1
|
Lang H, Wang H, Wang H, Zhong Z, Xie X, Zhang W, Guo J, Meng L, Hu X, Zhang X, Zheng H. Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees. Nat Commun 2023; 14:2778. [PMID: 37210527 DOI: 10.1038/s41467-023-38498-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023] Open
Abstract
Nosema ceranae is an intracellular parasite invading the midgut of honeybees, which causes serious nosemosis implicated in honeybee colony losses worldwide. The core gut microbiota is involved in protecting against parasitism, and the genetically engineering of the native gut symbionts provides a novel and efficient way to fight pathogens. Here, using laboratory-generated bees mono-associated with gut members, we find that Snodgrassella alvi inhibit microsporidia proliferation, potentially via the stimulation of host oxidant-mediated immune response. Accordingly, N. ceranae employs the thioredoxin and glutathione systems to defend against oxidative stress and maintain a balanced redox equilibrium, which is essential for the infection process. We knock down the gene expression using nanoparticle-mediated RNA interference, which targets the γ-glutamyl-cysteine synthetase and thioredoxin reductase genes of microsporidia. It significantly reduces the spore load, confirming the importance of the antioxidant mechanism for the intracellular invasion of the N. ceranae parasite. Finally, we genetically modify the symbiotic S. alvi to deliver dsRNA corresponding to the genes involved in the redox system of the microsporidia. The engineered S. alvi induces RNA interference and represses parasite gene expression, thereby inhibits the parasitism significantly. Specifically, N. ceranae is most suppressed by the recombinant strain corresponding to the glutathione synthetase or by a mixture of bacteria expressing variable dsRNA. Our findings extend our previous understanding of the protection of gut symbionts against N. ceranae and provide a symbiont-mediated RNAi system for inhibiting microsporidia infection in honeybees.
Collapse
Affiliation(s)
- Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Hao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Haoqing Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Zhaopeng Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xianbing Xie
- Department of Laboratory Animal Science, Nanchang University, 330006, Nanchang, China
| | - Wenhao Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, 650031, Kunming, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650031, Kunming, China
| | - Liang Meng
- BGI-Qingdao, BGI-Shenzhen, 266555, Qingdao, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xue Zhang
- College of Plant Protection, China Agricultural University, 100083, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.
| |
Collapse
|
2
|
Larragy SJ, Möllmann JS, Stout JC, Carolan JC, Colgan TJ. Signatures of Adaptation, Constraints, and Potential Redundancy in the Canonical Immune Genes of a Key Pollinator. Genome Biol Evol 2023; 15:evad039. [PMID: 37042738 PMCID: PMC10116582 DOI: 10.1093/gbe/evad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 04/13/2023] Open
Abstract
All organisms require an immune system to recognize, differentiate, and defend against pathogens. From an evolutionary perspective, immune systems evolve under strong selective pressures exerted by fast-evolving pathogens. However, the functional diversity of the immune system means that different immune components and their associated genes may evolve under varying forms of selection. Insect pollinators, which provide essential ecosystem services, are an important system in which to understand how selection has shaped immune gene evolution as their populations are experiencing declines with pathogens highlighted as a potential contributing factor. To improve our understanding of the genetic variation found in the immune genes of an essential pollinator, we performed whole-genome resequencing of wild-caught Bombus terrestris males. We first assessed nucleotide diversity and extended haplotype homozygosity for canonical immune genes finding the strongest signatures of positive selection acting on genes involved in pathogen recognition and antiviral defense, possibly driven by growing pathogen spread in wild populations. We also identified immune genes evolving under strong purifying selection, highlighting potential constraints on the bumblebee immune system. Lastly, we highlight the potential loss of function alleles present in the immune genes of wild-caught haploid males, suggesting that such genes are potentially less essential for development and survival and represent redundancy in the gene repertoire of the bumblebee immune system. Collectively, our analysis provides novel insights into the recent evolutionary history of the immune system of a key pollinator, highlighting targets of selection, constraints to adaptation, and potential redundancy.
Collapse
Affiliation(s)
- Sarah J Larragy
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jannik S Möllmann
- Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, College Green, Co. Dublin, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Thomas J Colgan
- Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- School of Biological, Earth and Environmental Sciences, University College Cork, Co. Cork, Ireland
| |
Collapse
|
3
|
Wei X, Zheng J, Evans JD, Huang Q. Transgenerational genomic analyses reveal allelic oscillation and purifying selection in a gut parasite Nosema ceranae. Front Microbiol 2022; 13:927892. [PMID: 36386715 PMCID: PMC9664190 DOI: 10.3389/fmicb.2022.927892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Standing genetic variation is the predominant source acted on by selection. Organisms with high genetic diversity generally show faster responses toward environmental change. Nosema ceranae is a microsporidian parasite of honey bees, infecting midgut epithelial cells. High genetic diversity has been found in this parasite, but the mechanism for the parasite to maintain this diversity remains unclear. This study involved continuous inoculation of N. ceranae to honey bees. We found that the parasites slowly increased genetic diversity over three continuous inoculations. The number of lost single nucleotide variants (SNVs) was balanced with novel SNVs, which were mainly embedded in coding regions. Classic allele frequency oscillation was found at the regional level along the genome, and the associated genes were enriched in apoptosis regulation and ATP binding. The ratio of synonymous and non-synonymous substitution suggests a purifying selection, and our results provide novel insights into the evolutionary dynamics in microsporidian parasites.
Collapse
Affiliation(s)
- Xiuxiu Wei
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China,Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Jialan Zheng
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, United States
| | - Qiang Huang
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China,Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,*Correspondence: Qiang Huang,
| |
Collapse
|
4
|
Fan X, Zhang W, Zhang K, Zhang J, Long Q, Wu Y, Zhang K, Zhu L, Chen D, Guo R. In-depth investigation of microRNA-mediated cross-kingdom regulation between Asian honey bee and microsporidian. Front Microbiol 2022; 13:1003294. [PMID: 36246221 PMCID: PMC9557207 DOI: 10.3389/fmicb.2022.1003294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Asian honey bee Apis cerana is the original host for Nosema ceranae, a unicellular fungal parasite that causes bee nosemosis throughout the world. Currently, interaction between A. cerana and N. ceranae is largely unknown. Our group previously prepared A. c. cerana workers’ midguts at 7 days post inoculation (dpi) and 10 dpi with N. ceranae spores as well as corresponding un-inoculated workers’ midguts, followed by cDNA library construction and a combination of RNAs-seq and small RNA-seq. Meanwhile, we previously prepared clean spores of N. ceranae, which were then subjected to cDNA library construction and deep sequencing. Here, based on the gained high-quality transcriptome datasets, N. ceranae differentially expressed mRNAs (DEmiRNAs) targeted by host DEmiRNAs, and A. c. cerana DEmRNAs targeted by microsporidian DEmiRNAs were deeply investigated, with a focus on targets involved in N. ceranae glycolysis/glyconeogenesis as well as virulence factors, and A. c. cerana energy metabolism and immune response. In A. c. cerana worker’s midguts at 7 (10) dpi (days post inoculation), eight (seven) up-regulated and six (two) down-regulated miRNAs were observed to target 97 (44) down-regulated and 60 (15) up-regulated N. ceranae mRNAs, respectively. Additionally, two up-regulated miRNAs (miR-60-y and miR-676-y) in host midgut at 7 dpi could target genes engaged in N. ceranae spore wall protein and glycolysis/gluconeogenesis, indicating potential host miRNA-mediated regulation of microsporidian virulence factor and energy metabolism. Meanwhile, in N. ceranae at 7 (10) dpi, 121 (110) up-regulated and 112 (104) down-regulated miRNAs were found to, respectively, target 343 (247) down-regulated and 138 (110) down-regulated mRNAs in A. c. cerana workers’ midguts. These targets in host were relevant to several crucial cellular and humoral immune pathways, such as phagasome, endocytosis, lysosomes, regulation of autophagy, and Jak–STAT signaling pathway, indicative of the involvement of N. ceranae DEmiRNAs in regulating these cellular and humoral immune pathways. In addition, N. ceranae miR-21-x was up-regulated at 7 dpi and had a target relative to oxidative phosphorylation, suggesting that miR-21-x may be used as a weapon to modulate this pivotal energy metabolism pathway. Furthermore, potential targeting relationships between two pairs of host DEmiRNAs-microsporidian DEmRNAs and two pairs of microsporidian DEmiRNAs-host DEmRNAs were validated using RT-qPCR. Our findings not only lay a foundation for exploring the molecular mechanism underlying cross-kingdom regulation between A. c. cerana workers and N. ceranae, but also offer valuable insights into Asian honey bee-microsporidian interaction.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiaxin Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kuihao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leran Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- *Correspondence: Rui Guo,
| |
Collapse
|
5
|
Fan Y, Wang J, Yu K, Zhang W, Cai Z, Sun M, Hu Y, Zhao X, Xiong C, Niu Q, Chen D, Guo R. Comparative Transcriptome Investigation of Nosema ceranae Infecting Eastern Honey Bee Workers. INSECTS 2022; 13:insects13030241. [PMID: 35323539 PMCID: PMC8952433 DOI: 10.3390/insects13030241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary At present, interaction between Nosema ceranae and Apis cerana is poorly understood, though A. cerana is the original host for N. ceranae. Here, comparative investigation was conducted using transcriptome data from N. ceranae infecting Apis cerana cerana workers at seven days post inoculation (dpi) and 10 dpi (NcT1 and NcT2 groups) as well as N. ceranae spores (NcCK group). There were 1411, 604, and 38 DEGs identified in NcCK vs. NcT1, NcCK vs. NcT2, and NcT1 vs. NcT2 comparison groups. Additionally, 10 upregulated genes and nine downregulated ones were shared by above-mentioned comparison groups. GO classification and KEGG pathway analysis suggested that these DEGs were engaged in a number of key functional terms and pathways such as cell part and glycolysis. Further analysis indicated that most of virulence factor-encoding genes were upregulated, while a few were downregulated during the fungal infection. Findings in this current work provide a basis for clarifying the molecular mechanism udnerlying N. ceranae infection and host-microsporidian interaction during bee nosemosis. Abstract Apis cerana is the original host for Nosema ceranae, a widespread fungal parasite resulting in honey bee nosemosis, which leads to severe losses to the apiculture industry throughout the world. However, knowledge of N. ceranae infecting eastern honey bees is extremely limited. Currently, the mechanism underlying N. ceranae infection is still largely unknown. Based on our previously gained high-quality transcriptome datasets derived from N. ceranae spores (NcCK group), N. ceranae infecting Apis cerana cerana workers at seven days post inoculation (dpi) and 10 dpi (NcT1 and NcT2 groups), comparative transcriptomic investigation was conducted in this work, with a focus on virulence factor-associated differentially expressed genes (DEGs). Microscopic observation showed that the midguts of A. c. cerana workers were effectively infected after inoculation with clean spores of N. ceranae. In total, 1411, 604, and 38 DEGs were identified from NcCK vs. NcT1, NcCK vs. NcT2, and NcT1 vs. NcT2 comparison groups. Venn analysis showed that 10 upregulated genes and nine downregulated ones were shared by the aforementioned comparison groups. The GO category indicated that these DEGs were involved in a series of functional terms relevant to biological process, cellular component, and molecular function such as metabolic process, cell part, and catalytic activity. Additionally, KEGG pathway analysis suggested that the DEGs were engaged in an array of pathways of great importance such as metabolic pathway, glycolysis, and the biosynthesis of secondary metabolites. Furthermore, expression clustering analysis demonstrated that the majority of genes encoding virulence factors such as ricin B lectins and polar tube proteins displayed apparent upregulation, whereas a few virulence factor-associated genes such as hexokinase gene and 6-phosphofructokinase gene presented downregulation during the fungal infection. Finally, the expression trend of 14 DEGs was confirmed by RT-qPCR, validating the reliability of our transcriptome datasets. These results together demonstrated that an overall alteration of the transcriptome of N. ceranae occurred during the infection of A. c. cerana workers, and most of the virulence factor-related genes were induced to activation to promote the fungal invasion. Our findings not only lay a foundation for clarifying the molecular mechanism underlying N. ceranae infection of eastern honey bee workers and microsporidian–host interaction.
Collapse
Affiliation(s)
- Yuanchan Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Jie Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Kejun Yu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Zongbing Cai
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Ying Hu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Xiao Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Cuiling Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Qingsheng Niu
- Jilin Province Institute of Apicultural Science, Jilin 132000, China;
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (D.C.); (R.G.); Tel./Fax: +86-0591-87640197 (R.G.)
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (D.C.); (R.G.); Tel./Fax: +86-0591-87640197 (R.G.)
| |
Collapse
|
6
|
Snow JW. Nosema apis and N. ceranae Infection in Honey bees: A Model for Host-Pathogen Interactions in Insects. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:153-177. [PMID: 35544003 DOI: 10.1007/978-3-030-93306-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been increased focus on the role of microbial attack as a potential cause of recent declines in the health of the western honey bee, Apis mellifera. The Nosema species, N. apis and N. ceranae, are microsporidian parasites that are pathogenic to honey bees, and infection by these species has been implicated as a key factor in honey bee losses. Honey bees infected with both Nosema spp. display significant changes in their biology at the cellular, tissue, and organismal levels impacting host metabolism, immune function, physiology, and behavior. Infected individuals lead to colony dysfunction and can contribute to colony disease in some circumstances. The means through which parasite growth and tissue pathology in the midgut lead to the dramatic physiological and behavioral changes at the organismal level are only partially understood. In addition, we possess only a limited appreciation of the elements of the host environment that impact pathogen growth and development. Critical for answering these questions is a mechanistic understanding of the host and pathogen machinery responsible for host-pathogen interactions. A number of approaches are already being used to elucidate these mechanisms, and promising new tools may allow for gain- and loss-of-function experiments to accelerate future progress.
Collapse
|
7
|
Effect of feeding chitosan or peptidoglycan on Nosema ceranae infection and gene expression related to stress and the innate immune response of honey bees (Apis mellifera). J Invertebr Pathol 2021; 185:107671. [PMID: 34563551 DOI: 10.1016/j.jip.2021.107671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
Nosema ceranae is a microsporidian parasite that causes nosema disease, an infection of the honey bee (Apis mellifera) midgut. Two pathogen-associated molecular patterns (PAMPs), chitosan and peptidoglycan, and N. ceranae spores were fed to worker bees in sucrose syrup and compared to non-inoculated and N. ceranae-inoculated bees without PAMPs. Both chitosan and peptidoglycan significantly increased bee survivorship and reduced spore numbers due to N. ceranae infection. To determine if these results were related to changes in health status, expression of the immune-related genes, hymenoptaecin and defensin2, and the stress tolerance-related gene, blue cheese, was compared to that of control bees. Compared to the inoculated control, bees with the dose of chitosan that significantly reduced N. ceranae spore numbers showed lower expression of hymenoptaecin and defensin2 early after infection, higher expression mid-infection of defensin2 and lower expression of all three genes late in infection. In contrast, higher expression of defensin2 early in the infection and all three genes late in the infection was observed with peptidoglycan treatment. Changes late in the parasite multiplication stage when mature spores would be released from ruptured host cells are less likely to have contributed to reduced spore production. Based on these results, it is concluded that feeding bees chitosan or peptidoglycan can reduce N. ceranae infection, which is at least partially related to altering the health of the bee by inducing immune and stress-related gene expression.
Collapse
|
8
|
Xing W, Zhou D, Long Q, Sun M, Guo R, Wang L. Immune Response of Eastern Honeybee Worker to Nosema ceranae Infection Revealed by Transcriptomic Investigation. INSECTS 2021; 12:insects12080728. [PMID: 34442293 PMCID: PMC8396959 DOI: 10.3390/insects12080728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Currently, knowledge regarding Apis cerana–Nosema ceranae interaction is very limited, though A. cerana is the original host of N. ceranae. Apis cerana cerana is a subspecies of A. cerana and a major bee species used in the beekeeping industry in China and other countries. Here, the effective infection of A. c. cerana workers by N. ceranae was verified, followed by transcriptomic investigation of host responses. Furthermore, immune responses between A. c. cerana and Apis mellifera ligustica were deeply compared and discussed. In total, 1127 and 957 N. ceranae-responsive genes were identified in the infected midguts at 7 d post-inoculation (dpi) and 10 dpi, respectively. Additionally, DEGs in workers’ midguts at both 7 dpi and 10 dpi were associated with six cellular immune pathways and three humoral immune pathways. Noticeably, one up-regulated gene was enriched in the NF-κB signaling pathway in the midgut at 10 dpi. Further analysis indicated that different cellular and humoral immune responses were employed by A. c. cerana and A. m. ligustica workers to combat N. ceranae. Our findings provide a foundation for clarifying the mechanisms regulating the immune response of A. c. cerana workers to N. ceranae invasion and developing new approaches to control bee microsporidiosis. Abstract Here, a comparative transcriptome investigation was conducted based on high-quality deep sequencing data from the midguts of Apis cerana cerana workers at 7 d post-inoculation (dpi) and 10 dpi with Nosema ceranae and corresponding un-inoculated midguts. PCR identification and microscopic observation of paraffin sections confirmed the effective infection of A. c. cerana worker by N. ceranae. In total, 1127 and 957 N. ceranae-responsive genes were identified in the infected midguts at 7 dpi and 10 dpi, respectively. RT-qPCR results validated the reliability of our transcriptome data. GO categorization indicated the differentially expressed genes (DEGs) were respectively engaged in 34 and 33 functional terms associated with biological processes, cellular components, and molecular functions. Additionally, KEGG pathway enrichment analysis showed that DEGs at 7 dpi and 10 dpi could be enriched in 231 and 226 pathways, respectively. Moreover, DEGs in workers’ midguts at both 7 dpi and 10 dpi were involved in six cellular immune pathways such as autophagy and phagosome and three humoral immune pathways such as the Toll/Imd signaling pathway and Jak-STAT signaling pathway. In addition, one up-regulated gene (XM_017055397.1) was enriched in the NF-κB signaling pathway in the workers’ midgut at 10 dpi. Further investigation suggested the majority of these DEGs were engaged in only one immune pathway, while a small number of DEGs were simultaneously involved in two immune pathways. These results together demonstrated that the overall gene expression profile in host midgut was altered by N. ceranae infection and some of the host immune pathways were induced to activation during fungal infection, whereas some others were suppressed via host–pathogen interaction. Our findings offer a basis for clarification of the mechanism underlying the immune response of A. c. cerana workers to N. ceranae infection, but also provide novel insights into eastern honeybee-microsporodian interaction.
Collapse
Affiliation(s)
- Wenhao Xing
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel./Fax: +86-0591-8764-0197
| | - Limei Wang
- Dongying Vocational Institute, Dongying 257000, China;
| |
Collapse
|
9
|
Effect of Immune Inducers on Nosema ceranae Multiplication and Their Impact on Honey Bee ( Apis mellifera L.) Survivorship and Behaviors. INSECTS 2020; 11:insects11090572. [PMID: 32858847 PMCID: PMC7563691 DOI: 10.3390/insects11090572] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023]
Abstract
Simple Summary Nosema disease of honey bees is caused by the fungus Nosema ceranae, which multiplies and damages cells lining the digestive tract, impairing food digestion and debilitating the bees. Current control involves using antibiotics, which is undesirable because of possible antibiotic resistance of the fungus and contamination of honey. In this study, the natural compounds flagellin, zymosan, chitosan and peptidoglycan were investigated as alternatives for controlling Nosema ceranae infections and for their effect on bee survivorship and behaviors. Chitosan and peptidoglycan reduced infection and increased survivorship of infected bees. However, neither compound altered the bees’ hygienic behavior, which was also not affected by the infection. Chitosan treated bees collected more pollen and nectar than healthy and infected bees. Memory in the bees was temporarily impaired by chitosan but was not affected by peptidoglycan, nor was it affected by Nosema ceranae. This study shows that chitosan and peptidoglycan provide benefits by partially reducing Nosema ceranae infection while increasing survivorship of honey bees. Also, chitosan and peptidoglycan increased the collection of pollen and nectar, which may improve bee health and colony productivity. These benefits could result in more honey produced, more crops pollinated and more healthy bee colonies. Abstract Nosema disease is a major disease of honey bees caused by two species of microsporidia, Nosema apis and N. ceranae. Current control involves using antibiotics, which is undesirable because of possible antibiotic resistance and contamination. In this study, flagellin, zymosan, chitosan, and peptidoglycan were investigated as alternatives for controlling N. ceranae infections and for their effect on bee survivorship and behaviors. Chitosan and peptidoglycan significantly reduced the infection, and significantly increased survivorship of infected bees, with chitosan being more effective. However, neither compound altered the bees’ hygienic behavior, which was also not affected by the infection. Chitosan significantly increased pollen foraging and both compounds significantly increased non-pollen foraging compared to healthy and infected bees. Memory retention, evaluated with the proboscis extension reflex assay, was temporarily impaired by chitosan but was not affected by peptidoglycan, nor was it affected by N. ceranae infection compared to the non-infected bees. This study indicates that chitosan and peptidoglycan provide benefits by partially reducing N. ceranae spore numbers while increasing survivorship compared to N. ceranae infected bees. Also, chitosan and peptidoglycan improved aspects of foraging behavior even more than in healthy bees, showing that they may act as stimulators of important honey bee behaviors.
Collapse
|
10
|
Impact of Mixed Infections of Gut Parasites Lotmaria passim and Nosema ceranae on the Lifespan and Immune-related Biomarkers in Apis mellifera. INSECTS 2020; 11:insects11070420. [PMID: 32650366 PMCID: PMC7412077 DOI: 10.3390/insects11070420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Lotmaria passim currently appears to be the predominant trypanosome in honey bees worldwide. Although, the specific effects of L. passim by single or mixed with other gut parasites such as Nosema ceranae on honey bees’ health is still unclear. We consequently measured bees’ survival, parasite loads, the expression of antimicrobial peptides (AMPs) and vitellogenin gene. Thus, (1) bees naturally infected with L. passim, (2) healthy bees inoculated with Nosema ceranae, (3) bees naturally infected with L. passim and inoculated with N. ceranae and (4) healthy bees (control) were maintained under controlled conditions. Honey bees infected with N. ceranae or with mixed infections of L. passim and N. ceranae had significantly lower survival rates than the control group at 20 days post-inoculation (dpi). A competitive suppression was also detected, provided that the L. passim load was significantly affected by the presence of N. ceranae at 15 dpi. Expressions of the AMPs defensin and hymenoptaecin rapidly (two hours post-inoculation) increased in bees infected with N. ceranae and mixed infections. However, this effect was not continuous. In fact, expressions of abaecin, defensin, hymenoptaecin and vitellogenin decreased drastically at 15 dpi in bees with both single and mixed infections. The decrease in the expression of AMPs and vitellogenin throughout this period was consistent with the reduced survivals observed in this study, indicating that mixed infections of L. passim and N. ceranae, and even into a scenario of competition between them, may have a synergic effect on the survival and immune-related gene expressions (biomarkers) of worker bees.
Collapse
|
11
|
Chen D, Chen H, Du Y, Zhou D, Geng S, Wang H, Wan J, Xiong C, Zheng Y, Guo R. Genome-Wide Identification of Long Non-Coding RNAs and Their Regulatory Networks Involved in Apis mellifera ligustica Response to Nosema ceranae Infection. INSECTS 2019; 10:insects10080245. [PMID: 31405016 PMCID: PMC6723323 DOI: 10.3390/insects10080245] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins, and lncRNAs have been proven to play pivotal roles in a wide range of biological processes in animals and plants. However, knowledge of expression patterns and potential roles of honeybee lncRNA response to Nosema ceranae infection is completely unknown. Here, we performed whole transcriptome strand-specific RNA sequencing of normal midguts of Apis mellifera ligustica workers (Am7CK, Am10CK) and N. ceranae-inoculated midguts (Am7T, Am10T), followed by comprehensive analyses using bioinformatic and molecular approaches. A total of 6353 A. m. ligustica lncRNAs were identified, including 4749 conserved lncRNAs and 1604 novel lncRNAs. These lncRNAs had minimal sequence similarities with other known lncRNAs in other species; however, their structural features were similar to counterparts in mammals and plants, including shorter exon and intron length, lower exon number, and lower expression level, compared with protein-coding transcripts. Further, 111 and 146 N. ceranae-responsive lncRNAs were identified from midguts at 7-days post-inoculation (dpi) and 10 dpi compared with control midguts. Twelve differentially expressed lncRNAs (DElncRNAs) were shared by Am7CK vs. Am7T and Am10CK vs. Am10T comparison groups, while the numbers of unique DElncRNAs were 99 and 134, respectively. Functional annotation and pathway analysis showed that the DElncRNAs may regulate the expression of neighboring genes by acting in cis and trans fashion. Moreover, we discovered 27 lncRNAs harboring eight known miRNA precursors and 513 lncRNAs harboring 2257 novel miRNA precursors. Additionally, hundreds of DElncRNAs and their target miRNAs were found to form complex competitive endogenous RNA (ceRNA) networks, suggesting that these DElncRNAs may act as miRNA sponges. Furthermore, DElncRNA-miRNA-mRNA networks were constructed and investigated, the results demonstrated that a portion of the DElncRNAs were likely to participate in regulating the host material and energy metabolism as well as cellular and humoral immune host responses to N. ceranae invasion. Our findings revealed here offer not only a rich genetic resource for further investigation of the functional roles of lncRNAs involved in the A. m. ligustica response to N. ceranae infection, but also a novel insight into understanding the host-pathogen interaction during honeybee microsporidiosis.
Collapse
Affiliation(s)
- Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huazhi Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Du
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingding Zhou
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sihai Geng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haipeng Wang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jieqi Wan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiling Xiong
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Huang Q, Li W, Chen Y, Retschnig-Tanner G, Yanez O, Neumann P, Evans JD. Dicer regulates Nosema ceranae proliferation in honeybees. INSECT MOLECULAR BIOLOGY 2019; 28:74-85. [PMID: 30171639 DOI: 10.1111/imb.12534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nosema ceranae is a microsporidian parasite that infects the honeybee midgut epithelium. The protein-coding gene Dicer is lost in most microsporidian genomes but is present in N. ceranae. By feeding infected honeybees with small interfering RNA targeting the N. ceranae gene coding Dicer (siRNA-Dicer), we found that N. ceranae spore loads were significantly reduced. In addition, over 10% of total parasite protein-coding genes showed significantly divergent expression profiles after siRNA-Dicer treatment. Parasite genes for cell proliferation, ABC transporters and hexokinase were downregulated at 3 days postinfection, a key point in the middle of parasite replication cycles. In addition, genes involved in metabolic pathways of honeybees and N. ceranae showed significant co-expression. Furthermore, the siRNA-Dicer treatment partly reversed the expression patterns of honeybee genes. The honeybee gene mucin-2-like showed significantly upregulation in the siRNA-Dicer group compared with the infection group continually at 4, 5 and 6 days postinfection, suggesting that the siRNA-Dicer feeding promoted the strength of the mucus barrier resulted from interrupted parasite proliferation. As the gene Dicer broadly regulates N. ceranae proliferation and honeybee metabolism, our data suggest the RNA interference pathway is an important infection strategy for N. ceranae.
Collapse
Affiliation(s)
- Q Huang
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Liebefeld, Switzerland
- Honey Bee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - W Li
- USDA-ARS Bee Research Laboratory, BARC-East, Building 306, Beltsville, Maryland, USA
| | - Y Chen
- USDA-ARS Bee Research Laboratory, BARC-East, Building 306, Beltsville, Maryland, USA
| | - G Retschnig-Tanner
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Liebefeld, Switzerland
| | - O Yanez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Liebefeld, Switzerland
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
| | - P Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Liebefeld, Switzerland
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - J D Evans
- USDA-ARS Bee Research Laboratory, BARC-East, Building 306, Beltsville, Maryland, USA
| |
Collapse
|
13
|
Encephalitozoon cuniculi and Vittaforma corneae (Phylum Microsporidia) inhibit staurosporine-induced apoptosis in human THP-1 macrophages in vitro. Parasitology 2018; 146:569-579. [PMID: 30486909 DOI: 10.1017/s0031182018001968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Obligately intracellular microsporidia regulate their host cell life cycles, including apoptosis, but this has not been evaluated in phagocytic host cells such as macrophages that can facilitate infection but also can be activated to kill microsporidia. We examined two biologically dissimilar human-infecting microsporidia species, Encephalitozoon cuniculi and Vittaforma corneae, for their effects on staurosporine-induced apoptosis in the human macrophage-differentiated cell line, THP1. Apoptosis was measured after exposure of THP-1 cells to live and dead mature organisms via direct fluorometric measurement of Caspase 3, colorimetric and fluorometric TUNEL assays, and mRNA gene expression profiles using Apoptosis RT2 Profiler PCR Array. Both species of microsporidia modulated the intrinsic apoptosis pathway. In particular, live E. cuniculi spores inhibited staurosporine-induced apoptosis as well as suppressed pro-apoptosis genes and upregulated anti-apoptosis genes more broadly than V. corneae. Exposure to dead spores induced an opposite effect. Vittaforma corneae, however, also induced inflammasome activation via Caspases 1 and 4. Of the 84 apoptosis-related genes assayed, 42 (i.e. 23 pro-apoptosis, nine anti-apoptosis, and 10 regulatory) genes were more affected including those encoding members of the Bcl2 family, caspases and their regulators, and members of the tumour necrosis factor (TNF)/TNF receptor R superfamily.
Collapse
|
14
|
Rodríguez-García C, Evans JD, Li W, Branchiccela B, Li JH, Heerman MC, Banmeke O, Zhao Y, Hamilton M, Higes M, Martín-Hernández R, Chen YP. Nosemosis control in European honey bees, Apis mellifera, by silencing the gene encoding Nosema ceranae polar tube protein 3. ACTA ACUST UNITED AC 2018; 221:jeb.184606. [PMID: 30135088 DOI: 10.1242/jeb.184606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/10/2018] [Indexed: 01/03/2023]
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing mechanism triggered by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene and is conserved in a wide range of eukaryotic organisms. The RNAi mechanism has provided unique opportunities for combating honey bee diseases caused by various parasites and pathogens. Nosema ceranae is a microsporidian parasite of European honey bees, Apis mellifera, and has been associated with honey bee colony losses in some regions of the world. Here we explored the possibility of silencing the expression of a N. ceranae putative virulence factor encoding polar tube protein 3 (ptp3) which is involved in host cell invasion as a therapeutic strategy for controlling Nosema parasites in honey bees. Our studies showed that the oral ingestion of a dsRNA corresponding to the sequences of N. ceranae ptp3 could effectively suppress the expression of the ptp3 gene in N. ceranae-infected bees and reduce Nosema load. In addition to the knockdown of ptp3 gene expression, ingestion of ptp3-dsRNA also led to improved innate immunity in bees infected with N. ceranae along with an improvement in physiological performance and lifespan compared with untreated control bees. These results strongly suggest that RNAi-based therapeutics hold real promise for the effective treatment of honey bee diseases in the future, and warrant further investigation.
Collapse
Affiliation(s)
- Cristina Rodríguez-García
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA.,Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Wenfeng Li
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Belén Branchiccela
- Instituto de Investigaciones Biológicas Clemente Estable, Department of Microbiology, Avda Italia 3318, 11600 Montevideo, Uruguay
| | - Jiang Hong Li
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Matthew C Heerman
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Olubukola Banmeke
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Yazhou Zhao
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Michele Hamilton
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain.,Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Albacete, 02006 Albacete, Spain
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
15
|
El Khoury S, Rousseau A, Lecoeur A, Cheaib B, Bouslama S, Mercier PL, Demey V, Castex M, Giovenazzo P, Derome N. Deleterious Interaction Between Honeybees (Apis mellifera) and its Microsporidian Intracellular Parasite Nosema ceranae Was Mitigated by Administrating Either Endogenous or Allochthonous Gut Microbiota Strains. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M. Nosema ceranaeinApis mellifera: a 12 years postdetectionperspective. Environ Microbiol 2018; 20:1302-1329. [DOI: 10.1111/1462-2920.14103] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha; Spain
| | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela. Xenómica Comparada de Parásitos Humanos, IDIS, 15782 Santiago de Compostela; Galicia Spain
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | - Anne Dalmon
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | | | | | - Aranzazu Meana
- Facultad de Veterinaria, Universidad Complutense de Madrid; Spain
| | - M. Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança; 5300-253 Bragança Portugal
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Mariano Higes
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
| |
Collapse
|
17
|
Chronic Nosema ceranae infection inflicts comprehensive and persistent immunosuppression and accelerated lipid loss in host Apis mellifera honey bees. Int J Parasitol 2018; 48:433-444. [PMID: 29452081 DOI: 10.1016/j.ijpara.2017.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023]
Abstract
Nosema ceranae is an intracellular microsporidian parasite of the Asian honey bee Apis cerana and the European honey bee Apis mellifera. Until relatively recently, A. mellifera honey bees were naïve to N. ceranae infection. Symptoms of nosemosis, or Nosema disease, in the infected hosts include immunosuppression, damage to gut epithelium, nutrient and energetic stress, precocious foraging and reduced longevity of infected bees. Links remain unclear between immunosuppression, the symptoms of nutrient and energetic stress, and precocious foraging behavior of hosts. To clarify physiological connections, we inoculated newly emerged A. mellifera adult workers with N. ceranae spores, and over 21 days post inoculation (21 days pi), gauged infection intensity and quantified expression of genes representing two innate immune pathways, Toll and Imd. Additionally, we measured each host's whole-body protein, lipids, carbohydrates and quantified respirometric and activity levels. Results show sustained suppression of genes of both humorally regulated immune response pathways after 6 days pi. At 7 days pi, elevated protein levels of infected bees may reflect synthesis of antimicrobial peptides from an initial immune response, but the lack of protein gain compared with uninfected bees at 14 days pi may represent low de novo protein synthesis. Carbohydrate data do not indicate that hosts experience severe metabolic stress related to this nutrient. At 14 days pi infected honey bees show high respirometric and activity levels, and corresponding lipid loss, suggesting lipids may be used as fuel for increased metabolic demands resulting from infection. Accelerated lipid loss during nurse honey bee behavioral development can have cascading effects on downstream physiology that may lead to precocious foraging, which is a major factor driving colony collapse.
Collapse
|