1
|
Kneubehl AR, Lopez JE. Comparative genomics analysis of three conserved plasmid families in the Western Hemisphere soft tick-borne relapsing fever borreliae provides insight into variation in genome structure and antigenic variation systems. Microbiol Spectr 2023; 11:e0089523. [PMID: 37737593 PMCID: PMC10580987 DOI: 10.1128/spectrum.00895-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have uniquely complex genomes, consisting of a linear chromosome and both circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of plasmids from Lyme disease causing spirochetes is more refined compared to RF Borrelia because of limited plasmid-resolved genome assemblies for the latter. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all the RF Borrelia species that we examined. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the putative expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia. IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally that infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled in most available genome assemblies. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genome assemblies for seven Borrelia spp. found in the Western Hemisphere. This current study is an in-depth investigation into the linear plasmids that were conserved and syntenic across species. We identified differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-localized genetic elements essential for the life cycle of RF spirochetes.
Collapse
Affiliation(s)
| | - Job E. Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Kneubehl AR, Lopez JE. Comparative genomics analysis of three conserved plasmid families in the Western Hemisphere soft tick-borne relapsing fever borreliae provides insight into variation in genome structure and antigenic variation systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531354. [PMID: 36945547 PMCID: PMC10028826 DOI: 10.1101/2023.03.06.531354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have a uniquely complex genome consisting of a linear chromosome and circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of Lyme disease causing Borrelia plasmids is more refined compared to RF spirochetes because of limited plasmid-resolved genomes for RF spirochetes. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all species. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia . IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally and infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genomes for seven Borrelia spp. found in the Western Hemisphere. This current study is a more in-depth investigation into the linear plasmids that were conserved and syntenic across species. This analysis determined differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-borne genetic elements essential for the life cycle of RF spirochetes.
Collapse
Affiliation(s)
| | - Job E. Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Jackson-Litteken CD, Curtis MW, Armstrong BA, Krishnavajhala A, Filatov S, Blevins JS, Lopez JE. Characterization of the arthropod associated lipoprotein (Alp) in the tick-mammalian transmission cycle of Borrelia turicatae. Ticks Tick Borne Dis 2022; 13:102052. [PMID: 36223678 PMCID: PMC10292778 DOI: 10.1016/j.ttbdis.2022.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Pathogenic species of Borrelia are etiological agents of tick-borne relapsing fever (TBRF). Most species of TBRF Borrelia are transmitted by argasid ticks, and persistent colonization of the salivary glands is vital for spirochete transmission. This is due to the fast-feeding dynamics of the vector. However, the molecular mechanisms leading to vector colonization by the spirochete and their transmission to the vertebrate host remain vague. Previous work in Borrelia hermsii identified the arthropod associated lipoprotein (Alp) as being produced by spirochetes colonizing tick salivary glands. Upon transmission to mice, alp expression was down-regulated and the protein was undetectable in B. hermsii infecting mouse blood. Furthermore, Alp has homologs in multiple TBRF Borrelia species including Borrelia turicatae, Borrelia duttonii, and Borrelia recurrentis. To further evaluate the role of Alp in tick colonization and transmission, the gene was deleted in B. turicatae and the mutant's phenotype was evaluated. Our findings indicate that Alp is dispensable for colonization of the tick salivary glands and for the establishment of infection in laboratory mice.
Collapse
Affiliation(s)
- Clay D Jackson-Litteken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael W Curtis
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Brittany A Armstrong
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Aparna Krishnavajhala
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Serhii Filatov
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Job E Lopez
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
4
|
Kneubehl AR, Krishnavajhala A, Leal SM, Replogle AJ, Kingry LC, Bermúdez SE, Labruna MB, Lopez JE. Comparative genomics of the Western Hemisphere soft tick-borne relapsing fever borreliae highlights extensive plasmid diversity. BMC Genomics 2022; 23:410. [PMID: 35641918 PMCID: PMC9158201 DOI: 10.1186/s12864-022-08523-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tick-borne relapsing fever (TBRF) is a globally prevalent, yet under-studied vector-borne disease transmitted by soft and hard bodied ticks. While soft TBRF (sTBRF) spirochetes have been described for over a century, our understanding of the molecular mechanisms facilitating vector and host adaptation is poorly understood. This is due to the complexity of their small (~ 1.5 Mb) but fragmented genomes that typically consist of a linear chromosome and both linear and circular plasmids. A majority of sTBRF spirochete genomes' plasmid sequences are either missing or are deposited as unassembled sequences. Consequently, our goal was to generate complete, plasmid-resolved genomes for a comparative analysis of sTBRF species of the Western Hemisphere. RESULTS Utilizing a Borrelia specific pipeline, genomes of sTBRF spirochetes from the Western Hemisphere were sequenced and assembled using a combination of short- and long-read sequencing technologies. Included in the analysis were the two recently isolated species from Central and South America, Borrelia puertoricensis n. sp. and Borrelia venezuelensis, respectively. Plasmid analyses identified diverse sequences that clustered plasmids into 30 families; however, only three families were conserved and syntenic across all species. We also compared two species, B. venezuelensis and Borrelia turicatae, which were isolated ~ 6,800 km apart and from different tick vector species but were previously reported to be genetically similar. CONCLUSIONS To truly understand the biological differences observed between species of TBRF spirochetes, complete chromosome and plasmid sequences are needed. This comparative genomic analysis highlights high chromosomal synteny across the species yet diverse plasmid composition. This was particularly true for B. turicatae and B. venezuelensis, which had high average nucleotide identity yet extensive plasmid diversity. These findings are foundational for future endeavors to evaluate the role of plasmids in vector and host adaptation.
Collapse
Affiliation(s)
- Alexander R Kneubehl
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Sebastián Muñoz Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile
| | - Adam J Replogle
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Luke C Kingry
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Sergio E Bermúdez
- Medical Entomology Department, Gorgas Memorial Institute for Health Research, Panamá City, Panamá
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva E Saúde Animal, Faculdade de Medicina Veterinária E Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Job E Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Trevisan G, Cinco M, Trevisini S, di Meo N, Ruscio M, Forgione P, Bonin S. Borreliae Part 2: Borrelia Relapsing Fever Group and Unclassified Borrelia. BIOLOGY 2021; 10:1117. [PMID: 34827110 PMCID: PMC8615063 DOI: 10.3390/biology10111117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Borreliae of the relapsing fever group (RFG) are heterogenous and can be divided mainly into three groups according to vectors, namely the soft-tick-borne relapsing fever (STBRF) Borreliae, the hard-tick-borne relapsing fever (HTBRF) Borreliae, the louse-borne relapsing fever (LBRF) Borreliae, and the avian relapsing fever ones. With respect to the geographical distribution, the STBRF Borreliae are further subdivided into Old World and New World strains. Except for the Avian relapsing fever group Borreliae, which cause avian spirochetosis, all the others share infectivity in humans. They are indeed the etiological agent of both endemic and epidemic forms of relapsing fever, causing high spirochaetemia and fever. Vectors are primarily soft ticks of Ornithodoros spp. in the STBRF group; hard ticks, notably Ixodes sp., Amblyomma sp., Dermacentor sp., and Rhipicephalus sp., in the HTBRF group; and the louse pediculus humanus humanus in the TBRF one. A recent hypothesis was supported for a common ancestor of RFG Borreliae, transmitted at the beginning by hard-body ticks. Accordingly, STBRF Borreliae switched to use soft-bodied ticks as a vector, which was followed by the use of lice by Borrelia recurrentis. There are also new candidate species of Borreliae, at present unclassified, which are also described in this review.
Collapse
Affiliation(s)
- Giusto Trevisan
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| | - Marina Cinco
- DSV—Department of Life Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Sara Trevisini
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Nicola di Meo
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Maurizio Ruscio
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Patrizia Forgione
- UOSD Dermatologia, Centro Rif. Regionale Malattia di Hansen e Lyme, P.O. dei Pellegrini, ASL Napoli 1 Centro, 80145 Naples, Italy;
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| |
Collapse
|
6
|
Abdelmoteleb M, Zhang C, Furey B, Kozubal M, Griffiths H, Champeaud M, Goodman RE. Evaluating potential risks of food allergy of novel food sources based on comparison of proteins predicted from genomes and compared to www.AllergenOnline.org. Food Chem Toxicol 2021; 147:111888. [DOI: 10.1016/j.fct.2020.111888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
|
7
|
Abstract
Relapsing fever (RF) is caused by several species of Borrelia; all, except two species, are transmitted to humans by soft (argasid) ticks. The species B. recurrentis is transmitted from one human to another by the body louse, while B. miyamotoi is vectored by hard-bodied ixodid tick species. RF Borrelia have several pathogenic features that facilitate invasion and dissemination in the infected host. In this article we discuss the dynamics of vector acquisition and subsequent transmission of RF Borrelia to their vertebrate hosts. We also review taxonomic challenges for RF Borrelia as new species have been isolated throughout the globe. Moreover, aspects of pathogenesis including symptomology, neurotropism, erythrocyte and platelet adhesion are discussed. We expound on RF Borrelia evasion strategies for innate and adaptive immunity, focusing on the most fundamental pathogenetic attributes, multiphasic antigenic variation. Lastly, we review new and emerging species of RF Borrelia and discuss future directions for this global disease.
Collapse
Affiliation(s)
- Job Lopez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston TX, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Medical centers, location Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sven Bergström
- Department of Molecular Biology, Umeå Center for Microbial Research, Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Abstract
Genetic studies in Borrelia require special consideration of the highly segmented genome, complex growth requirements and evolutionary distance of spirochetes from other genetically tractable bacteria. Despite these challenges, a robust molecular genetic toolbox has been constructed to investigate the biology and pathogenic potential of these important human pathogens. In this review we summarize the tools and techniques that are currently available for the genetic manipulation of Borrelia, including the relapsing fever spirochetes, viewing them in the context of their utility and shortcomings. Our primary objective is to help researchers discern what is feasible and what is not practical when thinking about potential genetic experiments in Borrelia. We have summarized published methods and highlighted their critical elements, but we are not providing detailed protocols. Although many advances have been made since B. burgdorferi was first transformed over 25 years ago, some standard genetic tools remain elusive for Borrelia. We mention these limitations and why they persist, if known. We hope to encourage investigators to explore what might be possible, in addition to optimizing what currently can be achieved, through genetic manipulation of Borrelia.
Collapse
Affiliation(s)
- Patricia A. Rosa
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St. Hamilton, MT 59840 USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd, Orlando, FL 32827 USA
| |
Collapse
|
9
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
10
|
Jackson-Litteken CD, Zalud AK, Ratliff CT, Latham JI, Bourret TJ, Lopez JE, Blevins JS. Assessing the Contribution of an HtrA Family Serine Protease During Borrelia turicatae Mammalian Infection. Front Cell Infect Microbiol 2019; 9:290. [PMID: 31456953 PMCID: PMC6700303 DOI: 10.3389/fcimb.2019.00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
Tick-borne relapsing fever (TBRF), characterized by recurring febrile episodes, is globally distributed and among the most common bacterial infections in some African countries. Despite the public health concern that this disease represents, little is known regarding the virulence determinants required by TBRF Borrelia during infection. Because the chromosomes of TBRF Borrelia show extensive colinearity with those of Lyme disease (LD) Borrelia, the exceptions represent unique genes encoding proteins that are potentially essential to the disparate enzootic cycles of these two groups of spirochetes. One such exception is a gene encoding an HtrA family protease, BtpA, that is present in TBRF Borrelia, but not in LD spirochetes. Previous work suggested that btpA orthologs may be important for resistance to stresses faced during mammalian infection. Herein, proteomic analyses of the TBRF spirochete, Borrelia turicatae, demonstrated that BtpA, as well as proteins encoded by adjacent genes in the B. turicatae genome, were produced in response to culture at mammalian body temperature, suggesting a role in mammalian infection. Further, transcriptional analyses revealed that btpA was expressed with the genes immediately upstream and downstream as part of an operon. To directly assess if btpA is involved in resistance to environmental stresses, btpA deletion mutants were generated. btpA mutants demonstrated no growth defect in response to heat shock, but were more sensitive to oxidative stress produced by t-butyl peroxide compared to wild-type B. turicatae. Finally, btpA mutants were fully infectious in a murine relapsing fever (RF) infection model. These results indicate that BtpA is either not required for mammalian infection, or that compensatory mechanisms exist in TBRF spirochetes to combat environmental stresses encountered during mammalian infection in the absence of BtpA.
Collapse
Affiliation(s)
- Clay D. Jackson-Litteken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Amanda K. Zalud
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, United States
| | - C. Tyler Ratliff
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jacob I. Latham
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Travis J. Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, United States
| | - Job E. Lopez
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Jon S. Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States,*Correspondence: Jon S. Blevins
| |
Collapse
|
11
|
Immunological Responses to the Relapsing Fever Spirochete Borrelia turicatae in Infected Rhesus Macaques: Implications for Pathogenesis and Diagnosis. Infect Immun 2019; 87:IAI.00900-18. [PMID: 30642902 DOI: 10.1128/iai.00900-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 11/20/2022] Open
Abstract
The global public health impact of relapsing fever (RF) spirochetosis is significant, since the pathogens exist on five of seven continents. The hallmark sign of infection is episodic fever and the greatest threat is to the unborn. With the goal of better understanding the specificity of B-cell responses and the role of immune responses in pathogenicity, we infected rhesus macaques with Borrelia turicatae (a new world RF spirochete species) by tick bite and monitored the immune responses generated in response to the pathogen. Specifically, we evaluated inflammatory mediator induction by the pathogen, host antibody responses to specific antigens, and peripheral lymphocyte population dynamics. Our results indicate that B. turicatae elicits from peripheral blood cells key inflammatory response mediators (interleukin-1β and tumor necrosis factor alpha), which are associated with preterm abortion. Moreover, a global decline in peripheral B-cell populations was observed in all animals at 14 days postinfection. Serological responses were also evaluated to assess the antigenicity of three surface proteins: BipA, BrpA, and Bta112. Interestingly, a distinction was observed between antibodies generated in nonhuman primates and mice. Our results provide support for the nonhuman primate model not only in studies of prenatal pathogenesis but also for diagnostic and vaccine antigen identification and testing.
Collapse
|
12
|
Bourret TJ, Boyle WK, Zalud AK, Valenzuela JG, Oliveira F, Lopez JE. The relapsing fever spirochete Borrelia turicatae persists in the highly oxidative environment of its soft-bodied tick vector. Cell Microbiol 2019; 21:e12987. [PMID: 30489694 PMCID: PMC6454574 DOI: 10.1111/cmi.12987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/17/2022]
Abstract
The relapsing fever spirochete Borrelia turicatae possesses a complex life cycle in its soft-bodied tick vector, Ornithodoros turicata. Spirochetes enter the tick midgut during a blood meal, and, during the following weeks, spirochetes disseminate throughout O. turicata. A population persists in the salivary glands allowing for rapid transmission to the mammalian hosts during tick feeding. Little is known about the physiological environment within the salivary glands acini in which B. turicatae persists. In this study, we examined the salivary gland transcriptome of O. turicata ticks and detected the expression of 57 genes involved in oxidant metabolism or antioxidant defences. We confirmed the expression of five of the most highly expressed genes, including glutathione peroxidase (gpx), thioredoxin peroxidase (tpx), manganese superoxide dismutase (sod-1), copper-zinc superoxide dismutase (sod-2), and catalase (cat) by reverse-transcriptase droplet digital polymerase chain reaction (RT-ddPCR). We also found distinct differences in the expression of these genes when comparing the salivary glands and midguts of unfed O. turicata ticks. Our results indicate that the salivary glands of unfed O. turicata nymphs are highly oxidative environments where reactive oxygen species (ROS) predominate, whereas midgut tissues comprise a primarily nitrosative environment where nitric oxide synthase is highly expressed. Additionally, B. turicatae was found to be hyperresistant to ROS compared with the Lyme disease spirochete Borrelia burgdorferi, suggesting it is uniquely adapted to the highly oxidative environment of O. turicata salivary gland acini.
Collapse
Affiliation(s)
- Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska
| | - Amanda K Zalud
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Job E Lopez
- Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N. Relapsing Fevers: Neglected Tick-Borne Diseases. Front Cell Infect Microbiol 2018; 8:98. [PMID: 29670860 PMCID: PMC5893795 DOI: 10.3389/fcimb.2018.00098] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Relapsing fever still remains a neglected disease and little is known on its reservoir, tick vector and physiopathology in the vertebrate host. The disease occurs in temperate as well as tropical countries. Relapsing fever borreliae are spirochaetes, members of the Borreliaceae family which also contain Lyme disease spirochaetes. They are mainly transmitted by Ornithodoros soft ticks, but some species are vectored by ixodid ticks. Traditionally a Borrelia species is associated with a specific vector in a particular geographical area. However, new species are regularly described, and taxonomical uncertainties deserve further investigations to better understand Borrelia vector/host adaptation. The medical importance of Borrelia miyamotoi, transmitted by Ixodes spp., has recently spawned new interest in this bacterial group. In this review, recent data on tick-host-pathogen interactions for tick-borne relapsing fevers is presented, with special focus on B. miyamotoi.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Pierre H. Boyer
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Laurence Vial
- CIRAD BIOS, UMR15 CIRAD/Institut National de la Recherche Agronomique “Contrôle des Maladies Animales Exotiques et Emergentes,” Equipe “Vecteurs,” Campus International de Baillarguet, Montpellier, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
- Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
14
|
Luo Z, Kelleher AJ, Darwiche R, Hudspeth EM, Shittu OK, Krishnavajhala A, Schneiter R, Lopez JE, Asojo OA. Crystal Structure of Borrelia turicatae protein, BTA121, a differentially regulated gene in the tick-mammalian transmission cycle of relapsing fever spirochetes. Sci Rep 2017; 7:15310. [PMID: 29127407 PMCID: PMC5681642 DOI: 10.1038/s41598-017-14959-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
Tick-borne relapsing fever (RF) borreliosis is a neglected disease that is often misdiagnosed. RF species circulating in the United States include Borrelia turicatae, which is transmitted by argasid ticks. Environmental adaptation by RF Borrelia is poorly understood, however our previous studies indicated differential regulation of B. turicatae genes localized on the 150 kb linear megaplasmid during the tick-mammalian transmission cycle, including bta121. This gene is up-regulated by B. turicatae in the tick versus the mammal, and the encoded protein (BTA121) is predicted to be surface localized. The structure of BTA121 was solved by single-wavelength anomalous dispersion (SAD) using selenomethionine-derivative protein. The topology of BTA121 is unique with four helical domains organized into two helical bundles. Due to the sequence similarity of several genes on the megaplasmid, BTA121 can serve as a model for their tertiary structures. BTA121 has large interconnected tunnels and cavities that can accommodate ligands, notably long parallel helices, which have a large hydrophobic central pocket. Preliminary in-vitro studies suggest that BTA121 binds lipids, notably palmitate with a similar order of binding affinity as tablysin-15, a known palmitate-binding protein. The reported data will guide mechanistic studies to determine the role of BTA121 in the tick-mammalian transmission cycle of B. turicatae.
Collapse
Affiliation(s)
- Zhipu Luo
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, Illinois, 60439, USA
| | - Alan J Kelleher
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg Chemin du Musée 10, CH 1700, Fribourg, Switzerland
| | - Elissa M Hudspeth
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America
| | - Oluwatosin K Shittu
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America
| | - Aparna Krishnavajhala
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg Chemin du Musée 10, CH 1700, Fribourg, Switzerland
| | - Job E Lopez
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America.
| | - Oluwatoyin A Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America.
| |
Collapse
|
15
|
Christodoulides A, Boyadjian A, Kelesidis T. Spirochetal Lipoproteins and Immune Evasion. Front Immunol 2017; 8:364. [PMID: 28424696 PMCID: PMC5372817 DOI: 10.3389/fimmu.2017.00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment.
Collapse
Affiliation(s)
- Alexei Christodoulides
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ani Boyadjian
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Neelakanta G, Sultana H, Sonenshine DE, Marconi RT. An In Vitro Blood-Feeding Method Revealed Differential Borrelia turicatae (Spirochaetales: Spirochaetaceae) Gene Expression After Spirochete Acquisition and Colonization in the Soft Tick Ornithodoros turicata (Acari: Argasidae). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:441-449. [PMID: 28399292 DOI: 10.1093/jme/tjw171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 06/07/2023]
Abstract
In the Midwestern, Southwestern, and Southern part of the United States, the soft tick Ornithodoros turicata transmits the spirochete Borrelia turicatae, the causative agent of relapsing fever in humans. In this study, we report a simplified and an efficient method of in vitro feeding to evaluate O. turicata-B. turicatae interactions. Both nymphal and adult female ticks successfully acquired spirochetes upon in vitro feeding on the B. turicatae-infected blood. We also noted transstadial transmission of spirochetes to adult ticks that were molted from nymphs fed on B. turicatae-infected blood. A differential expression pattern for some of the B. turicatae genes was evident after acquisition and colonization of the vector. The levels of arthropod-associated lipoprotein Alp-mRNA were significantly upregulated and the mRNA levels of factor H binding protein FhbA and immunogenic protein BipA were significantly downregulated in the spirochetes after acquisition into ticks in comparison with spirochetes grown in culture medium. In addition, genes such as bta124 and bta116 were significantly upregulated in spirochetes in unfed ticks in comparison with the levels noted in spirochetes after acquisition. These findings represent an efficient in vitro blood-feeding method to study B. turicatae gene expression after acquisition and colonization in these ticks. In summary, we report that B. turicatae survive and develop in the tick host when acquired by in vitro feeding. We also report that B. turicatae genes are differentially expressed in ticks in comparison with the in vitro-grown cultures, indicating influence of tick environment on spirochete gene expression.
Collapse
Affiliation(s)
- Girish Neelakanta
- Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA 23529 (; )
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | - Hameeda Sultana
- Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA 23529 (; )
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | - Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
17
|
Abstract
Relapsing fever spirochetes are tick- and louse-borne pathogens that primarily afflict those in impoverished countries. Historically the pathogens have had a significant impact on public health, yet currently they are often overlooked because of the nonspecific display of disease. In this review, we discuss aspects of relapsing fever (RF) spirochete pathogenesis including the: (1) clinical manifestation of disease; (2) ability to diagnose pathogen exposure; (3) the pathogen’s life cycle in the tick and mammal; and (4) ecological factors contributing to the maintenance of RF spirochetes in nature.
Collapse
Affiliation(s)
- Job E. Lopez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, 77030 TX, USA; (A.K.); (M.N.G.)
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, 77030 TX, USA
- Correspondence: ; Tel.: +1-832-824-0557
| | - Aparna Krishnavahjala
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, 77030 TX, USA; (A.K.); (M.N.G.)
| | - Melissa N. Garcia
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, 77030 TX, USA; (A.K.); (M.N.G.)
| | - Sergio Bermudez
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud, P.O. Box 816-02593, City of Panama, Panama;
| |
Collapse
|