1
|
Parra LG, Erjavec LC, Casali CI, Zerpa Velazquez A, Weber K, Setton-Avruj CP, Fernández Tome MDC. Cytosolic phospholipase A 2 regulates lipid homeostasis under osmotic stress through PPARγ. FEBS J 2024; 291:722-743. [PMID: 37947039 DOI: 10.1111/febs.16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Physiologically, renal medullary cells are surrounded by a hyperosmolar interstitium. However, different pathological situations can induce abrupt changes in environmental osmolality, causing cell stress. Therefore, renal cells must adapt to survive in this new condition. We previously demonstrated that, among the mechanisms involved in osmoprotection, renal cells upregulate triglyceride biosynthesis (which helps preserve glycerophospholipid synthesis and membrane homeostasis) and cyclooxygenase-2 (which generates prostaglandins from arachidonic acid) to maintain lipid metabolism in renal tissue. Herein, we evaluated whether hyperosmolality modulates phospholipase A2 (PLA2 ) activity, leading to arachidonic acid release from membrane glycerophospholipid, and investigated its possible role in hyperosmolality-induced triglyceride synthesis and accumulation. We found that hyperosmolality induced PLA2 expression and activity in Madin-Darby canine kidney cells. Cytosolic PLA2 (cPLA2) inhibition, but not secreted or calcium-independent PLA2 (sPLA2 or iPLA2 , respectively), prevented triglyceride synthesis and reduced cell survival. Inhibition of prostaglandin synthesis with indomethacin not only failed to prevent hyperosmolality-induced triglyceride synthesis but also exacerbated it. Similar results were observed with the peroxisomal proliferator activated receptor gamma (PPARγ) agonist rosiglitazone. Furthermore, hyperosmolality increased free intracellular arachidonic acid levels, which were even higher when prostaglandin synthesis was inhibited by indomethacin. Blocking PPARγ with GW-9662 prevented the effects of both indomethacin and rosiglitazone on triglyceride synthesis and even reduced hyperosmolality-induced triglyceride synthesis, suggesting that arachidonic acid may stimulate triglyceride synthesis through PPARγ activation. These results highlight the role of cPLA2 in osmoprotection, since it is essential to provide arachidonic acid, which is involved in PPARγ-regulated triglyceride synthesis, thus guaranteeing cell survival.
Collapse
Affiliation(s)
- Leandro Gastón Parra
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luciana Cecilia Erjavec
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia Irene Casali
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Andrea Zerpa Velazquez
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Karen Weber
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Clara Patricia Setton-Avruj
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departaemento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
2
|
A high salt diet induces tubular damage associated with a pro-inflammatory and pro-fibrotic response in a hypertension-independent manner. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165907. [DOI: 10.1016/j.bbadis.2020.165907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
3
|
Peruchetti DB, Silva-Filho JL, Silva-Aguiar RP, Teixeira DE, Takiya CM, Souza MC, Henriques MDG, Pinheiro AAS, Caruso-Neves C. IL-4 Receptor α Chain Protects the Kidney Against Tubule-Interstitial Injury Induced by Albumin Overload. Front Physiol 2020; 11:172. [PMID: 32174845 PMCID: PMC7056741 DOI: 10.3389/fphys.2020.00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has highlighted the role of tubule-interstitial injury (TII) as a vital step in the pathogenesis of acute kidney injury (AKI). Incomplete repair of TII during AKI could lead to the development of chronic kidney disease. Changes in albumin endocytosis in proximal tubule epithelial cells (PTECs) is linked to the development of TII. In this context, interleukin (IL)-4 has been shown to be an important factor in modulating recovery of TII. We have studied the possible role of IL-4 in TII induced by albumin overload. A subclinical AKI model characterized by albumin overload in the proximal tubule was used, without changing glomerular function. Four groups were generated: (1) CONT, wild-type mice treated with saline; (2) BSA, wild-type mice treated with 10 g/kg/day bovine serum albumin (BSA); (3) KO, IL4Rα–/– mice treated with saline; and (4) KO + BSA, IL4Rα–/– mice treated with BSA. As reported previously, mice in the BSA group developed TII without changes in glomerular function. The following parameters were increased in the KO + BSA group compared with the BSA group: (1) tubular injury score; (2) urinary γ-glutamyltransferase; (3) CD4+ T cells, dendritic cells, macrophages, and neutrophils are associated with increases in renal IL-6, IL-17, and transforming growth factor β. A decrease in M2-subtype macrophages associated with a decrease in collagen deposition was observed. Using LLC-PK1 cells, a model of PTECs, we observed that (1) these cells express IL-4 receptor α chain associated with activation of the JAK3/STAT6 pathway; (2) IL-4 alone did not change albumin endocytosis but did reverse the inhibitory effect of higher albumin concentration. This effect was abolished by JAK3 inhibitor. A further increase in urinary protein and creatinine levels was observed in the KO + BSA group compared with the BSA group, but not compared with the CONT group. These observations indicate that IL-4 has a protective role in the development of TII induced by albumin overload that is correlated with modulation of the pro-inflammatory response. We propose that megalin-mediated albumin endocytosis in PTECs could work as a sensor, transducer, and target during the genesis of TII.
Collapse
Affiliation(s)
- Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C Souza
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Peruchetti DB, Freitas AC, Pereira VC, Lopes JV, Takiya CM, Nascimento NR, Pinheiro AAS, Caruso-Neves C. PKB is a central molecule in the modulation of Na+-ATPase activity by albumin in renal proximal tubule cells. Arch Biochem Biophys 2019; 674:108115. [DOI: 10.1016/j.abb.2019.108115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022]
|
5
|
Teixeira DE, Peruchetti DB, Silva LS, Silva-Aguiar RP, Oquendo MB, Silva-Filho JL, Takiya CM, Leal-Cardoso JH, Pinheiro AAS, Caruso-Neves C. Lithium ameliorates tubule-interstitial injury through activation of the mTORC2/protein kinase B pathway. PLoS One 2019; 14:e0215871. [PMID: 31002704 PMCID: PMC6474631 DOI: 10.1371/journal.pone.0215871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Tubule-interstitial injury (TII) is a critical step in the progression of renal disease. It has been proposed that changes in proximal tubule (PT) albumin endocytosis plays an important role in the development of TII. Some reports have shown protective effects of lithium on kidney injury animal models that was correlated to proteinuria. We tested the hypothesis that lithium treatment ameliorates the development of TII due to changes in albumin endocytosis. Two experimental models were used: (1) TII induced by albumin overload in an animal model; (2) LLC-PK1 cells, a PT cell line. Lithium treatment ameliorates TII induced by albumin overload measured by (1) proteinuria; (2) collagen deposition; (3) area of tubule-interstitial space, and (4) macrophage infiltration. Lithium treatment increased mTORC2 activity leading to the phosphorylation of protein kinase B (PKB) at Ser473 and its activation. This mechanism enhanced albumin endocytosis in PT cells, which decreased the proteinuria observed in TII induced by albumin overload. This effect did not involve changes in the expression of megalin, a PT albumin receptor. In addition, activation of this pathway decreased apoptosis in LLC-PK1 cells, a PT cell line, induced by higher albumin concentration, similar to that found in pathophysiologic conditions. Our results indicate that the protective role of lithium treatment on TII induced by albumin overload involves an increase in PT albumin endocytosis due to activation of the mTORC2/PKB pathway. These results open new possibilities in understanding the effects of lithium on the progression of renal disease.
Collapse
Affiliation(s)
- Douglas E. Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo B. Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandro S. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Morgana B. Oquendo
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M. Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ana Acacia S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
6
|
Silva LS, Peruchetti DB, Silva-Aguiar RP, Abreu TP, Dal-Cheri BKA, Takiya CM, Souza MC, Henriques MG, Pinheiro AAS, Caruso-Neves C. The angiotensin II/AT1 receptor pathway mediates malaria-induced acute kidney injury. PLoS One 2018; 13:e0203836. [PMID: 30204779 PMCID: PMC6133374 DOI: 10.1371/journal.pone.0203836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
Malaria-induced acute kidney injury (MAKI) is a life-threatening complication of severe malaria. Here, we investigated the potential role of the angiotensin II (Ang II)/AT1 receptor pathway in the development of MAKI. We used C57BL/6 mice infected by Plasmodium berghei ANKA (PbA-infected mice), a well-known murine model of severe malaria. The animals were treated with 20 mg/kg/day losartan, an antagonist of AT1 receptor, or captopril, an angiotensin-converting enzyme inhibitor. We observed an increase in the levels of plasma creatinine and blood urea nitrogen associated with a significant decrease in creatinine clearance, a marker of glomerular flow rate, and glomerular hypercellularity, indicating glomerular injury. PbA-infected mice also presented proteinuria and a high level of urinary γ-glutamyltransferase activity associated with an increase in collagen deposition and interstitial space, showing tubule-interstitial injury. PbA-infected mice were also found to have increased fractional excretion of sodium (FENa+) coupled with decreased cortical (Na++K+)ATPase activity. These injuries were associated with an increase in pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6, interleukin-17, and interferon gamma, in the renal cortex of PbA-infected mice. All modifications of these structural, biochemical, and functional parameters observed in PbA-infected mice were avoided with simultaneous treatment with losartan or captopril. Our data allow us to postulate that the Ang II/AT1 receptor pathway mediates an increase in renal pro-inflammatory cytokines, which in turn leads to the glomerular and tubular injuries observed in MAKI.
Collapse
Affiliation(s)
- Leandro S. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo B. Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago P. Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz K. A. Dal-Cheri
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M. Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana C. Souza
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Maria G. Henriques
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Acacia S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|