8415683111, Isfahan, Iran
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
5
|
Zhou C, Chen J, Niu H, Ouyang S, Wu X. Study on the population evolution of Ascaris lumbricoides and Ascaris suum based on whole genome resequencing. Vet Parasitol 2020; 279:109062. [DOI: 10.1016/j.vetpar.2020.109062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
|
6
|
Elashry AM, Habash SS, Vijayapalani P, Brocke-Ahmadinejad N, Blümel R, Seetharam A, Schoof H, Grundler FMW. Transcriptome and Parasitome Analysis of Beet Cyst Nematode Heterodera schachtii. Sci Rep 2020; 10:3315. [PMID: 32094373 PMCID: PMC7039985 DOI: 10.1038/s41598-020-60186-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
Beet cyst nematodes depend on a set of secretory proteins (effectors) for the induction and maintenance of their syncytial feeding sites in plant roots. In order to understand the relationship between the beet cyst nematode H. schachtii and its host, identification of H. schachtii effectors is crucial and to this end, we sequenced a whole animal pre-infective J2-stage transcriptome in addition to pre- and post-infective J2 gland cell transcriptome using Next Generation Sequencing (NGS) and identified a subset of sequences representing putative effectors. Comparison between the transcriptome of H. schachtii and previously reported related cyst nematodes and root-knot nematodes revealed a subset of esophageal gland related sequences and putative effectors in common across the tested species. Structural and functional annotation of H. schachtii transcriptome led to the identification of nearly 200 putative effectors. Six putative effector expressions were quantified using qPCR and three of them were functionally analyzed using RNAi. Phenotyping of the RNAi nematodes indicated that all tested genes decrease the level of nematodes pathogenicity and/or the average female size, thereby regulating cyst nematode parasitism. These discoveries contribute to further understanding of the cyst nematode parasitism.
Collapse
Affiliation(s)
- Abdelnaser M Elashry
- INRES Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, 53115, Germany. .,Strube research GmbH & Co. KG, Hauptstrasse 1, 38387, Söllingen, Germany.
| | - Samer S Habash
- INRES Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, 53115, Germany
| | | | - Nahal Brocke-Ahmadinejad
- INRES Crop Bioinformatics, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany.,Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Roman Blümel
- INRES Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, 53115, Germany.,Bayer Crop Science, Alfred-Nobel-Str. 50, 40789, Monheim, Germany
| | - Arun Seetharam
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.,Genome Informatics Facility, Office of Biotechnology, 448 Bessey Hall, Iowa State University, Ames, USA
| | - Heiko Schoof
- INRES Crop Bioinformatics, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
| | - Florian M W Grundler
- INRES Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, 53115, Germany
| |
Collapse
|
7
|
Vieira P, Nemchinov LG. A novel species of RNA virus associated with root lesion nematode Pratylenchus penetrans. J Gen Virol 2019; 100:704-708. [DOI: 10.1099/jgv.0.001246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Paulo Vieira
- 1Molecular Plant Pathology Laboratory, Agricultural Research Service, USA Department of Agriculture, Beltsville, USA
- 2School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, USA
| | - Lev G. Nemchinov
- 1Molecular Plant Pathology Laboratory, Agricultural Research Service, USA Department of Agriculture, Beltsville, USA
| |
Collapse
|
8
|
Barnes SN, Masonbrink RE, Maier TR, Seetharam A, Sindhu AS, Severin AJ, Baum TJ. Heterodera glycines utilizes promiscuous spliced leaders and demonstrates a unique preference for a species-specific spliced leader over C. elegans SL1. Sci Rep 2019; 9:1356. [PMID: 30718603 PMCID: PMC6362198 DOI: 10.1038/s41598-018-37857-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Spliced leader trans-splicing (SLTS) plays a part in the maturation of pre-mRNAs in select species across multiple phyla but is particularly prevalent in Nematoda. The role of spliced leaders (SL) within the cell is unclear and an accurate assessment of SL occurrence within an organism is possible only after extensive sequencing data are available, which is not currently the case for many nematode species. SL discovery is further complicated by an absence of SL sequences from high-throughput sequencing results due to incomplete sequencing of the 5'-ends of transcripts during RNA-seq library preparation, known as 5'-bias. Existing datasets and novel methodology were used to identify both conserved SLs and unique hypervariable SLs within Heterodera glycines, the soybean cyst nematode. In H. glycines, twenty-one distinct SL sequences were found on 2,532 unique H. glycines transcripts. The SL sequences identified on the H. glycines transcripts demonstrated a high level of promiscuity, meaning that some transcripts produced as many as nine different individual SL-transcript combinations. Most uniquely, transcriptome analysis revealed that H. glycines is the first nematode to demonstrate a higher SL trans-splicing rate using a species-specific SL over well-conserved Caenorhabditis elegans SL-like sequences.
Collapse
Affiliation(s)
- Stacey N Barnes
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA
| | - Rick E Masonbrink
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | - Thomas R Maier
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA
| | - Arun Seetharam
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | | | - Andrew J Severin
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | - Thomas J Baum
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Amin RB, Karegar A, Afsharifar A, Niazi A, Karimi M. Disruption of the Pathogenicity and Sex Ratio of the Beet Cyst Nematode Heterodera schachtii by Host-Delivered RNA Interference. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1337-1346. [PMID: 29975161 DOI: 10.1094/mpmi-05-18-0141-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The beet cyst nematode (BCN) Heterodera schachtii causes serious damage and yield losses in numerous important crops worldwide. This study examines the efficacy of three types of transgenic Arabidopsis RNA interference (RNAi) lines to decrease the biological activity of this devastating nematode. The first RNAi construct (E1E2-RNAi) targets two nematode endoglucanase genes, which are involved in BCN pathogenicity, the second construct (MSP-RNAi) contains a fragment corresponding to the major sperm protein transcript necessary for BCN development and reproduction, and the third construct (E1E2MSP-RNAi) comprises all three target fragments. Transcript expression profiles of the target genes in all biological stages of the nematode were determined for the initial inoculated population and the resulting progeny. Bioassay data under indoor aseptic cultivation indicated that feeding on these RNAi lines did not affect pathogenic activity and reproductive capacity of the initial population, whereas inoculating the progeny into new transgenic plants corresponding with the lines from which they were recovered reduced the nematode penetration and the number of eggs per cyst. In addition, the male/female ratio increased more than the double, and the effects of RNAi continued in the second generation of the nematodes, because the progeny derived from E1E2-RNAi and E1E2MSP-RNAi lines showed an impaired ability to infect wild-type plants.
Collapse
Affiliation(s)
- Reza Behzadi Amin
- 1 Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karegar
- 1 Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- 2 Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- 3 Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Mansour Karimi
- 4 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; and
- 5 Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
10
|
Lin J, Ye R, Thekke-Veetil T, Staton ME, Arelli PR, Bernard EC, Hewezi T, Domier LL, Hajimorad MR. A novel picornavirus-like genome from transcriptome sequencing of sugar beet cyst nematode represents a new putative genus. J Gen Virol 2018; 99:1418-1424. [PMID: 30156527 DOI: 10.1099/jgv.0.001139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Analysis of transcriptome sequence data from eggs and second-stage juveniles (J2s) of sugar beet cyst nematode (SBCN, Heterodera schachtii) identified the full-length genome of a positive-sense single-stranded RNA virus, provisionally named sugar beet cyst nematode virus 1 (SBCNV1). The SBCNV1 sequence was detected in both eggs and J2s, indicating its possible vertical transmission. The 9503-nucleotide genome sequence contains a single long open reading frame, which was predicted to encode a polyprotein with conserved domains for picornaviral structural proteins proximal to its amino terminus and RNA helicase, cysteine proteinase and RNA-dependent RNA polymerase (RdRp) conserved domains proximal to its carboxyl terminus, hallmarks of viruses belonging to the order Picornavirales. Phylogenetic analysis of the predicted SBCNV1 RdRp amino acid sequence indicated that the SBCNV1 sequence is most closely related to members of the family Secoviridae, which includes genera of nematode-transmitted plant-infecting viruses. SBCNV1 represents the first fully sequenced viral genome from SBCN.
Collapse
Affiliation(s)
- Jingyu Lin
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rongjian Ye
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.,†Present address: Life Science and Technology Center, China National Seed Group Company Limited, Wuhan 430075, PR China
| | | | - Margaret E Staton
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Prakash R Arelli
- 3Crop Genetics Research Unit, USDA-ARS, 605 Airways Blvd., Jackson, TN 38301, USA
| | - Ernest C Bernard
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tarek Hewezi
- 4Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Leslie L Domier
- 2Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.,5Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - M R Hajimorad
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Ruark CL, Gardner M, Mitchum MG, Davis EL, Sit TL. Novel RNA viruses within plant parasitic cyst nematodes. PLoS One 2018; 13:e0193881. [PMID: 29509804 PMCID: PMC5839581 DOI: 10.1371/journal.pone.0193881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.
Collapse
Affiliation(s)
- Casey L. Ruark
- Department of Entomology and Plant Pathology, North Carolina State University, Thomas Hall, Raleigh, North Carolina, United States of America
| | - Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, 371H Bond Life Sciences Center, Columbia, Missouri, United States of America
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, 371H Bond Life Sciences Center, Columbia, Missouri, United States of America
| | - Eric L. Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Thomas Hall, Raleigh, North Carolina, United States of America
| | - Tim L. Sit
- Department of Entomology and Plant Pathology, North Carolina State University, Thomas Hall, Raleigh, North Carolina, United States of America
| |
Collapse
|
12
|
Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ, Korkin D, Mitchum MG. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci Rep 2018; 8:2505. [PMID: 29410430 PMCID: PMC5802810 DOI: 10.1038/s41598-018-20536-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
Soybean cyst nematode (SCN) Heterodera glycines is an obligate parasite that relies on the secretion of effector proteins to manipulate host cellular processes that favor the formation of a feeding site within host roots to ensure its survival. The sequence complexity and co-evolutionary forces acting upon these effectors remain unknown. Here we generated a de novo transcriptome assembly representing the early life stages of SCN in both a compatible and an incompatible host interaction to facilitate global effector mining efforts in the absence of an available annotated SCN genome. We then employed a dual effector prediction strategy coupling a newly developed nematode effector prediction tool, N-Preffector, with a traditional secreted protein prediction pipeline to uncover a suite of novel effector candidates. Our analysis distinguished between effectors that co-evolve with the host genotype and those conserved by the pathogen to maintain a core function in parasitism and demonstrated that alternative splicing is one mechanism used to diversify the effector pool. In addition, we confirmed the presence of viral and microbial inhabitants with molecular sequence information. This transcriptome represents the most comprehensive whole-nematode sequence currently available for SCN and can be used as a tool for annotation of expected genome assemblies.
Collapse
Affiliation(s)
- Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Nathan Johnson
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA.
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA.
| |
Collapse
|
13
|
Shah SJ, Anjam MS, Mendy B, Anwer MA, Habash SS, Lozano-Torres JL, Grundler FMW, Siddique S. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5949-5960. [PMID: 29053864 PMCID: PMC5854129 DOI: 10.1093/jxb/erx374] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes.
Collapse
Affiliation(s)
- Syed Jehangir Shah
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Muhammad Shahzad Anjam
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Badou Mendy
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Muhammad Arslan Anwer
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Samer S Habash
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | | | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
- Correspondence:
| |
Collapse
|
14
|
Chen C, Cui L, Chen Y, Zhang H, Liu P, Wu P, Qiu D, Zou J, Yang D, Yang L, Liu H, Zhou Y, Li H. Transcriptional responses of wheat and the cereal cyst nematode Heterodera avenae during their early contact stage. Sci Rep 2017; 7:14471. [PMID: 29101332 PMCID: PMC5670130 DOI: 10.1038/s41598-017-14047-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023] Open
Abstract
Cereal cyst nematode (Heterodera avenae) is attracted to and aggregated around wheat roots to initiate infection, but this interaction between wheat and the nematode is not fully understood. The transcriptional responses of both wheat and H. avenae were examined during their early contact stage by mRNA sequencing analysis; certain numbers of the differentially expressed genes (DEGs) were validated using quantitative real-time PCR. The immobile host wheat root only had 93 DEGs (27 up-regulated and 66 down-regulated), while the mobile plant parasitic nematode reacted much more actively with 879 DEGs (867 up-regulated and 12 down-regulated). Among them, a number of wheat DEGs (mostly down-regulated) were involved in biotic stress pathways, while several putative effector genes were up-regulated in the nematode DEGs. One putative chitinase-like effector gene of H. avenae was able to suppress BAX-triggered programmed cell death in Nicotiana benthamiana. Results of these experiments demonstrated that nematode responded more actively than wheat during the contact stage of parasitism. The parasite's responses mainly involved up-regulation of genes including at least one anti-plant-defence effector gene, whereas the host responses mainly involved down-regulation of certain defence-related genes.
Collapse
Affiliation(s)
- Changlong Chen
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Cui
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongpan Chen
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Hongjun Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Peipei Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingwei Zou
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Yang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Li Yang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwei Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zhou
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjie Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
15
|
Smiley RW, Dababat AA, Iqbal S, Jones MGK, Maafi ZT, Peng D, Subbotin SA, Waeyenberge L. Cereal Cyst Nematodes: A Complex and Destructive Group of Heterodera Species. PLANT DISEASE 2017; 101:1692-1720. [PMID: 30676930 DOI: 10.1094/pdis-03-17-0355-fe] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small grain cereals have served as the basis for staple foods, beverages, and animal feed for thousands of years. Wheat, barley, oats, rye, triticale, rice, and others are rich in calories, proteins, carbohydrates, vitamins, and minerals. These cereals supply 20% of the calories consumed by people worldwide and are therefore a primary source of energy for humans and play a vital role in global food and nutrition security. Global production of small grains increased linearly from 1960 to 2005, and then began to decline. Further decline in production is projected to continue through 2050 while global demand for these grains is projected to increase by 1% per annum. Currently, wheat, barley, and oat production exceeds consumption in developed countries, while in developing countries the consumption rate is higher than production. An increasing demand for meat and livestock products is likely to compound the demand for cereals in developing countries. Current production levels and trends will not be sufficient to fulfill the projected global demand generated by increased populations. For wheat, global production will need to be increased by 60% to fulfill the estimated demand in 2050. Until recently, global wheat production increased mostly in response to development of improved cultivars and farming practices and technologies. Production is now limited by biotic and abiotic constraints, including diseases, nematodes, insect pests, weeds, and climate. Among these constraints, plant-parasitic nematodes alone are estimated to reduce production of all world crops by 10%. Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals. Heavily invaded young plants are stunted and their lower leaves are often chlorotic, forming pale green patches in the field. Mature plants are also stunted, have a reduced number of tillers, and the roots are shallow and have a "bushy-knotted" appearance. CCNs comprise a number of closely-related species and are found in most regions where cereals are produced.
Collapse
Affiliation(s)
- Richard W Smiley
- Columbia Basin Agricultural Research Center, Oregon State University, Pendleton
| | - Abdelfattah A Dababat
- Soil Borne Pathogens Program, International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | - Sadia Iqbal
- School of Veterinary and Life Sciences,Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth
| | - Michael G K Jones
- School of Veterinary and Life Sciences,Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth
| | - Zahra Tanha Maafi
- Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran
| | - Deliang Peng
- Nematology Department, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing
| | - Sergei A Subbotin
- Plant Pest Diagnostics Center, California Department of Food and Agriculture, Sacramento; and Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow
| | - Lieven Waeyenberge
- Crop Protection Research Area, Plant Sciences Unit, Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|