1
|
Song HM, Li ZW, Huang Q, Wu CG, Li MH, Shen JK. A diagnostic signatures for intervertebral disc degeneration using TNFAIP6 and COL6A2 based on single-cell RNA-seq and bulk RNA-seq analyses. Ann Med 2025; 57:2443568. [PMID: 39704340 DOI: 10.1080/07853890.2024.2443568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 04/01/2024] [Accepted: 09/17/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Intervertebral disc degeneration (IVDD) is a prevalent degenerative condition associated with a high incidence rate of low back pain and disability. This study aimed to identify potential biomarkers and signaling pathways associated with IVDD. METHODS Biomarkers were discerned through bulk-RNA and single-cell RNA sequencing (scRNA-Seq) investigations of IVDD cases from the Gene Expression Omnibus (GEO) database. Following this, two central genes were identified. Furthermore, gene set enrichment analysis (GSEA) and receiver operating characteristic (ROC) curve analysis were conducted. The transcriptional factor (TF) derived from nucleus pulposus (NP) cells was examined through the DoRothEA R package. RT-qPCR and IHC techniques were employed to confirm the expression of the two hub genes and their associated genes in tissue samples. RESULTS The proteins Tumor necrosis factor-inducible gene 6 protein (TNFAIP6) and collagen VI-α2 (COL6A2) were frequently analyzed using a combination of DEGs from datasets GSE70362, GSE124272, and scRNA-seq. Examination of gene expression across multiple datasets indicated significant differences in TNFAIP6 and COL6A2 levels in IVDD compared to control or normal groups (p < 0.05). These two central genes demonstrated strong diagnostic utility in the training cohort and reliable predictive value in the validation datasets. Our study verified the potential role of ZEB2 as a TF in regulating two key genes associated with IVDD. Furthermore, qPCR and IHC confirmed elevated expression levels of the hub genes and transcription factor. CONCLUSION We identified biomarkers, specifically TNFAIP6 and COL6A2, that have the potential to predict disease activity and aid in the diagnosis of IVDD.
Collapse
Affiliation(s)
- Hong-Mei Song
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuo-Wei Li
- Department of Urological Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Huang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Gen Wu
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Hua Li
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Kang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Eom YW, Hong JE, Jung PY, Yoon Y, Yoo SH, Hong J, Rhee KJ, Regmi B, Fatima S, Kim MY, Baik SK, Ryu H, Kwon HY. TGF-β expressed by M2 macrophages promotes wound healing by inhibiting TSG-6 expression by mesenchymal stem cells. PLoS One 2025; 20:e0316692. [PMID: 40257993 PMCID: PMC12011265 DOI: 10.1371/journal.pone.0316692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025] Open
Abstract
Wound healing involves the collaboration of multiple cells, including macrophages and fibroblasts, and requires the coordination of cytokines, growth factors, and matrix proteins to regulate the repair response. In this study, we investigated how M2 macrophages regulate expression of the anti-fibrotic and anti-inflammatory regulator tumor necrosis factor-α (TNF-α)-stimulated gene 6 (TSG-6) secreted by adipose tissue-derived stem cells (ASCs) during wound healing. Interleukin (IL)-4/IL-13, which is used to differentiate macrophage M2 phenotypes, increases TSG-6 in ASCs; however, M2 macrophages significantly decrease TSG-6 in ASCs. Transforming growth factor (TGF)-β expression was increased, and TNF-α expression was decreased in M2 macrophages. TGF-β inhibited IL-4/IL-13-induced ASC TSG-6 expression. In addition, TSG-6 suppressed TGF-β-triggered wound closure and fibrogenic responses in LX-2 cells. Collectively, TSG-6 inhibited wound healing, but M2 macrophage-expressed TGF-β prevented TSG-6 production from ASCs, which ultimately helped wound healing. Our results indicate that the balance of TNF-α and TGF-β levels during wound healing regulates TSG-6 production from ASCs, which may ultimately modulate the healing process. Our study findings could contribute to novel therapeutic strategies that manipulate the delicate balance between TNF-α and TGF-β to enhance wound repair and mitigate fibrosis.
Collapse
Affiliation(s)
- Young Woo Eom
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus College of Health Sciences, Wonju, Korea
| | - Pil Young Jung
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yongdae Yoon
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sang-Hyeon Yoo
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus College of Health Sciences, Wonju, Korea
| | - Jiyun Hong
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus College of Health Sciences, Wonju, Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus College of Health Sciences, Wonju, Korea
| | - Bhupendra Regmi
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Saher Fatima
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Moon Young Kim
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hoon Ryu
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hye Youn Kwon
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
3
|
Rabelink TJ, Wang G, van der Vlag J, van den Berg BM. The roles of hyaluronan in kidney development, physiology and disease. Nat Rev Nephrol 2024; 20:822-832. [PMID: 39191935 DOI: 10.1038/s41581-024-00883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The hyaluronan (HA) matrix in the tissue microenvironment is crucial for maintaining homeostasis by regulating inflammatory signalling, endothelial-mesenchymal transition and cell migration. During development, covalent modifications and osmotic swelling of HA create mechanical forces that initiate midgut rotation, vascular patterning and branching morphogenesis. Together with its main cell surface receptor, CD44, HA establishes a physicochemical scaffold at the cell surface that facilitates the interaction and clustering of growth factors and receptors that is required for normal physiology. High-molecular-weight HA, tumour necrosis factor-stimulated gene 6, pentraxin 3 and CD44 form a stable pericellular matrix that promotes tissue regeneration and reduces inflammation. By contrast, breakdown of high-molecular-weight HA into depolymerized fragments by hyaluronidases triggers inflammatory signalling, leukocyte migration and angiogenesis, contributing to tissue damage and fibrosis in kidney disease. Targeting HA metabolism is challenging owing to its dynamic regulation and tissue-specific functions. Nonetheless, modulating HA matrix functions by targeting its binding partners holds promise as a therapeutic strategy for restoring tissue homeostasis and mitigating pathological processes. Further research in this area is warranted to enable the development of novel therapeutic approaches for kidney and other diseases characterized by dysregulated HA metabolism.
Collapse
Affiliation(s)
- Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Sun H, Dong J, Fu Z, Lu X, Chen X, Lei H, Xiao X, Chen S, Lu J, Su D, Xiong Y, Fang Z, Mao J, Chen L, Wang X. TSG6-Exo@CS/GP Attenuates Endometrium Fibrosis by Inhibiting Macrophage Activation in a Murine IUA Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308921. [PMID: 38588501 DOI: 10.1002/adma.202308921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Intrauterine adhesion (IUA) is characterized by the formation of fibrous scar tissue within the uterine cavity, which significantly impacts female reproductive health and even leads to infertility. Unfortunately, severe cases of IUA currently lack effective treatments. This study presents a novel approach that utilizes tumor necrosis factor-(TNF) stimulated gene 6 (TSG6)-modified exosomes (Exos) in conjunction with an injectable thermosensitive hydrogel (CS/GP) to mitigate the occurrence of IUA by reducing endometrium fibrosis in a mouse IUA model. This study demonstrate that TSG6-modified Exos effectively inhibits the activation of inflammatory M1-like macrophages during the initial stages of inflammation and maintains the balance of macrophage phenotypes (M1/M2) during the repair phase. Moreover, TSG6 inhibits the interaction between macrophages and endometrial stromal fibroblasts, thereby preventing the activation of stromal fibroblasts into myofibroblasts. Furthermore, this research indicates that CS/GP facilitates the sustained release of TSG6-modified Exos, leading to a significant reduction in both the manifestations of IUA and the extent of endometrium fibrosis. Collectively, through the successful construction of CS/GP loaded with TSG6-modified Exos, a reduction in the occurrence and progression of IUA is achieved by mitigating endometrium fibrosis. Consequently, this approach holds promise for the treatment of IUA.
Collapse
Affiliation(s)
- Huijun Sun
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jie Dong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Zhaoyue Fu
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Xueyan Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Xutao Chen
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Hui Lei
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Xifeng Xiao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jie Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Danjie Su
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Yujing Xiong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Zheng Fang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jiaqin Mao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| |
Collapse
|
5
|
Kwon HY, Yoon Y, Hong JE, Rhee KJ, Sohn JH, Jung PY, Kim MY, Baik SK, Ryu H, Eom YW. Role of TGF-β and p38 MAPK in TSG-6 Expression in Adipose Tissue-Derived Stem Cells In Vitro and In Vivo. Int J Mol Sci 2023; 25:477. [PMID: 38203646 PMCID: PMC10778696 DOI: 10.3390/ijms25010477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Mesenchymal stem cells (MSCs) regulate immune cell activity by expressing tumor necrosis factor-α (TNF-α)-stimulated gene 6 (TSG-6) in inflammatory environments; however, whether anti-inflammatory responses affect TSG-6 expression in MSCs is not well understood. Therefore, we investigated whether transforming growth factor-β (TGF-β) regulates TSG-6 expression in adipose tissue-derived stem cells (ASCs) and whether effective immunosuppression can be achieved using ASCs and TGF-β signaling inhibitor A83-01. TGF-β significantly decreased TSG-6 expression in ASCs, but A83-01 and the p38 inhibitor SB202190 significantly increased it. However, in septic C57BL/6 mice, A83-01 further reduced the survival rate of the lipopolysaccharide (LPS)-treated group and ASC transplantation did not improve the severity induced by LPS. ASC transplantation alleviated the severity of sepsis induced by LPS+A83-01. In co-culture of macrophages and ASCs, A83-01 decreased TSG-6 expression whereas A83-01 and SB202190 reduced Cox-2 and IDO-2 expression in ASCs. These results suggest that TSG-6 expression in ASCs can be regulated by high concentrations of pro-inflammatory cytokines in vitro and in vivo, and that A83-01 and SB202190 can reduce the expression of immunomodulators in ASCs. Therefore, our data suggest that co-treatment of ASCs with TGF-β or p38 inhibitors is not adequate to modulate inflammation.
Collapse
Affiliation(s)
- Hye Youn Kwon
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (H.Y.K.); (P.Y.J.)
| | - Yongdae Yoon
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (J.-E.H.); (K.-J.R.)
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (J.-E.H.); (K.-J.R.)
| | - Joon Hyung Sohn
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Pil Young Jung
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (H.Y.K.); (P.Y.J.)
| | - Moon Young Kim
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hoon Ryu
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (H.Y.K.); (P.Y.J.)
| | - Young Woo Eom
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
| |
Collapse
|
6
|
Jiang Y, Glasstetter LM, Lerman A, Lerman LO. TSG-6 (Tumor Necrosis Factor-α-Stimulated Gene/Protein-6): An Emerging Remedy for Renal Inflammation. Hypertension 2023; 80:35-42. [PMID: 36367104 PMCID: PMC9742181 DOI: 10.1161/hypertensionaha.122.19431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The inflammatory response is a major pathological feature in most kidney diseases and often evokes compensatory mechanisms. Recent evidence suggests that TSG-6 (tumor necrosis factor-α-stimulated gene/protein-6) plays a pivotal role in anti-inflammation in various renal diseases, including immune-mediated and nonimmune-mediated renal diseases. TSG-6 has a diverse repertoire of anti-inflammatory functions: it potentiates antiplasmin activity of IαI (inter-α-inhibitor) by binding to its light chain, crosslinks hyaluronan to promote its binding to cell surface receptor CD44, and thereby regulate the migration and adhesion of lymphocytes, inhibits chemokine-stimulated transendothelial migration of neutrophils by directly interacting with the glycosaminoglycan binding site of CXCL8 (CXC motif chemokine ligand-8), and upregulates COX-2 (cyclooxygenase-2) to produce anti-inflammatory metabolites. Hopefully, further developments can target this anti-inflammatory molecule to the kidney and harness its remedial properties. This review provides an overview of the emerging role of TSG-6 in blunting renal inflammation.
Collapse
Affiliation(s)
- Yamei Jiang
- Division of Nephrology and Hypertension and, Mayo Clinic, Rochester, MN 55905, USA
| | - Logan M. Glasstetter
- Division of Nephrology and Hypertension and, Mayo Clinic, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension and, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Gong SC, Yoon Y, Jung PY, Kim MY, Baik SK, Ryu H, Eom YW. Antifibrotic TSG-6 Expression Is Synergistically Increased in Both Cells during Coculture of Mesenchymal Stem Cells and Macrophages via the JAK/STAT Signaling Pathway. Int J Mol Sci 2022; 23:13122. [PMID: 36361907 PMCID: PMC9656625 DOI: 10.3390/ijms232113122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/28/2022] Open
Abstract
The pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β upregulate TNF-α-stimulated gene 6 (TSG-6); however, current knowledge about the optimal conditions for TSG-6 expression in mesenchymal stem cells (MSCs) is limited. Here, we investigated whether TSG-6 expression varies depending on the polarization state of macrophages co-cultured with adipose tissue-derived stem cells (ASCs) and analyzed the optimal conditions for TSG-6 expression in ASCs. TSG-6 expression increased in ASCs co-cultured with M0, M1, and M2 macrophages indirectly; among them, M1 macrophages resulted in the highest increase in TSG-6 expression in ASCs. TSG-6 expression in ASCs dramatically increased by combination (but not single) treatment of TNF-α, IL-1β, interferon-gamma (IFN-γ), and lipopolysaccharide (LPS). In addition, phosphorylation of signal transducer and activator of transcription (STAT) 1/3 was observed in response to IFN-γ and LPS treatment but not TNF-α and/or IL-1β. STAT1/3 activation synergistically increased TNF-α/IL-1β-dependent TSG-6 expression, and JAK inhibitors suppressed TSG-6 expression both in ASCs and macrophages. In LX-2 hepatic stellate cells, TSG-6 inhibited TGF-β-induced Smad3 phosphorylation, resulting in decreased α-smooth muscle actin (SMA) expression. Moreover, fibrotic activities of LX-2 cells induced by TGF-β were dramatically decreased after indirect co-culture with ASCs and M1 macrophages. These results suggest that a comprehensive inflammatory microenvironment may play an important role in determining the therapeutic properties of ASCs by increasing TSG-6 expression through STAT1/3 activation.
Collapse
Affiliation(s)
- Seong Chan Gong
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Yongdae Yoon
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Pil Young Jung
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Moon Young Kim
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Hoon Ryu
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Young Woo Eom
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| |
Collapse
|
8
|
Sin YJA, MacLeod R, Tanguay AP, Wang A, Braender-Carr O, Vitelli TM, Jay GD, Schmidt TA, Cowman MK. Noncovalent hyaluronan crosslinking by TSG-6: Modulation by heparin, heparan sulfate, and PRG4. Front Mol Biosci 2022; 9:990861. [PMID: 36275631 PMCID: PMC9579337 DOI: 10.3389/fmolb.2022.990861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The size, conformation, and organization of the glycosaminoglycan hyaluronan (HA) affect its interactions with soluble and cell surface-bound proteins. HA that is induced to form stable networks has unique biological properties relative to unmodified soluble HA. AlphaLISA assay technology offers a facile and general experimental approach to assay protein-mediated networking of HA in solution. Connections formed between two end-biotinylated 50 kDa HA (bHA) chains can be detected by signal arising from streptavidin-coated donor and acceptor beads being brought into close proximity when the bHA chains are bridged by proteins. We observed that incubation of bHA with the protein TSG-6 (tumor necrosis factor alpha stimulated gene/protein 6, TNFAIP/TSG-6) leads to dimerization or higher order multimerization of HA chains in solution. We compared two different heparin (HP) samples and two heparan sulfate (HS) samples for the ability to disrupt HA crosslinking by TSG-6. Both HP samples had approximately three sulfates per disaccharide, and both were effective in inhibiting HA crosslinking by TSG-6. HS with a relatively high degree of sulfation (1.75 per disaccharide) also inhibited TSG-6 mediated HA networking, while HS with a lower degree of sulfation (0.75 per disaccharide) was less effective. We further identified Proteoglycan 4 (PRG4, lubricin) as a TSG-6 ligand, and found it to inhibit TSG-6-mediated HA crosslinking. The effects of HP, HS, and PRG4 on HA crosslinking by TSG-6 were shown to be due to HP/HS/PRG4 inhibition of HA binding to the Link domain of TSG-6. Using the AlphaLISA platform, we also tested other HA-binding proteins for ability to create HA networks. The G1 domain of versican (VG1) effectively networked bHA in solution but required a higher concentration than TSG-6. Cartilage link protein (HAPLN1) and the HA binding protein segment of aggrecan (HABP, G1-IGD-G2) showed only low and variable magnitude HA networking effects. This study unambiguously demonstrates HA crosslinking in solution by TSG-6 and VG1 proteins, and establishes PRG4, HP and highly sulfated HS as modulators of TSG-6 mediated HA crosslinking.
Collapse
Affiliation(s)
- Yun Jin Ashley Sin
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Rebecca MacLeod
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Adam P. Tanguay
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Andrew Wang
- New York Medical College, Valhalla, NY, United States
| | - Olivia Braender-Carr
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Teraesa M. Vitelli
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Gregory D. Jay
- Department of Emergency Medicine, Warren Alpert Medical School and School of Engineering, Brown University, Providence, RI, United States
| | - Tannin A. Schmidt
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
- *Correspondence: Mary K. Cowman, ; Tannin A. Schmidt,
| | - Mary K. Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
- Department of Orthopedic Surgery, Grossman School of Medicine, New York University, New York, NY, United States
- *Correspondence: Mary K. Cowman, ; Tannin A. Schmidt,
| |
Collapse
|
9
|
Li L, Yang L, Chen X, Chen X, Diao L, Zeng Y, Xu J. TNFAIP6 defines the MSC subpopulation with enhanced immune suppression activities. STEM CELL RESEARCH & THERAPY 2022; 13:479. [PMID: 36153571 PMCID: PMC9509641 DOI: 10.1186/s13287-022-03176-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
Background Mesenchymal stromal/stem cells (MSCs) have been intensively investigated in both pre-clinical and clinical studies. However, the therapeutic efficacy varies resulting from the heterogenicity of MSCs. Therefore, purifying the specific MSC subpopulation with specialized function is necessary for their therapeutic applications. Methods The large-scale RNA sequencing analysis was performed to identify potential cell markers for the mouse MSCs. Then, the immune suppression activities of the purified MSC subpopulation were assessed in vitro and in vivo.
Results The TNFAIP6 (tumor necrosis factor alpha-induced protein 6) has been identified as a potential cell marker for mouse MSCs, irrespective of tissue origin and laboratory origin. The TNFAIP6+ mouse MSCs showed enhanced immune suppression activities and improved therapeutic effects on the mouse model of acute inflammation, resulting from faster response to immune stimulation. Conclusions Therefore, we have demonstrated that the TNFAIP6+ MSC subpopulation has enhanced immune suppression capabilities. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03176-5.
Collapse
|
10
|
Lin D, Li W, Zhang N, Cai M. Identification of TNFAIP6 as a hub gene associated with the progression of glioblastoma by weighted gene co-expression network analysis. IET Syst Biol 2022; 16:145-156. [PMID: 35766985 PMCID: PMC9469790 DOI: 10.1049/syb2.12046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
This study aims to discover the genetic modules that distinguish glioblastoma multiforme (GBM) from low‐grade glioma (LGG) and identify hub genes. A co‐expression network is constructed using the expression profiles of 28 GBM and LGG patients from the Gene Expression Omnibus database. The authors performed gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) analysis on these genes. The maximal clique centrality method was used to identify hub genes. Online tools were employed to confirm the link between hub gene expression and overall patient survival rate. The top 5000 genes with major variance were classified into 18 co‐expression gene modules. GO analysis indicated that abnormal changes in ‘cell migration’ and ‘collagen metabolic process’ were involved in the development of GBM. KEGG analysis suggested that ‘focal adhesion’ and ‘p53 signalling pathway’ regulate the tumour progression. TNFAIP6 was identified as a hub gene, and the expression of TNFAIP6 was increased with the elevation of pathological grade. Survival analysis indicated that the higher the expression of TNFAIP6, the shorter the survival time of patients. The authors identified TNFAIP6 as the hub gene in the progression of GBM, and its high expression indicates the poor prognosis of the patients.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Li
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Cai
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Yang H, Wu L, Deng H, Chen Y, Zhou H, Liu M, Wang S, Zheng L, Zhu L, Lv X. Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-κB signaling pathway in spinal microglia. J Neuroinflammation 2020; 17:154. [PMID: 32393298 PMCID: PMC7216552 DOI: 10.1186/s12974-020-1731-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuroinflammation plays a vital role in the development and maintenance of neuropathic pain. Recent evidence has proved that bone marrow mesenchymal stem cells (BMSCs) can inhibit neuropathic pain and possess potent immunomodulatory and immunosuppressive properties via secreting a variety of bioactive molecules, such as TNF-α-stimulated gene 6 protein (TSG-6). However, it is unknown whether BMSCs exert their analgesic effect against neuropathic pain by secreting TSG-6. Therefore, the present study aimed to evaluate the analgesic effects of TSG-6 released from BMSCs on neuropathic pain induced by chronic constriction injury (CCI) in rats and explored the possible underlying mechanisms in vitro and in vivo. Methods BMSCs were isolated from rat bone marrow and characterized by flow cytometry and functional differentiation. One day after CCI surgery, about 5 × 106 BMSCs were intrathecally injected into spinal cerebrospinal fluid. Behavioral tests, including mechanical allodynia, thermal hyperalgesia, and motor function, were carried out at 1, 3, 5, 7, 14 days after CCI surgery. Spinal cords were processed for immunohistochemical analysis of the microglial marker Iba-1. The mRNA and protein levels of pro-inflammatory cytokines (IL-1β, TNFα, IL-6) were detected by real-time RT-PCR and ELISA. The activation of the TLR2/MyD88/NF-κB signaling pathway was evaluated by Western blot and immunofluorescence staining. The analgesic effect of exogenous recombinant TSG-6 on CCI-induced mechanical allodynia and heat hyperalgesia was observed by behavioral tests. In the in vitro experiments, primary cultured microglia were stimulated with the TLR2 agonist Pam3CSK4, and then co-cultured with BMSCs or recombinant TSG-6. The protein expression of TLR2, MyD88, p-p65 was evaluated by Western blot. The mRNA and protein levels of IL-1β, TNFα, IL-6 were detected by real-time RT-PCR and ELISA. BMSCs were transfected with the TSG-6-specific shRNA and then intrathecally injected into spinal cerebrospinal fluid in vivo or co-cultured with Pam3CSK4-treated primary microglia in vitro to investigate whether TSG-6 participated in the therapeutic effect of BMSCs on CCI-induced neuropathic pain and neuroinflammation. Results We found that CCI-induced mechanical allodynia and heat hyperalgesia were ameliorated by intrathecal injection of BMSCs. Moreover, intrathecal administration of BMSCs inhibited CCI-induced neuroinflammation in spinal cord tissues. The analgesic effect and anti-inflammatory property of BMSCs were attenuated when TSG-6 expression was silenced. We also found that BMSCs inhibited the activation of the TLR2/MyD88/NF-κB pathway in the ipsilateral spinal cord dorsal horn by secreting TSG-6. Meanwhile, we proved that intrathecal injection of exogenous recombinant TSG-6 effectively attenuated CCI-induced neuropathic pain. Furthermore, in vitro experiments showed that BMSCs and TSG-6 downregulated the TLR2/MyD88/NF-κB signaling and reduced the production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in primary microglia treated with the specific TLR2 agonist Pam3CSK4. Conclusions The present study demonstrated a paracrine mechanism by which intrathecal injection of BMSCs targets the TLR2/MyD88/NF-κB pathway in spinal cord dorsal horn microglia to elicit neuroprotection and sustained neuropathic pain relief via TSG-6 secretion.
Collapse
Affiliation(s)
- Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Lingmin Wu
- Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Shaochen Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Li Zheng
- Department of Anesthesiology, Fuyang Hospital of Anhui Medical University, 99 Huangshan Rd, Fuyang, 236000, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China. .,Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China.
| |
Collapse
|
12
|
Innovative Alternatives for Continuous In Vitro Culture of Babesia bigemina in Medium Free of Components of Animal Origin. Pathogens 2020; 9:pathogens9050343. [PMID: 32370024 PMCID: PMC7281159 DOI: 10.3390/pathogens9050343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/03/2023] Open
Abstract
In this study, we report Babesia bigemina proliferation in culture medium free of components of animal origin supplemented with a lipid mixture. Babesia bigemina continuously proliferated in VP-SFM with a higher percent parasitized erythrocyte as compare to using other animal component-free culture media. Compared with Advanced DMEM/F12 (ADMEM/F12), VP-SFM had a similar percent parasitized erythrocyte (PPE). Supplementation of VP-SF with a lipid acid mixture improved B. bigemina proliferation in vitro culture, with a maximum PPE of 11.3%. Growth of B. bigemina in a perfusion bioreactor using VP-SFM medium supplemented with lipid mixture resulted in a PPE above 28%. In conclusion, we demonstrated that B. bigemina proliferated in an animal component-free medium supplemented with the fatty acid mixture. This innovation to B. bigeminain vitro culture method presented herein is an important source of biological material for live vaccine production and understanding the mechanisms and molecules involved in parasite attachment and invasion of bovine erythrocytes.
Collapse
|
13
|
Wang M, Zhang M, Fu L, Lin J, Zhou X, Zhou P, Huang P, Hu H, Han Y. Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis. Am J Cancer Res 2020; 10:36-49. [PMID: 31903104 PMCID: PMC6929629 DOI: 10.7150/thno.37301] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) transplantation is a promising antifibrotic strategy but facing clinical controversies. Inspired by advances in nanomedicine, we aimed to bypass these clinical barriers of MSCs by identifying the key antifibrotic molecule of MSCs and developing a specific liver-targeting nanocarrier. Methods: Cytokines secreted by MSCs were examined with serum stimulation of cirrhotic patients. Immunohistochemistry, microarray, immunoblotting, and quantitative real-time PCR (qRT-PCR) were applied to identify the critical antifibrotic cytokine and to discover its role in modulating antifibrotic effects. Biomineralization method was used to prepare calcium phosphate nanoparticles (NPs). The targeting and therapeutic efficiency of NPs were evaluated by in vivo imaging and biochemical studies on fibrotic mice induced by CCl4. Results: The stimulated MSCs exhibited high-level expression of Tumor necrosis factor (TNF)-stimulated gene 6 (TSG-6). On animal study, exogenous administration of TSG-6 alone can ameliorate liver fibrosis while TSG-6 knocked MSCs (Lv-TSG-6 MSCs) lost antifibrotic effects. Further studies verified the importance of TSG-6 and identified its antifibrotic mechanism by modulating M2 macrophages and increasing matrix metalloproteinase 12 (MMP12) expression. Additionally, we found a feedback loop between TSG-6, MMP12 and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), which may improve our understanding of the aggravating process of cirrhosis and antifibrotic mechanisms of TSG-6 and MSCs. Based on these findings, we developed calcium phosphate nanoparticles (CaP@BSA NPs) by biomineralization method using bovine serum albumin (BSA) as the biotemplate. Imaging tracking and drug loading studies showed specific liver targeting and high TSG-6 loading efficacy of as-prepared CaP@BSA NPs. In vivo therapeutic study further demonstrated the improved therapeutic effects of TSG-6 loaded CaP@BSA. Conclusions: TSG-6 was a major antifibrotic cytokine of MSCs, TSG-6 loaded CaP@BSA NPs showed specific liver accumulation and improved therapeutic effects, which indicated translational potentials of CaP@BSA as a promising drug carrier for the liver disease management.
Collapse
|
14
|
Watanabe R, Sato Y, Ozawa N, Takahashi Y, Koba S, Watanabe T. Emerging Roles of Tumor Necrosis Factor-Stimulated Gene-6 in the Pathophysiology and Treatment of Atherosclerosis. Int J Mol Sci 2018; 19:E465. [PMID: 29401724 PMCID: PMC5855687 DOI: 10.3390/ijms19020465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) is a 35-kDa glycoprotein that has been shown to exert anti-inflammatory effects in experimental models of arthritis, acute myocardial infarction, and acute cerebral infarction. Several lines of evidence have shed light on the pathophysiological roles of TSG-6 in atherosclerosis. TSG-6 suppresses inflammatory responses of endothelial cells, neutrophils, and macrophages as well as macrophage foam cell formation and vascular smooth muscle cell (VSMC) migration and proliferation. Exogenous TSG-6 infusion and endogenous TSG-6 attenuation with a neutralizing antibody for four weeks retards and accelerates, respectively, the development of aortic atherosclerotic lesions in ApoE-deficient mice. TSG-6 also decreases the macrophage/VSMC ratio (a marker of plaque instability) and promotes collagen fibers in atheromatous plaques. In patients with coronary artery disease (CAD), plasma TSG-6 levels are increased and TSG-6 is abundantly expressed in the fibrous cap within coronary atheromatous plaques, indicating that TSG-6 increases to counteract the progression of atherosclerosis and stabilize the plaque. These findings indicate that endogenous TSG-6 enhancement and exogenous TSG-6 replacement treatments are expected to emerge as new lines of therapy against atherosclerosis and related CAD. Therefore, this review provides support for the clinical utility of TSG-6 in the diagnosis and treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Rena Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| | - Yuki Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| | - Nana Ozawa
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| | - Yui Takahashi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan.
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan.
| |
Collapse
|
15
|
Human Amniotic Membrane Mesenchymal Stem Cells inhibit Neutrophil Extracellular Traps through TSG-6. Sci Rep 2017; 7:12426. [PMID: 28963485 PMCID: PMC5622031 DOI: 10.1038/s41598-017-10962-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
The mesenchymal stem cells obtained from human amniotic membrane (hAMSC) possess immunosuppressive functions through soluble factors such as prostanoids and proteins; thus, they have been proposed to ameliorate inflammatory processes. On the other hand, activated neutrophils are cells of the first line of immune defense that are able to release extracellular traps (NETs). NETs are formed of DNA and granular components; however, the excessive release of NETs is associated with the development of autoimmune and chronic inflammatory diseases. In this study, we identified that conditioned medium (CM) from hAMSC was able to diminish NETs release, as well as the production of reactive oxygen species (ROS) and the mitochondrial membrane potential from LPS-stimulated mouse bone marrow-derived neutrophils (BMN). Interestingly, NETs inhibition, ROS levels decrease and mitochondrial membrane potential loss were reverted when LPS-stimulated murine derived BMN were exposed to the CM from hAMSC transfected with TSG-6-siRNA. Finally, rhTSG6 was able to significantly diminish NETs release in BMN. These data suggest an inhibition mechanism of NETs ROS-dependent in which TSG-6 participates. Consequently, we propose the hAMSC use as a therapeutic candidate in the treatment of inflammatory diseases in which NETs are involved.
Collapse
|
16
|
Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci U S A 2017; 114:E3536-E3545. [PMID: 28396435 DOI: 10.1073/pnas.1703920114] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Status epilepticus (SE), a medical emergency that is typically terminated through antiepileptic drug treatment, leads to hippocampus dysfunction typified by neurodegeneration, inflammation, altered neurogenesis, as well as cognitive and memory deficits. Here, we examined the effects of intranasal (IN) administration of extracellular vesicles (EVs) secreted from human bone marrow-derived mesenchymal stem cells (MSCs) on SE-induced adverse changes. The EVs used in this study are referred to as A1-exosomes because of their robust antiinflammatory properties. We subjected young mice to pilocarpine-induced SE for 2 h and then administered A1-exosomes or vehicle IN twice over 24 h. The A1-exosomes reached the hippocampus within 6 h of administration, and animals receiving them exhibited diminished loss of glutamatergic and GABAergic neurons and greatly reduced inflammation in the hippocampus. Moreover, the neuroprotective and antiinflammatory effects of A1-exosomes were coupled with long-term preservation of normal hippocampal neurogenesis and cognitive and memory function, in contrast to waned and abnormal neurogenesis, persistent inflammation, and functional deficits in animals receiving vehicle. These results provide evidence that IN administration of A1-exosomes is efficient for minimizing the adverse effects of SE in the hippocampus and preventing SE-induced cognitive and memory impairments.
Collapse
|
17
|
TSG-6 Downregulates IFN-Alpha and TNF-Alpha Expression by Suppressing IRF7 Phosphorylation in Human Plasmacytoid Dendritic Cells. Mediators Inflamm 2017; 2017:7462945. [PMID: 28367002 PMCID: PMC5358455 DOI: 10.1155/2017/7462945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/17/2017] [Accepted: 02/14/2017] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory cytokines such as TNF-α and type I interferons (IFN) are pathogenic signatures of systemic lupus erythematosus, and plasmacytoid dendritic cells (pDCs) play a major role by predominantly producing IFN-α. Given the rise of importance in identifying tumor necrosis stimulated gene 6 (TSG-6) as a key anti-inflammatory regulator, we investigate its function and its ability to counteract proinflammatory cytokine secretion by pDCs in vitro. CpG-A and R837 induced significant endogenous TSG-6 expression in the pDC cell-line GEN2.2. Following recombinant human TSG-6 treatment and CpG-A or R837 stimulation, significant reduction in IFN-α and TNF-α was observed in healthy donors' pDCs, and the same phenomenon was confirmed in GEN2.2. By CD44 blocking assay, we deduced that the suppressive effect of TSG-6 is mediated by CD44, by reducing IRF-7 phosphorylation. Our findings suggest that TSG-6 and its downstream signalling pathway could potentially be targeted to modulate proinflammatory cytokine expression in pDCs.
Collapse
|
18
|
Dothel G, Raschi E, Rimondini R, De Ponti F. Mesenchymal stromal cell-based therapy: Regulatory and translational aspects in gastroenterology. World J Gastroenterol 2016; 22:9057-9068. [PMID: 27895395 PMCID: PMC5107589 DOI: 10.3748/wjg.v22.i41.9057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
The past decade has witnessed an outstanding scientific production focused towards the possible clinical applications of mesenchymal stromal cells (MSCs) in autoimmune and chronic inflammatory diseases. This raised the need of novel standards to adequately address quality, efficacy and safety issues of this advanced therapy. The development of a streamlined regulation is currently hampered by the complexity of analyzing dynamic biological entities rather than chemicals. Although numerous pieces of evidence show efficacy in reducing intestinal inflammation, some inconsistencies between the mechanisms of action of rodent vs human MSCs suggest caution before assigning translational value to preclinical studies. Preliminary evidence from clinical trials showed efficacy of MSCs in the treatment of fistulizing Crohn's disease (CD), and preparations of heterologous MSCs for CD treatment are currently tested in ongoing clinical trials. However, safety issues, especially in long-term treatment, still require solid clinical data. In this regard, standardized guidelines for appropriate dosing and methods of infusion could enhance the likelihood to predict more accurately the number of responders and the duration of remission periods. In addition, elucidating MSC mechanisms of action could lead to novel and more reliable formulations such as those derived from the MSCs themselves (e.g., supernatants).
Collapse
|