1
|
Modenbach JM, Möller C, Asgarbeik S, Geist N, Rimkus N, Dörr M, Wolfgramm H, Steil L, Susemihl A, Graf L, Schmöker O, Böttcher D, Hammer E, Glaubitz J, Lammers M, Delcea M, Völker U, Aghdassi AA, Lerch MM, Weiss FU, Bornscheuer UT, Sendler M. Biochemical analyses of cystatin-C dimers and cathepsin-B reveals a trypsin-driven feedback mechanism in acute pancreatitis. Nat Commun 2025; 16:1702. [PMID: 39962054 PMCID: PMC11833081 DOI: 10.1038/s41467-025-56875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Acute pancreatitis (AP) is characterised by self-digestion of the pancreas by its own proteases. This pathophysiological initiating event in AP occurs inside pancreatic acinar cells where intrapancreatic trypsinogen becomes prematurely activated by cathepsin B (CTSB), and induces the digestive protease cascade, while cathepsin L (CTSL) degrades trypsin and trypsinogen and therefore prevents the development of AP. These proteases are located in the secretory compartment of acinar cells together with cystatin C (CST3), an endogenous inhibitor of CTSB and CTSL. The results are based on detailed biochemical analysis, site-directed mutagenesis and molecular dynamics simulations in combination with an experimental disease model of AP using CST3 deficient mice. This identifies that CST3 is a critical regulator of CTSB and CTSL activity during AP. CST3 deficient mice show a higher intracellular CTSB activity resulting in elevated trypsinogen activation accompanied by an increased disease severity. This reveals that CST3 can be cleaved by trypsin disabling the inhibition of CTSB, but not of CTSL. Furthermore, dimerised CST3 enhances the CTSB activity by binding to an allosteric pocket specific to the CTSB structure. CST3 shifts from an inhibitor to an activator of CTSB and therefore fuels the intrapancreatic protease cascade during the onset of AP.
Collapse
Affiliation(s)
| | - Christina Möller
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Saeedeh Asgarbeik
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Niklas Rimkus
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Mark Dörr
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Hannes Wolfgramm
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Anne Susemihl
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
- Department of Medicine C, University Medicine Greifswald, Greifswald, Germany
| | - Leonie Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dominique Böttcher
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Elke Hammer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Juliane Glaubitz
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
2
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. JCI Insight 2024; 9:e178050. [PMID: 39114980 PMCID: PMC11383595 DOI: 10.1172/jci.insight.178050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 08/22/2024] Open
Abstract
Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD) is an age-related macular degeneration-like (AMD-like) retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production in retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus that enabled simple, sensitive, and high-throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix, reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium-derived factor). In vivo, treatment of 8-month-old R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is an important demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of retinal degenerative diseases, including potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M. DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa K. McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571757. [PMID: 38168310 PMCID: PMC10760106 DOI: 10.1101/2023.12.14.571757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD) is an age-related macular degeneration (AMD)-like retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production from retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus which enabled simple, sensitive, and high throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix (ECM), reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium derived factor). In vivo, treatment of 8 mo R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is the first demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of neurodegenerative diseases, including, potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M. DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Melissa K. McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
4
|
Stańczykiewicz B, Łuc M, Banach M, Zabłocka A. Cystatins: unravelling the biological implications for neuroprotection. Arch Med Sci 2023; 20:157-166. [PMID: 38414464 PMCID: PMC10895963 DOI: 10.5114/aoms/171706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 02/29/2024] Open
Abstract
Cystatins, a family of proteins known for their inhibitory role against cysteine proteases, have garnered significant attention in the field of neurodegeneration. Numerous genetic, experimental, and clinical studies concerning cystatin C suggest it plays an important role in the course of neurodegenerative diseases. Its beneficial effects are associated with cysteine protease inhibition, impact on β-amyloid aggregation, as well as regulation of cell proliferation, autophagy, and apoptosis. Cystatin isolated from chicken egg white, called ovocystatin, has been widely used in medical and pharmaceutical research due to its structural and biological similarities to human cystatin C. This article focuses on the potential use of cystatins, with special emphasis on easily obtained ovocystatin, in the treatment of neurodegenerative diseases, such as dementia. The current evidence on cystatin use has shed light on its mechanisms of action and therapeutic implications for neuroprotection and maintenance of cognitive functions.
Collapse
Affiliation(s)
- Bartłomiej Stańczykiewicz
- Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Łuc
- Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Zabłocka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
5
|
Clinically-identified C-terminal mutations in fibulin-3 are prone to misfolding and destabilization. Sci Rep 2021; 11:2998. [PMID: 33542268 PMCID: PMC7862258 DOI: 10.1038/s41598-020-79570-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022] Open
Abstract
Distinct mutations in the secreted extracellular matrix protein, fibulin-3 (F3), have been associated with a number of ocular diseases ranging from primary open angle glaucoma to cuticular age-related macular degeneration to a rare macular dystrophy, Malattia Leventinese (ML). The R345W F3 mutation that causes ML leads to F3 misfolding, inefficient secretion and accumulation at higher intracellular steady state levels in cultured cells. Herein, we determined whether fifteen other clinically-identified F3 mutations also led to similar levels of misfolding and secretion defects, which might provide insight into their potential pathogenicity. Surprisingly, we found that only a single F3 variant, L451F, presented with a significant secretion defect (69.5 ± 2.4% of wild-type (WT) F3 levels) and a corresponding increase in intracellular levels (226.8 ± 25.4% of WT F3 levels). Upon follow-up studies, when this conserved residue (L451) was mutated to a charged (Asp or Arg) or bulky (Pro, Trp, Tyr) residue, F3 secretion was also compromised, indicating the importance of small side chains (Leu, Ala, or Gly) at this residue. To uncover potential inherent F3 instability not easily observed under typical culture conditions, we genetically eliminated the sole stabilizing N-linked glycosylation site (N249) from select clinically-identified F3 mutants. This removal exacerbated R345W and L451F secretion defects (19.8 ± 3.0% and 12.4 ± 1.2% of WT F3 levels, respectively), but also revealed a previously undiscovered secretion defect in another C-terminal variant, Y397H (42.0 ± 10.1% of WT F3 levels). Yet, glycan removal did not change the relative secretion of the N-terminal mutants tested (D49A, R140W, I220F). These results highlight the uniqueness and molecular similarities between the R345W and L451F variants and also suggest that previously identified disease-associated mutations (e.g., R140W) are indistinguishable from WT with respect to secretion, hinting that they may lead to disease by an alternative mechanism.
Collapse
|
6
|
Ismail NA, Toraih EA, Ameen HM, Gomaa AHA, Marie RESM. Association of Rs231775 Genetic Variant of Cytotoxic T-lymphocyte Associated Protein 4 with Alopecia Areata Disease in Males: A Case-Control Study. Immunol Invest 2020; 50:977-986. [PMID: 32731768 DOI: 10.1080/08820139.2020.1796700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Alopecia Areata (AA) is a common inflammatory immune-mediated non-scarring hair loss; however, the exact genetic susceptibility remains to be clarified. Cytotoxic T-lymphocyte Associated Protein 4 (CTLA4) has emerged as a central and critically important modulator of immune responses and is believed to play a crucial rule in AA pathogenesis. OBJECTIVES To investigate the association of CTLA4 variant (rs231775) within codon 17 with AA risk and outcomes. METHODS Genetic analyses of the rs231775 SNP of CTLA4 gene were performed in 186 males (93 AA patients and 93 controls). RESULTS The rs231775 CTLA4 variant was significantly higher in AA patients in comparison with control subjects especially among heterozygous and dominant model. This association varied significantly with disease severity. CONCLUSIONS Individuals with homozygosity of rs231775 CTLA4 variant represented AA disease risk and increased severity than their counterparts.Abbreviations: AA: Alopecia areata; CTLA4: Cytotoxic T-lymphocyte Associated Protein 4; SNP: Single nucleotide polymorphism; LADA: Latent autoimmune diabetes in adults; SLE: Systemic lupus erythematosus; SCU: Suez Canal University; SALT: Severity of Alopecia Tool; DNA: Deoxyribonucleic acid; RT-PCR: Real-time polymerase chain reaction, HWE: Hardy-Weinberg equation; RA: rheumatoid arthritis.
Collapse
Affiliation(s)
- Nader Ali Ismail
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman Ali Toraih
- Medical Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hatem Mohamed Ameen
- Department of Dermatology, Ministry of Health and Population, Al Qantara East Central Hospital, Ismailia, Egypt
| | - Amal Hussein Ahmed Gomaa
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Radwa El-Sayed Mahmoud Marie
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Carlsson E, Supharattanasitthi W, Jackson M, Paraoan L. Increased Rate of Retinal Pigment Epithelial Cell Migration and Pro-Angiogenic Potential Ensuing From Reduced Cystatin C Expression. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32049341 PMCID: PMC7324439 DOI: 10.1167/iovs.61.2.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Variant B precursor cysteine protease inhibitor cystatin C, a known recessive risk factor for developing exudative age-related macular degeneration (AMD), presents altered intracellular trafficking and reduced secretion from retinal pigment epithelial (RPE) cells. Because cystatin C inhibits multiple extracellular matrix (ECM)-degrading cathepsins, this study evaluated the role of this mutation in inducing ECM-related functional changes in RPE cellular behavior. Methods Induced pluripotent stem cells gene-edited bi-allelically by CRISPR/Cas9 to express the AMD-linked cystatin C variant were differentiated to RPE cells and assayed for their ability to degrade fluorescently labeled ECM proteins. Cellular migration and adhesion on multiple ECM proteins, differences in transepithelial resistance and polarized protein secretion were tested. Vessel formation induced by gene edited cells-conditioned media was quantified using primary human dermal microvascular epithelial cells. Results Variant B cystatin C-expressing induced pluripotent stem cells-derived RPE cells displayed a significantly higher rate of laminin and fibronectin degradation 3 days after seeding on fluorescently labeled ECM (P < 0.05). Migration on matrigel, collagen IV and fibronectin was significantly faster for edited cells compared with wild-type (WT) cells. Both edited and WT cells displayed polarized secretion of cystatin C, but transepithelial resistance was lower in gene-edited cells after 6 weeks culture, with significantly lower expression of tight junction protein claudin-3. Media conditioned by gene-edited cells stimulated formation of significantly longer microvascular tubes (P < 0.05) compared with WT-conditioned media. Conclusions Reduced levels of cystatin C lead to changes in the RPE ability to degrade, adhere, and migrate supporting increased invasiveness and angiogenesis relevant for AMD pathology.
Collapse
|
8
|
Maniwa K, Yano S, Sheikh AM, Onoda K, Mitaki S, Isomura M, Mishima S, Yamaguchi S, Nabika T, Nagai A. Association between cystatin C gene polymorphism and the prevalence of white matter lesion in elderly healthy subjects. Sci Rep 2020; 10:4688. [PMID: 32170118 PMCID: PMC7069982 DOI: 10.1038/s41598-020-61383-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/28/2020] [Indexed: 12/26/2022] Open
Abstract
Cystatin C (CST3) is a cysteine protease inhibitor abundant in the central nervous system, and demonstrated to have roles in several pathophysiological processes including vascular remodeling and inflammation. Previously, we showed a relation of CST3 gene polymorphisms with deep and subcortical white matter hyperintensity (DSWMH) in a small case-control study. In this study, we aimed to investigate the relation in a larger cross-sectional study. Participants of a brain health examination program were recruited (n = 1795) in the study, who underwent routine blood tests and cognitive function tests. Cerebral white matter changes were analyzed by MRI. Additionally, 7 single nucleotide polymorphisms (SNPs) (−82G/C, −78T/G, −5G/A, +4A/C, +87C/T, +148G/A and +213G/A) in the promoter and coding regions of CST3 gene were examined. Among them, carriers of the minor allele haplotype −82C/+4C/+148A were significantly associated with decreased CST3 concentration in the plasma. Unadjusted analysis did not show significant relation between carriers of the minor allele haplotype and periventricular hyperintensity (PVH), but DSWMH was marginally (p < 0.054) increased in this group. After adjusting the effects of other variables like age and kidney function, logistic regression analysis revealed that carriers of the minor allele haplotype were at a significantly increased risk of developing both PVH and DSWMH. Thus, our results suggest that carriers of the minor allele haplotype −82C/+4C/+148A of CST3 gene could be at an increased risk to develop cerebral white matter disturbance.
Collapse
Affiliation(s)
- Kyohei Maniwa
- Central Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| | - Abdullah Md Sheikh
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| | - Keiichi Onoda
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Shingo Mitaki
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Minoru Isomura
- Shimane University Faculty of Human Sciences, Matsue, Japan
| | - Seiji Mishima
- Central Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan
| | | | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Atsushi Nagai
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan.
| |
Collapse
|
9
|
Peng H, Hulleman JD. Prospective Application of Activity-Based Proteomic Profiling in Vision Research-Potential Unique Insights into Ocular Protease Biology and Pathology. Int J Mol Sci 2019; 20:ijms20163855. [PMID: 31398819 PMCID: PMC6720450 DOI: 10.3390/ijms20163855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Activity-based proteomic profiling (ABPP) is a powerful tool to specifically target and measure the activity of a family of enzymes with the same function and reactivity, which provides a significant advantage over conventional proteomic strategies that simply provide abundance information. A number of inherited and age-related eye diseases are caused by polymorphisms/mutations or abnormal expression of proteases including serine proteases, cysteine proteases, and matrix metalloproteinases, amongst others. However, neither conventional genomic, transcriptomic, nor traditional proteomic profiling directly interrogate protease activities. Thus, leveraging ABPP to probe the activity of these enzyme classes as they relate to normal function and pathophysiology of the eye represents a unique potential opportunity for disease interrogation and possibly intervention.
Collapse
Affiliation(s)
- Hui Peng
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Datta S, Renwick M, Chau VQ, Zhang F, Nettesheim ER, Lipinski DM, Hulleman JD. A Destabilizing Domain Allows for Fast, Noninvasive, Conditional Control of Protein Abundance in the Mouse Eye - Implications for Ocular Gene Therapy. Invest Ophthalmol Vis Sci 2018; 59:4909-4920. [PMID: 30347085 PMCID: PMC6181441 DOI: 10.1167/iovs.18-24987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 01/23/2023] Open
Abstract
Purpose Temporal and reversible control of protein expression in vivo is a central goal for many gene therapies, especially for strategies involving proteins that are detrimental to physiology if constitutively expressed. Accordingly, we explored whether protein abundance in the mouse retina could be effectively controlled using a destabilizing Escherichia coli dihydrofolate reductase (DHFR) domain whose stability is dependent on the small molecule, trimethoprim (TMP). Methods We intravitreally injected wild-type C57BL6/J mice with an adeno-associated vector (rAAV2/2[MAX]) constitutively expressing separate fluorescent reporters: DHFR fused to yellow fluorescent protein (DHFR.YFP) and mCherry. TMP or vehicle was administered to mice via oral gavage, drinking water, or eye drops. Ocular TMP levels post treatment were quantified by LC-MS/MS. Protein abundance was measured by fundus fluorescence imaging and western blotting. Visual acuity, response to light stimulus, retinal structure, and gene expression were evaluated after long-term (3 months) TMP treatment. Results Without TMP, DHFR.YFP was efficiently degraded in the retina. TMP achieved ocular concentrations of ∼13.6 μM (oral gavage), ∼331 nM (drinking water), and ∼636 nM (eye drops). Oral gavage and TMP eye drops stabilized DHFR.YFP as quickly as 6 hours, whereas continuous TMP drinking water could stabilize DHFR.YFP for ≥3 months. Stabilization was completely and repeatedly reversible following removal/addition of TMP in all regimens. Long-term TMP treatment had no impact on retina function/structure and had no effect on >99.9% of tested genes. Conclusions This DHFR-based conditional system is a rapid, efficient, and reversible tool to effectively control protein expression in the retina.
Collapse
Affiliation(s)
- Shyamtanu Datta
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Marian Renwick
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Viet Q. Chau
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Fang Zhang
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Emily R. Nettesheim
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel M. Lipinski
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - John D. Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
11
|
Dall E, Hollerweger JC, Dahms SO, Cui H, Häussermann K, Brandstetter H. Structural and functional analysis of cystatin E reveals enzymologically relevant dimer and amyloid fibril states. J Biol Chem 2018; 293:13151-13165. [PMID: 29967063 PMCID: PMC6109925 DOI: 10.1074/jbc.ra118.002154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Indexed: 12/26/2022] Open
Abstract
Protein activity is often regulated by altering the oligomerization state. One mechanism of multimerization involves domain swapping, wherein proteins exchange parts of their structures and thereby form long-lived dimers or multimers. Domain swapping has been specifically observed in amyloidogenic proteins, for example the cystatin superfamily of cysteine protease inhibitors. Cystatins are twin-headed inhibitors, simultaneously targeting the lysosomal cathepsins and legumain, with important roles in cancer progression and Alzheimer's disease. Although cystatin E is the most potent legumain inhibitor identified so far, nothing is known about its propensity to oligomerize. In this study, we show that conformational destabilization of cystatin E leads to the formation of a domain-swapped dimer with increased conformational stability. This dimer was active as a legumain inhibitor by forming a trimeric complex. By contrast, the binding sites toward papain-like proteases were buried within the cystatin E dimer. We also showed that the dimers could further convert to amyloid fibrils. Unexpectedly, cystatin E amyloid fibrils contained functional protein, which inhibited both legumain and papain-like enzymes. Fibril formation was further regulated by glycosylation. We speculate that cystatin amyloid fibrils might serve as a binding platform to stabilize the pH-sensitive legumain and cathepsins in the extracellular environment, contributing to their physiological and pathological functions.
Collapse
Affiliation(s)
- Elfriede Dall
- From the Department of Biosciences, University of Salzburg, A-5020 Salzburg, Austria and
| | - Julia C Hollerweger
- From the Department of Biosciences, University of Salzburg, A-5020 Salzburg, Austria and
| | - Sven O Dahms
- From the Department of Biosciences, University of Salzburg, A-5020 Salzburg, Austria and
| | - Haissi Cui
- the Center for Integrated Protein Science Munich, Technical University of Munich, D-85748 Munich, Germany
| | - Katharina Häussermann
- the Center for Integrated Protein Science Munich, Technical University of Munich, D-85748 Munich, Germany
| | - Hans Brandstetter
- From the Department of Biosciences, University of Salzburg, A-5020 Salzburg, Austria and
| |
Collapse
|
12
|
Matsumoto A, Yamamoto H, Matsuoka T, Kayama K, Onishi S, Matsuo N, Kihara S. Cystatin C-Adiponectin Complex in Plasma Associates with Coronary Plaque Instability. J Atheroscler Thromb 2017; 24:970-979. [PMID: 28321013 PMCID: PMC5587523 DOI: 10.5551/jat.39545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Adiponectin (APN) is an adipocyte-derived bioactive molecule with antiatherogenic properties. We previously reported that cystatin C (CysC) abolished the anti-atherogenic effects of APN. We aimed to elucidate the clinical significance of CysC–APN complex in patients with coronary artery disease (CAD). Methods: We enrolled 43 stable CAD male patients to examine the relationship between CysC–APN complex and coronary plaque characteristics. Serum was immunoprecipitated by the anti-APN antibody and immunoblotted by the anti-CysC antibody to demonstrate the presence of CysC–APN complexes in vivo. To confirm their binding in vitro, HEK293T cell lysates overexpressing myc-APN and FLAG-CysC were immunoprecipitated with an anti-myc or anti-FLAG antibody, followed by immunoblotting with an anti-APN or anti-CysC antibody. Results: CysC was identified as a specific co-immunoprecipitant with APN by the anti-APN antibody in human serum. In vitro, FLAG-CysC was co-immunoprecipitated with myc-APN by the antimyc antibody and myc-APN was co-immunoprecipitated with FLAG-CysC by the anti-FLAG antibody. Among CAD patients, serum CysC–APN complex levels negatively correlated with fibrotic components of coronary plaques and positively correlated with either necrotic or lipidic plus necrotic components. Plaque burden negatively correlated with serum APN levels but not serum CysC–APN complex levels. Serum CysC levels had no association with plaque characteristics. In multivariate analysis, CysC–APN complex levels were identified as the strongest negative factor for fibrotic components and the strongest positive factor for both necrotic and lipidic plus necrotic components. Conclusion: Measuring serum CysC–APN complex levels is helpful for evaluating coronary plaque instability in CAD patients.
Collapse
Affiliation(s)
- Akane Matsumoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Hiroyasu Yamamoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Tetsuro Matsuoka
- Department of Cardiology, Hyogo Prefectural Nishinomiya Hospital
| | - Kento Kayama
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Sumire Onishi
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Natsumi Matsuo
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| |
Collapse
|
13
|
Zadoo S, Nguyen A, Zode G, Hulleman JD. A Novel Luciferase Assay For Sensitively Monitoring Myocilin Variants in Cell Culture. Invest Ophthalmol Vis Sci 2016; 57:1939-50. [PMID: 27092720 PMCID: PMC5110263 DOI: 10.1167/iovs.15-18789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Primary open angle glaucoma–associated mutations in myocilin (MYOC) cause protein “nonsecretion,” rendering secreted MYOC difficult to detect using conventional techniques. This study focused on developing and using an assay that can quickly and easily detect mutant MYOC secretion. Methods We fused Gaussia luciferase (eGLuc2) to MYOC variants and expressed the constructs in HEK-293T and NTM-5 cells. Secreted and intracellular levels of MYOC eGLuc2 variants were evaluated by Western blotting and compared to untagged and FLAG-tagged MYOC constructs. Secreted and soluble intracellular MYOC eGLuc2 were measured by a GLuc assay. The secretion of nine additional MYOC mutants was assayed in conditioned media from transfected cells to test the applicability of the assay for monitoring other MYOC variants. Results Myocilin eGLuc2 behaved similarly to untagged and FLAG-tagged MYOC with respect to secretion, soluble intracellular levels, and in response to drug treatment. The GLuc assay could sensitively detect Y437H MYOC secretion 30 minutes after media change. Gaussia luciferase fused variants followed anticipated trends; nonpathogenic variants (D208E, G244V) were secreted at wild-type (WT) levels, whereas predicted disease-causing variants (C245Y, G246R, E300K, Y437H, I477N) demonstrated substantial secretion defects. Secretion defects caused by the C245Y, G246R, and Y437H mutations were partially rescued by permissive growth temperature. Interestingly, however, this increase in secretion was independent of newly synthesized protein. Conclusions Fusion of eGLuc2 to MYOC does not significantly change the behavior of MYOC. This newly developed MYOC reporter system can be used to study engineered MYOC variants and potentially to identify modulators of MYOC secretion and function.
Collapse
Affiliation(s)
- Serena Zadoo
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Annie Nguyen
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Gulab Zode
- Department of Cell Biology & Immunology and the North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States 3Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|