1
|
Seress D, Molnár O, Matolcsi F, Pintye A, Kovács GM, Németh MZ. Development and Implementation of a Novel CAPS Assay Reveals High Prevalence of a Boscalid Resistance Marker and Its Co-Occurrence with an Azole Resistance Marker in Erysiphe necator. PLANT DISEASE 2024; 108:2607-2614. [PMID: 38616393 DOI: 10.1094/pdis-06-23-1114-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are frequently used against powdery mildew (PM) fungi, such as Erysiphe necator, the causal agent of grapevine PM. Fungicide resistance, however, hinders effective control. DNA-based monitoring facilitates the recognition of resistance. We aimed (i) to adapt an effective method to detect a widespread genetic marker of resistance to boscalid, a commonly used SDHI, and (ii) to study the co-occurrence of the marker with a marker of resistance to demethylase inhibitor (DMI) fungicides. Sequencing of the sdhB gene identified a nonsynonymous substitution, denoted as sdhB-A794G, leading to an amino acid change (H242R) in the sdhB protein. In vitro fungicide resistance tests showed that E. necator isolates carrying sdhB-A794G were resistant to boscalid. We adopted a cleaved amplified polymorphic sequence-based method and screened more than 500 field samples collected from five Hungarian wine regions in two consecutive years. The sdhB-A794G marker was detected in all wine regions and in both years, altogether in 61.7% of samples, including 20.5% in which both sdhB-A794G and the wild-type were present. The frequency of sdhB-A794G was higher in SDHI-treated vineyards than in vineyards without any SDHI application. A significant difference in the presence of the marker was detected among wine regions; its prevalence ranged from none to 100%. We identified significant co-occurrence of sdhB-A794G with the CYP51-A495T (Y136F) mutation of the CYP51 gene, a known marker of resistance to DMIs. The monitoring of fungicide resistance is fundamental for the successful control of E. necator. Our rapid, cost-effective diagnostic method will support decision-making and fungicide resistance monitoring and management.
Collapse
Affiliation(s)
- Diána Seress
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest 1022, Hungary
| | - Orsolya Molnár
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest 1022, Hungary
| | - Fruzsina Matolcsi
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest 1022, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Alexandra Pintye
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest 1022, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Gábor M Kovács
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest 1022, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Márk Z Németh
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest 1022, Hungary
| |
Collapse
|
2
|
Arnold CJ, (Meyers) Hahn EA, Whetten R, Chartrain L, Cheema J, Brown JKM, Cowger C. Multiple routes to fungicide resistance: Interaction of Cyp51 gene sequences, copy number and expression. MOLECULAR PLANT PATHOLOGY 2024; 25:e13498. [PMID: 39305021 PMCID: PMC11415427 DOI: 10.1111/mpp.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 10/01/2024]
Abstract
We examined the molecular basis of triazole resistance in Blumeria graminis f. sp. tritici (wheat mildew, Bgt), a model organism among powdery mildews. Four genetic models for responses to triazole fungicides were identified among US and UK isolates, involving multiple genetic mechanisms. Firstly, only two amino acid substitutions in CYP51B lanosterol demethylase, the target of triazoles, were associated with resistance, Y136F and S509T (homologous to Y137F and S524T in the reference fungus Zymoseptoria tritici). As sequence variation did not explain the wide range of resistance, we also investigated Cyp51B copy number and expression, the latter using both reverse transcription-quantitative PCR and RNA-seq. The second model for resistance involved higher copy number and expression in isolates with a resistance allele; thirdly, however, moderate resistance was associated with higher copy number of wild-type Cyp51B in some US isolates. A fourth mechanism was heteroallelism with multiple alleles of Cyp51B. UK isolates, with significantly higher mean resistance than their US counterparts, had higher mean copy number, a high frequency of the S509T substitution, which was absent from the United States, and in the most resistant isolates, heteroallelism involving both sensitivity residues Y136+S509 and resistance residues F136+T509. Some US isolates were heteroallelic for Y136+S509 and F136+S509, but this was not associated with higher resistance. The obligate biotrophy of Bgt may constrain the tertiary structure and thus the sequence of CYP51B, so other variation that increases resistance may have a selective advantage. We describe a process by which heteroallelism may be adaptive when Bgt is intermittently exposed to triazoles.
Collapse
Affiliation(s)
- Corinne J. Arnold
- John Innes Centre, Norwich Research ParkNorwichUK
- Present address:
Camena Bioscience, Chesterford Research ParkCambridgeUK
| | - Emily A. (Meyers) Hahn
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Present address:
Wisconsin Crop Innovation CenterUniversity of Wisconsin8520 University GreenMiddletonWisconsinUSA
| | - Rebecca Whetten
- United States Department of Agriculture‐Agricultural Research Service, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | | | | | - Christina Cowger
- United States Department of Agriculture‐Agricultural Research Service, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
3
|
Kusch S, Qian J, Loos A, Kümmel F, Spanu PD, Panstruga R. Long-term and rapid evolution in powdery mildew fungi. Mol Ecol 2024; 33:e16909. [PMID: 36862075 DOI: 10.1111/mec.16909] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023]
Abstract
The powdery mildew fungi (Erysiphaceae) are globally distributed plant pathogens with a range of more than 10,000 plant hosts. In this review, we discuss the long- and short-term evolution of these obligate biotrophic fungi and outline their diversity with respect to morphology, lifestyle, and host range. We highlight their remarkable ability to rapidly overcome plant immunity, evolve fungicide resistance, and broaden their host range, for example, through adaptation and hybridization. Recent advances in genomics and proteomics, particularly in cereal powdery mildews (genus Blumeria), provided first insights into mechanisms of genomic adaptation in these fungi. Transposable elements play key roles in shaping their genomes, where even close relatives exhibit diversified patterns of recent and ongoing transposon activity. These transposons are ubiquitously distributed in the powdery mildew genomes, resulting in a highly adaptive genome architecture lacking obvious regions of conserved gene space. Transposons can also be neofunctionalized to encode novel virulence factors, particularly candidate secreted effector proteins, which may undermine the plant immune system. In cereals like barley and wheat, some of these effectors are recognized by plant immune receptors encoded by resistance genes with numerous allelic variants. These effectors determine incompatibility ("avirulence") and evolve rapidly through sequence diversification and copy number variation. Altogether, powdery mildew fungi possess plastic genomes that enable their fast evolutionary adaptation towards overcoming plant immunity, host barriers, and chemical stress such as fungicides, foreshadowing future outbreaks, host range shifts and expansions as well as potential pandemics by these pathogens.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Jiangzhao Qian
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Anne Loos
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Florian Kümmel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pietro D Spanu
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
- Imperial College, London, UK
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Pintye A, Németh MZ, Molnár O, Horváth ÁN, Matolcsi F, Bókony V, Spitzmüller Z, Pálfi X, Váczy KZ, Kovács GM. Comprehensive analyses of the occurrence of a fungicide resistance marker and the genetic structure in Erysiphe necator populations. Sci Rep 2023; 13:15172. [PMID: 37704655 PMCID: PMC10499922 DOI: 10.1038/s41598-023-41454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
Genetically distinct groups of Erysiphe necator, the fungus causing grapevine powdery mildew infect grapevine in Europe, yet the processes sustaining stable genetic differences between those groups are less understood. Genotyping of over 2000 field samples from six wine regions in Hungary collected between 2017 and 2019 was conducted to reveal E. necator genotypes and their possible differentiation. The demethylase inhibitor (DMI) fungicide resistance marker A495T was detected in all wine regions, in 16% of the samples. Its occurrence differed significantly among wine regions and grape cultivars, and sampling years, but it did not differ between DMI-treated and untreated fields. Multilocus sequence analyses of field samples and 59 in vitro maintained isolates revealed significant genetic differences among populations from distinct wine regions. We identified 14 E. necator genotypes, of which eight were previously unknown. In contrast to the previous concept of A and B groups, European E. necator populations should be considered genetically more complex. Isolation by geographic distance, growing season, and host variety influence the genetic structuring of E. necator, which should be considered both during diagnoses and when effective treatments are planned.
Collapse
Affiliation(s)
- Alexandra Pintye
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Márk Z Németh
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary.
| | - Orsolya Molnár
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Áron N Horváth
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Fruzsina Matolcsi
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Bókony
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zsolt Spitzmüller
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Xénia Pálfi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Kálmán Z Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Gábor M Kovács
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
5
|
Cherrad S, Gillet B, Dellinger J, Bellaton L, Roux P, Hernandez C, Steva H, Perrier L, Vacher S, Hughes S. New insights from short and long reads sequencing to explore cytochrome b variants in Plasmopara viticola populations collected from vineyards and related to resistance to complex III inhibitors. PLoS One 2023; 18:e0268385. [PMID: 36656908 PMCID: PMC9851517 DOI: 10.1371/journal.pone.0268385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Downy mildew is caused by Plasmopara viticola, an obligate oomycete plant pathogen, a devasting disease of grapevine. To protect plants from the disease, complex III inhibitors are among the fungicides widely used. They specifically target the mitochondrial cytochrome b (cytb) of the pathogen to block cellular respiration mechanisms. In the French vineyard, P. viticola has developed resistance against a first group of these fungicides, the Quinone outside Inhibitors (QoI), with a single amino acid substitution G143A in its cytb mitochondrial sequence. The use of QoI was limited and another type of fungicide, the Quinone inside Inhibitors, targeting the same gene and highly effective against oomycetes, was used instead. Recently however, less sensitive P. viticola populations were detected after treatments with some inhibitors, in particular ametoctradin and cyazofamid. By isolating single-sporangia P. viticola strains resistant to these fungicides, we characterized new variants in the cytb sequences associated with cyazofamid resistance: a point mutation (L201S) and more strikingly, two insertions (E203-DE-V204, E203-VE-V204). In parallel with the classical tools, pyrosequencing and qPCR, we then benchmarked short and long-reads NGS technologies (Ion Torrent, Illumina, Oxford Nanopore Technologies) to sequence the complete cytb with a view to detecting and assessing the proportion of resistant variants of P. viticola at the scale of a field population. Eighteen populations collected from French vineyard fields in 2020 were analysed: 12 showed a variable proportion of G143A, 11 of E203-DE-V204 and 7 populations of the S34L variant that confers resistance to ametoctradin. Interestingly, the long reads were able to identify variants, including SNPs, with confidence and to detect a small proportion of P. viticola with multiple variants along the same cytb sequence. Overall, NGS appears to be a promising method for assessing fungicide resistance of pathogens linked to cytb modifications at the field population level. This approach could rapidly become a robust decision support tool for resistance management in the future.
Collapse
Affiliation(s)
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, INRAE USC 1370, Université Claude Bernard Lyon 1, Lyon, France
| | - Julien Dellinger
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, INRAE USC 1370, Université Claude Bernard Lyon 1, Lyon, France
| | - Lalie Bellaton
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, INRAE USC 1370, Université Claude Bernard Lyon 1, Lyon, France
| | - Pascale Roux
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, INRAE USC 1370, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, INRAE USC 1370, Université Claude Bernard Lyon 1, Lyon, France
- * E-mail: (SH); (SC)
| |
Collapse
|
6
|
Identification of the Pathogen Causing Leaf Spot in Zinnia elegans and Its Sensitivity to Five Fungicides. Pathogens 2022; 11:pathogens11121454. [PMID: 36558787 PMCID: PMC9783861 DOI: 10.3390/pathogens11121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Zinnia elegans Jacq. is an important, globally cultivated ornamental plant. In August 2021, a leaf spot disease was observed in zinnia in Shibing County, Guizhou, China, with an incidence of approximately 60%. Pathogens were isolated and purified from the infected leaves by tissue isolation, and pathogen strain BRJ2 was confirmed as the pathogen causing the leaf spot. Based on morphology and ITS, TEF-1α, and TUB2 sequence analyses, the pathogen was identified as Nigrospora musae (McLennan and Hoëtte). The mycelial growth rate method was used to determine the in vitro toxicity of five fungicides to the pathogen. The results showed that 10% difenoconazole provided the strongest inhibitory effect on N. musae, with a concentration for 50% of maximal effect (EC50) of 0.0658 mg/L; 75% trifloxystrobin·tebuconazole had the second greatest effect, with an EC50 of 0.1802 mg/L. This study provides the first report that N. musae caused leaf spot disease in Z. elegans and provides important guidance for the effective prevention and control of this disease in Guizhou.
Collapse
|
7
|
Stergiopoulos I, Aoun N, van Huynh Q, Neill T, Lowder SR, Newbold C, Cooper ML, Ding S, Moyer MM, Miles TD, Oliver CL, Úrbez-Torres JR, Mahaffee WF. Identification of Putative SDHI Target Site Mutations in the SDHB, SDHC, and SDHD Subunits of the Grape Powdery Mildew Pathogen Erysiphe necator. PLANT DISEASE 2022; 106:2310-2320. [PMID: 35100029 DOI: 10.1094/pdis-09-21-1993-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are fungicides used in control of numerous fungal plant pathogens, including Erysiphe necator, the causal agent of grapevine powdery mildew (GPM). Here, the sdhb, sdhc, and sdhd genes of E. necator were screened for mutations that may be associated with SDHI resistance. GPM samples were collected from 2017 to 2020 from the U.S. states of California, Oregon, Washington, and Michigan, and the Canadian province of British Columbia. Forty-five polymorphisms were identified in the three sdh genes, 17 of which caused missense mutations. Of these, the SDHC-p.I244V substitution was shown in this study to reduce sensitivity of E. necator to boscalid and fluopyram, whereas the SDHC-p.G25R substitution did not affect SDHI sensitivity. Of the other 15 missense mutations, the SDHC-p.H242R substitution was shown in previous studies to reduce sensitivity of E. necator toward boscalid, whereas the equivalents of the SDHB-p.H242L, SDHC-p.A83V, and SDHD-p.I71F substitutions were shown to reduce sensitivity to SDHIs in other fungi. Generally, only a single amino acid substitution was present in the SDHB, SDHC, or SDHD subunit of E. necator isolates, but missense mutations putatively associated with SDHI resistance were widely distributed in the sampled areas and increased in frequency over time. Finally, isolates that had decreased sensitivity to boscalid or fluopyram were identified but with no or only the SDHC-p.G25R amino acid substitution present in SDHB, SDHC, and SDHD subunits. This suggests that target site mutations probably are not the only mechanism conferring resistance to SDHIs in E. necator.
Collapse
Affiliation(s)
- Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, CA 95616-851, U.S.A
| | - Nathalie Aoun
- Department of Plant Pathology, University of California Davis, Davis, CA 95616-851, U.S.A
| | - Que van Huynh
- Department of Plant Pathology, University of California Davis, Davis, CA 95616-851, U.S.A
| | - Tara Neill
- USDA-ARS Horticulture Crops Disease and Pest Management Research Unit (HCDPMRU), Corvallis, OR 97330, U.S.A
| | - Sarah R Lowder
- Department of Botany and Plant Pathology, Oregon State University, Cordley Hall, OR 97331, U.S.A
| | - Chelsea Newbold
- Department of Botany and Plant Pathology, Oregon State University, Cordley Hall, OR 97331, U.S.A
| | - Monica L Cooper
- University of California Cooperative Extension, Napa, CA 94559, U.S.A
| | - Shunping Ding
- Wine and Viticulture Department, California Polytechnical State University, San Luis Obispo, CA 93407, U.S.A
| | - Michelle M Moyer
- Department of Horticulture, Washington State University Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, U.S.A
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Charlotte L Oliver
- Department of Horticulture, Washington State University Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, U.S.A
| | - José Ramón Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Walter F Mahaffee
- USDA-ARS Horticulture Crops Disease and Pest Management Research Unit (HCDPMRU), Corvallis, OR 97330, U.S.A
| |
Collapse
|
8
|
Guo Z, Sun X, Qin L, Dong L, Xiong L, Xie F, Qin D, Chen Y. Identification of Golovinomyces artemisiae Causing Powdery Mildew, Changes in Chlorophyll Fluorescence Parameters, and Antioxidant Levels in Artemisia selengensis. FRONTIERS IN PLANT SCIENCE 2022; 13:876050. [PMID: 35720542 PMCID: PMC9204253 DOI: 10.3389/fpls.2022.876050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Artemisia selengensis Turcz. is a valuable edible and medicinal vegetable crop widely cultivated in Northeast China. Powdery mildew (PM) disease occurs during field and greenhouse cultivation, resulting in production losses and quality deterioration. The pathogen in A. selengensis was Golovinomyces artemisiae identified using optical microscopic and scanning electron microscopic observations, morphological identification, and molecular biological analyses. Parameters of chlorophyll fluorescence (ChlF) and antioxidant system responses as well as callose and lignin contents in A. selengensis were analyzed with inoculating G. artemisiae. Obvious of PM-infected leaves were confirmed with significantly lower values in electron transport rate (ETR), non-photochemical quenching (NPQ), photochemical quenching (qP), and actual photochemical efficiency [Y(II)], but higher values in non-adjusting energy dissipation yield [Y(NO)], supposed that maximal photosystem II quantum yield (Fv/Fm) value and images could be used to monitor PM degree on infectedA. selengensis. In addition, malondialdehyde (MDA), superoxide anion (O2 -), callose, lignin contents, and peroxidase (POD) activity increased, while superoxide dismutase (SOD) activity, catalase (CAT) activity, and ascorbic acid (AsA) content decreased significantly in infected leaves compared to mock-inoculated leaves, indicated that lignin and protective enzymes are the key indicators for detecting PM resistant in A. selengensis. These results suggest that PM caused by G. artemisiae disrupted the photosynthetic capacity and induced imbalance of antioxidant system inA. selengensis. The findings were of great significance for designing a feasible approach to effectively prevent and control the PM disease in A. selengensis as well as in other vegetable crops.
Collapse
Affiliation(s)
- Zhixin Guo
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xiaoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ligang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lili Dong
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Liangbing Xiong
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Fuchun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Dong Qin
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- College of Horticulture, Northeast Agricultural University, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Moore LC, Brenneman TB, Waliullah S, Bock CH, Ali ME. Multiple Mutations and Overexpression in the CYP51A and B Genes Lead to Decreased Sensitivity of Venturia effusa to Tebuconazole. Curr Issues Mol Biol 2022; 44:670-685. [PMID: 35723332 PMCID: PMC8928975 DOI: 10.3390/cimb44020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple demethylation-inhibiting (DMI) fungicides are used to control pecan scab, caused by Venturia effusa. To compare the efficacy of various DMI fungicides on V. effusa, field trials were conducted at multiple locations applying fungicides to individual pecan terminals. In vitro assays were conducted to test the sensitivity of V. effusa isolates from multiple locations to various concentrations of tebuconazole. Both studies confirmed high levels of resistance to tebuconazole. To investigate the mechanism of resistance, two copies of the CYP51 gene, CYP51A and CYP51B, of resistant and sensitive isolates were sequenced and scanned for mutations. In the CYP51A gene, mutation at codon 444 (G444D), and in the CYP51B gene, mutations at codon 357 (G357H) and 177 (I77T/I77L) were found in resistant isolates. Expression analysis of CYP51A and CYP51B revealed enhanced expression in the resistant isolates compared to the sensitive isolates. There were 3.0- and 1.9-fold increases in gene expression in the resistant isolates compared to the sensitive isolates for the CYP51A and CYP51B genes, respectively. Therefore, two potential mechanisms—multiple point mutations and gene over expression in the CYP51 gene of V. effusa isolates—were revealed as likely reasons for the observed resistance in isolates of V. effusa to tebuconazole.
Collapse
Affiliation(s)
- Logan C. Moore
- Department of Plant Pathology, Coastal Plain Experiment Station, The University of Georgia, Tifton, GA 31793, USA; (L.C.M.); (T.B.B.); (S.W.)
| | - Timothy B. Brenneman
- Department of Plant Pathology, Coastal Plain Experiment Station, The University of Georgia, Tifton, GA 31793, USA; (L.C.M.); (T.B.B.); (S.W.)
| | - Sumyya Waliullah
- Department of Plant Pathology, Coastal Plain Experiment Station, The University of Georgia, Tifton, GA 31793, USA; (L.C.M.); (T.B.B.); (S.W.)
| | - Clive H. Bock
- United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Station, Byron, GA 31008, USA;
| | - Md Emran Ali
- Department of Plant Pathology, Coastal Plain Experiment Station, The University of Georgia, Tifton, GA 31793, USA; (L.C.M.); (T.B.B.); (S.W.)
- Correspondence:
| |
Collapse
|
10
|
Heckel DG. Perspectives on gene copy number variation and pesticide resistance. PEST MANAGEMENT SCIENCE 2022; 78:12-18. [PMID: 34480789 DOI: 10.1002/ps.6631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/28/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Although the generation of evolutionary diversity by gene duplication has long been known, the implications for pesticide resistance are just now beginning to be appreciated. A few examples will be cited to illustrate the point that there are many variations on the theme that gene duplication does not follow a set pattern. Transposable elements may facilitate the process but the mechanistic details are obscure and unpredictable. New developments in DNA sequencing technology and genome assembly promise to reveal more examples, yet care must be taken in interpreting the results of transcriptome and genome assemblies and independent means of validation are important. Once a specific gene family is identified, special methods generally must be used to avoid underestimating population polymorphisms and being trapped in preconceptions about the simplicity of the process. © 2021 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
11
|
Molecular characterization and overexpression of the difenoconazole resistance gene CYP51 in Lasiodiplodia theobromae field isolates. Sci Rep 2021; 11:24299. [PMID: 34934102 PMCID: PMC8692403 DOI: 10.1038/s41598-021-03601-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Stem-end rot (SER) caused by Lasiodiplodia theobromae is an important disease of mango in China. Demethylation inhibitor (DMI) fungicides are widely used for disease control in mango orchards. The baseline sensitivity to difenoconazole of 138 L. theobromae isolates collected from mango in the field in 2019 was established by the mycelial growth rate method. The cross-resistance to six site-specific fungicides with different modes of action were investigated using 20 isolates randomly selected. The possible mechanism for L. theobromae resistance to difenoconazole was preliminarily determined through gene sequence alignment and quantitative real-time PCR analysis. The results showed that the EC50 values of 138 L. theobromae isolates to difenoconazole ranged from 0.01 to 13.72 µg/mL. The frequency of difenoconazole sensitivity formed a normal distribution curve when the outliers were excluded. Difenoconazole showed positive cross-resistance only with the DMI tebuconazole but not with non-DMI fungicides carbendazim, pyraclostrobin, fludioxonil, bromothalonil, or iprodione. Some multifungicide-resistant isolates of L. theobromae were found. Two amino acid substitutions (E209k and G207A) were found in the CYP51 protein, but they were unlikely to be related to the resistance phenotype. There was no alteration in the promoter region of the CYP51 gene. However, difenoconazole significantly increased the expression of the CYP51 gene in the resistant isolates compared to the susceptible isolates. These results are vital to develop effective mango disease management strategies to avoid the development of further resistance.
Collapse
|
12
|
Du Y, Shi N, Ruan H, Miao J, Yan H, Shi C, Chen F, Liu X. Analysis of the prochloraz-Mn resistance risk and its molecular basis in Mycogone rosea from Agaricus bisporus. PEST MANAGEMENT SCIENCE 2021; 77:4680-4690. [PMID: 34132039 DOI: 10.1002/ps.6509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wet bubble disease (WBD), caused by Mycogone rosea, is one of the most serious diseases of white button mushroom (Agaricus bisporus) in China. Prochloraz-Mn is the main fungicide used in the management of WBD. To provide essential references for early warning of prochloraz-Mn resistance and management of WBD, this study was performed to assess the resistance risk to prochloraz-Mn in M. rosea, as well as its underlying resistance mechanism. RESULTS Eight stable prochloraz-Mn-resistant mutants with a mutation frequency of 1.3 × 10-4 were generated and resistance factors ranged from 2.57 to 7.80 after 10 successive culture transfers. All eight resistant mutants exhibited fitness penalties in decreased sporulation and pathogenicity. Positive cross-resistance was observed between prochloraz-Mn and prochloraz or imazalil, but not between prochloraz-Mn and diniconazole, fenbuconazole, thiabendazole or picoxystrobin. The point mutation F511I in MrCYP51 protein was found in six mutants and the point mutation G464S occurred only in the SDW2-2-1M mutant. The up-regulated expression of MrCYP51 in all mutants was less than that in their parental isolates when exposed to prochloraz-Mn. Without prochloraz-Mn treatment, MrCYP51 expression was up-regulated in GX203-3-1M and FJ58-2-1M mutants, whereas it was down-regulated in other mutants compared to their respective parental isolates. CONCLUSION Genotypes with two separate point mutations, F511I and G464S in MrCYP51, may be associated with resistance to prochloraz-Mn in M. rosea. The resistance risk of M. rosea to prochloraz-Mn is likely to be low to moderate, indicating that prochloraz-Mn can still be used reasonably to control WBD. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yixin Du
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Niuniu Shi
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Hongchun Ruan
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Jianqiang Miao
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
| | - He Yan
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| | - Chunxi Shi
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| | - Furu Chen
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Xili Liu
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| |
Collapse
|
13
|
Molecular Mechanisms Underlying Fungicide Resistance in Citrus Postharvest Green Mold. J Fungi (Basel) 2021; 7:jof7090783. [PMID: 34575821 PMCID: PMC8471628 DOI: 10.3390/jof7090783] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
The necrotrophic fungus Penicillium digitatum (Pd) is responsible for the green mold disease that occurs during postharvest of citrus and causes enormous economic losses around the world. Fungicides remain the main method used to control postharvest green mold in citrus fruit storage despite numerous occurrences of resistance to them. Hence, it is necessary to find new and more effective strategies to control this type of disease. This involves delving into the molecular mechanisms underlying the appearance of resistance to fungicides during the plant–pathogen interaction. Although mechanisms involved in resistance to fungicides have been studied for many years, there have now been great advances in the molecular aspects that drive fungicide resistance, which facilitates the design of new means to control green mold. A wide review allows the mechanisms underlying fungicide resistance in Pd to be unveiled, taking into account not only the chemical nature of the compounds and their target of action but also the general mechanism that could contribute to resistance to others compounds to generate what we call multidrug resistance (MDR) phenotypes. In this context, fungal transporters seem to play a relevant role, and their mode of action may be controlled along with other processes of interest, such as oxidative stress and fungal pathogenicity. Thus, the mechanisms for acquisition of resistance to fungicides seem to be part of a complex framework involving aspects of response to stress and processes of fungal virulence.
Collapse
|
14
|
Gañán-Betancur L, Peever TL, Amiri A. No Evidence of Resistance to Trifloxystrobin, Triflumizole, and Boscalid in Podosphaera leucotricha Isolates From U.S. Commercial Apple Orchards. PLANT DISEASE 2021; 105:2356-2365. [PMID: 33728959 DOI: 10.1094/pdis-12-20-2685-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Apple powdery mildew, caused by Podosphaera leucotricha, continues to be a challenge in commercial apple orchards in the U.S. Pacific Northwest and worldwide. In this study, P. leucotricha isolates were collected in 2018 and 2019 from two organic (baseline) and eight conventional (exposed) apple orchards in Washington, New York, and Virginia, and assessed for their sensitivity to trifloxystrobin (TRI, n = 232), triflumizole (TFZ, n = 217), and boscalid (BOS, n = 240) using a detached leaf assay. Effective concentrations inhibiting 50% growth (EC50) were not significantly different between baseline and exposed isolates, and ranged from 0.001 to 0.105, 0.09 to 6.31, and 0.05 to 2.18 µg/ml, for TRI, TFZ, and BOS, respectively. Reduction in sensitivity by factors of 105, 63, and 22 to TRI, TFZ, and BOS, respectively, were observed in some isolates, but all isolates were controlled by the commercial label rates of the three fungicides on detached leaves. Sequencing of the cytochrome b (cytb), cytochrome P450 sterol 14α-demethylase (CYP51), and the iron-sulfur protein subunit (SdhB) genes in isolates with high EC50 revealed no mutation previously reported to confer resistance to these fungicides in other fungi, and presence of a group I intron after codon 143 in the cytb gene. Significant (P < 0.001) moderate positive correlations (r = 0.38) observed between sensitivity to TRI and TFZ warrant continuous rotations of fungicides with different modes of action in conventional orchards. The established baseline sensitivities and the molecular markers will help in selecting discriminatory doses and bypassing the challenging in vivo testing for future sensitivity monitoring in P. leucotricha.
Collapse
Affiliation(s)
- Lederson Gañán-Betancur
- Department of Plant Pathology, Washington State University, Pullman, WA 99163
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801
| | - Tobin L Peever
- Department of Plant Pathology, Washington State University, Pullman, WA 99163
| | - Achour Amiri
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801
| |
Collapse
|
15
|
Hudson O, Waliullah S, Ji P, Ali ME. Molecular Characterization of Laboratory Mutants of Fusarium oxysporum f. sp. niveum Resistant to Prothioconazole, a Demethylation Inhibitor (DMI) Fungicide. J Fungi (Basel) 2021; 7:jof7090704. [PMID: 34575742 PMCID: PMC8466437 DOI: 10.3390/jof7090704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Fusarium oxysporum f. sp. niveum (FON) is the causal agent of Fusarium wilt in watermelon, an international growth-limiting pathogen of watermelon cultivation. A single demethylation inhibitor (DMI) fungicide, prothioconazole, is registered to control this pathogen, so the risk of resistance arising in the field is high. To determine and predict the mechanism by which FON could develop resistance to prothioconazole, FON isolates were mutagenized using UV irradiation and subsequent fungicide exposure to create artificially resistant mutants. Isolates were then put into three groups based on the EC50 values: sensitive, intermediately resistant, and highly resistant. The mean EC50 values were 4.98 µg/mL for the sensitive, 31.77 µg/mL for the intermediately resistant, and 108.33 µg/mL for the highly resistant isolates. Isolates were then sequenced and analyzed for differences in both the coding and promoter regions. Two mutations were found that conferred amino acid changes in the target gene, CYP51A, in both intermediately and highly resistant mutants. An expression analysis for the gene CYP51A also showed a significant increase in the expression of the highly resistant mutants compared to the sensitive controls. In this study, we were able to identify two potential mechanisms of resistance to the DMI fungicide prothioconazole in FON isolates: gene overexpression and multiple point mutations. This research should expedite growers’ and researchers’ ability to detect and manage fungicide-resistant phytopathogens.
Collapse
|
16
|
Ishii H, Cools HJ, Nishimura K, Borghi L, Kikuhara K, Yamaoka Y. DMI-Fungicide Resistance in Venturia nashicola, the Causal Agent of Asian Pear Scab-How Reliable Are Mycelial Growth Tests in Culture? Microorganisms 2021; 9:1377. [PMID: 34202715 PMCID: PMC8306131 DOI: 10.3390/microorganisms9071377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Scab, caused by Venturia nashicola, is among the most serious diseases of Asian pears and control of this disease largely relies on sterol demethylation inhibitor (DMI) fungicides. However, pear growers have complained about field performance of DMIs since the mid-2000s. In this study, to evaluate pathogen sensitivity, mycelial growth tests and inoculation tests were conducted using DMI-amended culture medium and fungicide-sprayed potted pear trees, respectively. Results confirmed distribution of isolates resistant to fenarimol, hexaconazole, and difenoconazole in the field populations. Importantly, results from tests in culture did not fully correlate with those from tests in planta. Due to phenotypic instability of resistance and poor sporulation of this pathogen in culture, resistance is generally assessed by laborious and time-consuming inoculation with conidia collected from a field. To improve the result interpretation from in vitro tests, the isolates were genotyped: the CYP51 gene which encodes the target sterol 14α-demethylase was sequenced and various mutations have been detected in the coding sequence of DMI-resistant isolates. In addition to the detected single nucleotide polymorphisms, alternative mechanisms, not based on changes in the structure of the target protein, may also increase DMI resistance. Development of molecular methods for the diagnosis of DMI resistance seems to be challenging in V. nashicola.
Collapse
Affiliation(s)
- Hideo Ishii
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
- National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan;
- Department of Agriculture, Kibi International University, Sareo 370-1, Shichi, Minami-Awaji 656-0484, Japan
| | - Hans Jorgen Cools
- Syngenta, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, UK;
| | - Kumiko Nishimura
- National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan;
| | - Lorenzo Borghi
- Syngenta Crop Protection AG, Werk Stein, Schaffhauserstrasse, WST.820.2.79, CH-4332 Stein, Switzerland;
| | - Kenji Kikuhara
- Fukuoka Agriculture and Forestry Research Center, Yoshiki 587, Chikushino 818-8549, Japan;
| | - Yuichi Yamaoka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
| |
Collapse
|
17
|
Németh MZ, Mizuno Y, Kobayashi H, Seress D, Shishido N, Kimura Y, Takamatsu S, Suzuki T, Takikawa Y, Kakutani K, Matsuda Y, Kiss L, Nonomura T. Ampelomyces strains isolated from diverse powdery mildew hosts in Japan: Their phylogeny and mycoparasitic activity, including timing and quantifying mycoparasitism of Pseudoidium neolycopersici on tomato. PLoS One 2021; 16:e0251444. [PMID: 33974648 PMCID: PMC8112701 DOI: 10.1371/journal.pone.0251444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
A total of 26 Ampelomyces strains were isolated from mycelia of six different powdery mildew species that naturally infected their host plants in Japan. These were characterized based on morphological characteristics and sequences of ribosomal DNA internal transcribed spacer (rDNA-ITS) regions and actin gene (ACT) fragments. Collected strains represented six different genotypes and were accommodated in three different clades of the genus Ampelomyces. Morphology of the strains agreed with that of other Ampelomyces strains, but none of the examined characters were associated with any groups identified in the genetic analysis. Five powdery mildew species were inoculated with eight selected Ampelomyces strains to study their mycoparasitic activity. In the inoculation experiments, all Ampelomyces strains successfully infected all tested powdery mildew species, and showed no significant differences in their mycoparasitic activity as determined by the number of Ampelomyces pycnidia developed in powdery mildew colonies. The mycoparasitic interaction between the eight selected Ampelomyces strains and the tomato powdery mildew fungus (Pseudoidium neolycopersici strain KTP-03) was studied experimentally in the laboratory using digital microscopic technologies. It was documented that the spores of the mycoparasites germinated on tomato leaves and their hyphae penetrated the hyphae of Ps. neolycopersici. Ampelomyces hyphae continued their growth internally, which initiated the atrophy of the powdery mildew conidiophores 5 days post inoculation (dpi); caused atrophy 6 dpi; and complete collapse of the parasitized conidiphores 7 dpi. Ampelomyces strains produced new intracellular pycnidia in Ps. neolycopersici conidiophores ca. 8-10 dpi, when Ps. neolycopersici hyphae were successfully destroyed by the mycoparasitic strain. Mature pycnidia released spores ca. 10-14 dpi, which became the sources of subsequent infections of the intact powdery mildew hyphae. Mature pycnidia contained each ca. 200 to 1,500 spores depending on the mycohost species and Ampelomyces strain. This is the first detailed analysis of Ampelomyces strains isolated in Japan, and the first timing and quantification of mycoparasitism of Ps. neolycopersici on tomato by phylogenetically diverse Ampelomyces strains using digital microscopic technologies. The developed model system is useful for future biocontrol and ecological studies on Ampelomyces mycoparasites.
Collapse
Affiliation(s)
- Márk Z. Németh
- Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Budapest, Hungary
| | - Yuusaku Mizuno
- Laboratory of Phytoprotection, Science and Technology, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Hiroki Kobayashi
- Laboratory of Phytoprotection, Science and Technology, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Diána Seress
- Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Budapest, Hungary
| | - Naruki Shishido
- Laboratory of Phytoprotection, Science and Technology, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yutaka Kimura
- Laboratory of Phytoprotection, Science and Technology, Faculty of Agriculture, Kindai University, Nara, Japan
| | | | - Tomoko Suzuki
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women’s University, Tokyo, Japan
| | - Yoshihiro Takikawa
- Plant Center, Institute of Advanced Technology, Kindai University, Wakayama, Japan
| | - Koji Kakutani
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
| | - Yoshinori Matsuda
- Laboratory of Phytoprotection, Science and Technology, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Levente Kiss
- Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Budapest, Hungary
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
- * E-mail: (TN); (LK)
| | - Teruo Nonomura
- Laboratory of Phytoprotection, Science and Technology, Faculty of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
- * E-mail: (TN); (LK)
| |
Collapse
|
18
|
Muellender MM, Mahlein AK, Stammler G, Varrelmann M. Evidence for the association of target-site resistance in cyp51 with reduced DMI sensitivity in European Cercospora beticola field isolates. PEST MANAGEMENT SCIENCE 2021; 77:1765-1774. [PMID: 33236506 DOI: 10.1002/ps.6197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cercospora leaf spot caused by Cercospora beticola is the most relevant foliar disease in sugar beet cultivation. In the last decade a decreasing sensitivity of C. beticola towards demethylation inhibitors (DMIs) occurred. Different mechanisms mediating a reduced sensitivity towards DMIs have been identified in different plant pathogens to date, such as target site mutations, over-expression or active excretion of the fungicide. RESULTS A sequencing of the cytochrome P450-dependent sterol 14α-demethylase gene sequence (cyp51) of diverse C. beticola isolates collected in different European countries with reduced DMI sensitivity was performed in order to find a possible correlation of mutations with higher EC50 values. The amino acid alterations Y464S, L144F and I309T combined with L144F were found to be associated with a reduced sensitivity. Furthermore, mutations I387M, M145W and M145W with E460Q were found uniquely. Additionally, constitutive and fungicide triggered expression of cyp51 was assayed by means of RT-qPCR. A very strong induction of cyp51 mRNA expression in sensitive isolates suggests that the fungal cells upregulate expression to maintain ergosterol biosynthesis in DMI presence. The less intensive cyp51 induction in isolates with higher EC50 values underlines the possible correlation of the found target-site mutations with reduced sensitivity. CONCLUSION This study provides new results about possible alterations in the target gene mediating reduced sensitivity of C. beticola towards DMIs and hypothesized a fungicide induced over-expression of the target enzyme CYP51 as natural reaction of the fungus to fungicide application. © 2020 Society of Chemical Industry.
Collapse
|
19
|
Fungicide Resistance in Powdery Mildew Fungi. Microorganisms 2020; 8:microorganisms8091431. [PMID: 32957583 PMCID: PMC7564317 DOI: 10.3390/microorganisms8091431] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew fungi (Erysiphales) are among the most common and important plant fungal pathogens. These fungi are obligate biotrophic parasites that attack nearly 10,000 species of angiosperms, including major crops, such as cereals and grapes. Although cultural and biological practices may reduce the risk of infection by powdery mildew, they do not provide sufficient protection. Therefore, in practice, chemical control, including the use of fungicides from multiple chemical groups, is the most effective tool for managing powdery mildew. Unfortunately, the risk of resistance development is high because typical spray programs include multiple applications per season. In addition, some of the most economically destructive species of powdery mildew fungi are considered to be high-risk pathogens and are able to develop resistance to several chemical classes within a few years. This situation has decreased the efficacy of the major fungicide classes, such as sterol demethylation inhibitors, quinone outside inhibitors and succinate dehydrogenase inhibitors, that are employed against powdery mildews. In this review, we present cases of reduction in sensitivity, development of resistance and failure of control by fungicides that have been or are being used to manage powdery mildew. In addition, the molecular mechanisms underlying resistance to fungicides are also outlined. Finally, a number of recommendations are provided to decrease the probability of resistance development when fungicides are employed.
Collapse
|
20
|
Gama AB, Baggio JS, Rebello CS, Lourenço SDA, Gasparoto MCDG, da Silva Junior GJ, Peres NA, Amorim L. Sensitivity of Colletotrichum acutatum Isolates from Citrus to Carbendazim, Difenoconazole, Tebuconazole, and Trifloxystrobin. PLANT DISEASE 2020; 104:1621-1628. [PMID: 32320371 DOI: 10.1094/pdis-10-19-2195-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Postbloom fruit drop (PFD) of citrus is caused by the Colletotrichum acutatum and C. gloeosporioides species complexes. The disease is important when frequent rainfall occurs during the flowering period of citrus trees. In Brazil, until 2012, PFD was mainly controlled by preventive applications of the methyl-benzimidazole carbamate (MBC) carbendazim and demethylation-inhibitor (DMI) fungicides such as difenoconazole. Since then, mixtures containing the DMI tebuconazole and the quinone-outside inhibitor (QoI) trifloxystrobin have been commonly used. Fungicides are often applied preventively, sometimes even when conditions are not conducive for PFD development. Excessive fungicide applications may favor the selection of resistant populations of Colletotrichum spp. In this study, we assessed the fungicide sensitivity of C. acutatum isolates collected during the two distinct periods of PFD management in Brazil: before and after the trifloxystrobin and tebuconazole mixture became widely employed. The sensitivity of 254 C. acutatum isolates to carbendazim and difenoconazole and of 164 isolates to tebuconazole and trifloxystrobin was assessed. Mycelial growth inhibition of these isolates was evaluated for all the fungicides using either serial dilution of fungicide rates or the spiral gradient dilution method. In addition, inhibition of conidial germination was also assessed for trifloxystrobin. Analysis of partial β-tub, cytb, and cyp51b gene sequences did not reveal any mutations related to resistance to MBCs, QoIs, and DMIs, respectively. In mycelial growth assays, mean EC50 values were 0.14, 0.11, and 0.21 μg/ml for difenoconazole, tebuconazole, and trifloxystrobin, respectively. The conidial germination inhibition by trifloxystrobin was similar among the tested isolates, and the mean EC50 value was 0.002 μg/ml. All isolates had similar mean mycelial growth inhibition for carbendazim, regardless of the fungicide concentrations. Therefore, based on similar EC50 values and molecular analyses, no shift in the sensitivity of isolates has been observed to the fungicides commonly used in different citrus-producing areas in Brazil.
Collapse
Affiliation(s)
- Andre B Gama
- Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, 13418-900, Brazil
- University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598, U.S.A
| | - Juliana S Baggio
- University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598, U.S.A
| | - Carolina S Rebello
- University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598, U.S.A
| | - Silvia de Afonseca Lourenço
- Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, 13418-900, Brazil
| | | | | | - Natalia A Peres
- University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598, U.S.A
| | - Lilian Amorim
- Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, 13418-900, Brazil
| |
Collapse
|
21
|
de Ramón-Carbonell M, Sánchez-Torres P. Significance of 195 bp-enhancer of PdCYP51B in the acquisition of Penicillium digitatum DMI resistance and increase of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104522. [PMID: 32359549 DOI: 10.1016/j.pestbp.2020.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 06/11/2023]
Abstract
Two sterol 14α-demethylase genes from Penicillium digitatum, PdCYP51A and PdCYP51B, were evaluated and revealed that 95% of Imazalil (IMZ)-resistant isolates carried a 195-bp insertion in the PdCYP51B promoter. We functionally characterized both sterol 14α-demethylases by overexpression. Molecular analysis of overexpression mutants showed that the introduction of PdCYP51B insertion is more stable than the five-tandem repeat PdCYP51A sequence previously described that confers DMI fungicide resistance. The both enhancers can coexist in P. digitatum isolates that initially contained the 195-bp PdCYP51B insertion but the introduction of 195-bp PdCYP51B enhancer promoted the loss of the five-tandem repeat of PdCYP51A. The incorporation of 195-bp PdCYP51B resulted in an increase of DMI fungicide resistance in mutants from already resistant isolates and confers resistance to DMIs in mutants from sensitive isolates. Transcription evaluation of the both genes showed noticeable induction in all overexpression mutants, except for those coming from the five-tandem repeat PdCYP51A sequence, whereas PdCYP51A expression dropped dramatically. Only PdCYP51B exhibited up-regulation during citrus infection compared to axenic growth, and the role of PdCYP51B in fungal virulence was further reinforced since strains with low virulence showed increased infectivity in overexpression mutants. This study suggested the predominant role of the PdCYP51B enhancer in the acquisition of DMI resistance and fungal virulence, by replacing homologues genes with same putative function.
Collapse
Affiliation(s)
- Marta de Ramón-Carbonell
- Valencian Institute for Agricultural Research (IVIA), Plant Protection and Biotechnology Research Center, 46113 Moncada, Valencia, Spain
| | - Paloma Sánchez-Torres
- Valencian Institute for Agricultural Research (IVIA), Plant Protection and Biotechnology Research Center, 46113 Moncada, Valencia, Spain; Department of Food Biotechnology. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
22
|
Matsuzaki Y, Watanabe S, Harada T, Iwahashi F. Pyridachlometyl has a novel anti-tubulin mode of action which could be useful in anti-resistance management. PEST MANAGEMENT SCIENCE 2020; 76:1393-1401. [PMID: 31622533 PMCID: PMC7065193 DOI: 10.1002/ps.5652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fungicide resistance is a growing problem affecting many crop pathogens owing to the low success rate in finding novel chemical classes of fungicides. Pyridachlometyl is a new fungicide that seems to belong to a new chemical class of tubulin polymerization promoters. RESULTS Pyridachlometyl exhibited potent antifungal activity against a broad range of fungal species belonging to the phyla Ascomycota and Basidiomycota. No cross-resistance was observed with other fungicide classes, such as ergosterol biosynthesis inhibitors, respiratory inhibitors, or tubulin polymerization inhibitors in Zymoseptoria tritici. Pyridachlometyl-resistant strains were obtainable by UV mutagenesis in Z. tritici and Penicillium digitatum. Mutations in tubulin-coding genes were found in all laboratory mutants but the patterns of mutation were distinct from that of tubulin polymerization inhibitors, such as benzimidazole fungicides. CONCLUSION Pyridachlometyl is a promising new tool for disease control. However, strict resistance management strategies should be recommended for the practical use of pyridachlometyl. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Satoshi Watanabe
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Toshiyuki Harada
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Fukumatsu Iwahashi
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| |
Collapse
|
23
|
Meyers E, Arellano C, Cowger C. Sensitivity of the U.S. Blumeria graminis f. sp. tritici Population to Demethylation Inhibitor Fungicides. PLANT DISEASE 2019; 103:3108-3116. [PMID: 31657998 DOI: 10.1094/pdis-04-19-0715-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, is managed in the United States with cultivar resistance and foliar fungicides. Despite high levels of fungicide sensitivity in other cereal mildew populations, fungicide sensitivity of U.S. B. graminis f. sp. tritici has never been evaluated. Almost 400 B. graminis f. sp. tritici isolates were collected from 15 U.S. states over 2 years and phenotyped for sensitivity to two widely used demethylation inhibitor (DMI) fungicides, tebuconazole and prothioconazole. A large range of sensitivity to both DMIs was observed, with more insensitive isolates originating from the eastern United States (Great Lakes, Mid-Atlantic, and Southeast regions) and more sensitive isolates from central states (Plains region, Arkansas, and Missouri). Cross-resistance was indicated by a positive although weak association between tebuconazole and prothioconazole sensitivities at all levels of analysis (EC50 values, P < 0.0001). A possible fitness cost was also associated with prothioconazole insensitivity (P = 0.0307) when analyzed at the state population level. This is the first assessment of fungicide sensitivity in the U.S. B. graminis f. sp. tritici population, and it produced evidence of regional selection for reduced DMI efficacy. The observation of reduced sensitivity to DMI fungicides in the eastern United States underlines the importance of rotating between chemistry classes to maintain the effectiveness of DMIs in U.S. wheat production. Although cross-resistance was demonstrated, variability in the relationship of EC50 values for tebuconazole and prothioconazole also suggests that multiple mechanisms influence B. graminis f. sp. tritici isolate responses to these two DMI fungicides.
Collapse
Affiliation(s)
- Emily Meyers
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Consuelo Arellano
- Department of Statistics, North Carolina State University, Raleigh, NC 27695
| | - Christina Cowger
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
- United States Department of Agriculture, Agricultural Research Service, Raleigh, NC 27695
| |
Collapse
|
24
|
Casida JE, Durkin KA. Pesticide Chemical Research in Toxicology: Lessons from Nature. Chem Res Toxicol 2016; 30:94-104. [DOI: 10.1021/acs.chemrestox.6b00303] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- John E. Casida
- Environmental Chemistry and Toxicology Laboratory, Department of
Environmental Science, Policy, and Management, University of California, Berkeley 94720, United States
| | - Kathleen A. Durkin
- Molecular Graphics and Computational Facility, College of Chemistry, University of California, Berkeley 94720, United States
| |
Collapse
|
25
|
Mair WJ, Deng W, Mullins JGL, West S, Wang P, Besharat N, Ellwood SR, Oliver RP, Lopez-Ruiz FJ. Demethylase Inhibitor Fungicide Resistance in Pyrenophora teres f. sp. teres Associated with Target Site Modification and Inducible Overexpression of Cyp51. Front Microbiol 2016; 7:1279. [PMID: 27594852 PMCID: PMC4990540 DOI: 10.3389/fmicb.2016.01279] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022] Open
Abstract
Pyrenophora teres f. sp. teres is the cause of net form of net blotch (NFNB), an economically important foliar disease in barley (Hordeum vulgare). Net and spot forms of net blotch are widely controlled using site-specific systemic fungicides. Although resistance to succinate dehydrogenase inhibitors and quinone outside inhibitors has been addressed before in net blotches, mechanisms controlling demethylation inhibitor resistance have not yet been reported at the molecular level. Here we report the isolation of strains of NFNB in Australia since 2013 resistant to a range of demethylase inhibitor fungicides. Cyp51A:KO103-A1, an allele with the mutation F489L, corresponding to the archetype F495I in Aspergillus fumigatus, was only present in resistant strains and was correlated with resistance factors to various demethylase inhibitors ranging from 1.1 for epoxiconazole to 31.7 for prochloraz. Structural in silico modeling of the sensitive and resistant CYP51A proteins docked with different demethylase inhibitor fungicides showed how the interaction of F489L within the heme cavity produced a localized constriction of the region adjacent to the docking site that is predicted to result in lower binding affinities. Resistant strains also displayed enhanced induced expression of the two Cyp51A paralogs and of Cyp51B genes. While Cyp51B was found to be constitutively expressed in the absence of fungicide, Cyp51A was only detected at extremely low levels. Under fungicide induction, expression of Cyp51B, Cyp51A2, and Cyp51A1 was shown to be 1.6-, 3,- and 5.3-fold higher, respectively in the resistant isolate compared to the wild type. These increased levels of expression were not supported by changes in the promoters of any of the three genes. The implications of these findings on demethylase inhibitor activity will require current net blotch management strategies to be reconsidered in order to avoid the development of further resistance and preserve the lifespan of fungicides in use.
Collapse
Affiliation(s)
- Wesley J Mair
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | - Weiwei Deng
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | | | - Samuel West
- Institute of Life Science, School of Medicine, Swansea University Swansea, UK
| | - Penghao Wang
- School of Veterinary and Life Sciences, Murdoch University Murdoch, WA, Australia
| | - Naghmeh Besharat
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | - Simon R Ellwood
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | - Richard P Oliver
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | - Francisco J Lopez-Ruiz
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| |
Collapse
|