1
|
Martínez JC, Vélez-Marín V, Lopez-Perez M, Patiño-Lugo DF, Florez ID. Diagnostic accuracy of the point-of-care standard G6PD test™ (SD Biosensor) for glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Malar J 2024; 23:327. [PMID: 39488711 PMCID: PMC11531698 DOI: 10.1186/s12936-024-05144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Glucose-6-Phosphate Dehydrogenase deficiency (G6PDd) is a common genetic enzymopathy that can induce haemolysis triggered by various factors, including some anti-malarial drugs. Although many Point-of-Care (PoC) tests, such as Standard G6PD™ are available to detect G6PDd, its pooled diagnostic test accuracy (DTA) remains unknown. METHODS To estimate the DTA of StandG6PD-BS at various thresholds of G6PDd, a systematic review with a DTA meta-analysis were conducted, searching EMBASE, MEDLINE, and SciELO databases up to April 4, 2024.The included studies were those that measured G6PD activity using StandG6PD-BS (reference test) and spectrophotometry (gold standard) in patients suspected of having G6PDd. The risk of bias (RoB) of the studies was assessed using the QUADAS-2 tool and the certainty of evidence (CoE) with the GRADE approach. For the estimation of within-study DTA, a random-effect bivariate meta-analysis was performed to determine the pooled sensitivity and specificity for 30%, 70%, and 80% enzyme levels' thresholds, and a graphical analysis of the heterogeneity using crosshair and Confidence Regions on receiver operating characteristic (ROC) space plots. RESULTS After screening 2496 reports, four studies were included with 7864 participants covering all thresholds. Two studies had high RoB in QUADAS-2 domains 2 and 3, and the others had low RoB, with low, moderate, and high heterogeneity at the 30%, 70%, and 80% thresholds, respectively. The pooled sensitivity was 99.1%, 95.7%, and 90% for 30%, 70%, and 80% thresholds, respectively. The pooled specificity was 97.4%; 92.9%; and 89.0% for 30%, 70%, and 80% thresholds, respectively. CONCLUSION StandG6PD-BS is a PoC test with high sensitivity and specificity to detect G6PDd at different thresholds.
Collapse
Affiliation(s)
- Juan Camilo Martínez
- Unit of Evidence and Deliberation for Decision Making UNED, Medical Research Institute, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Viviana Vélez-Marín
- Unit of Evidence and Deliberation for Decision Making UNED, Medical Research Institute, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Mary Lopez-Perez
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel F Patiño-Lugo
- Unit of Evidence and Deliberation for Decision Making UNED, Medical Research Institute, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Ivan D Florez
- Unit of Evidence and Deliberation for Decision Making UNED, Medical Research Institute, School of Medicine, University of Antioquia, Medellin, Colombia.
- Department of Pediatrics, School of Medicine, University of Antioquia, Av. St 70 No. 52-21, Medellin, Colombia.
- School of Rehabilitation Science, McMaster University, Hamilton, Canada.
- Pediatric Intensive Care Unit, Clinica Las Americas-AUNA, Medellin, Colombia.
| |
Collapse
|
2
|
Manh ND, Thanh NV, Quang HH, Van NTT, San NN, Phong NC, Birrell GW, Edgel KA, Martin NJ, Edstein MD, Chavchich M. Therapeutic efficacy of pyronaridine-artesunate (Pyramax) in treating Plasmodium vivax malaria in the central highlands of Vietnam. Antimicrob Agents Chemother 2024; 68:e0004424. [PMID: 39046237 PMCID: PMC11373200 DOI: 10.1128/aac.00044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/19/2024] [Indexed: 07/25/2024] Open
Abstract
The emergence and spread of chloroquine-resistant Plasmodium vivax have necessitated the assessment of alternative blood schizonticidal drugs. In Vietnam, chloroquine-resistant P. vivax malaria has been reported. In an open-label, single-arm trial, the safety, tolerability, and efficacy of pyronaridine-artesunate (Pyramax, PA) was evaluated in Dak Nong province, Vietnam. A 3-day course of PA was administered to adults and children (≥20 kg) infected with P. vivax. Patients also received primaquine (0.25 mg/kg daily for 14 days). PA was well tolerated with transient asymptomatic increases in liver transaminases. The per-protocol proportion of patients with day 42 PCR-unadjusted adequate clinical and parasitological response was 96.0% (95% CI, 84.9%-99.0%, n = 48/50). The median parasite clearance time was 12 h (range, 12-36 h), with a median fever clearance time of 24 h (range, 12-60 h). Single nucleotide polymorphisms (SNPs) as potential genetic markers of reduced drug susceptibility were analyzed in three putative drug resistance markers, Pvcrt-o, Pvmdr1, and PvK12. Insertion at position K10 of the Pvcrt-o gene was found in 74.6% (44/59) of isolates. Pvmdr1 SNPs at Y976F and F1076L were present in 61% (36/59) and 78% (46/59), respectively. Amplification of Pvmdr1 gene (two copies) was found in 5.1% (3/59) of parasite samples. Only 5.1% (3/59) of isolates had mutation 552I of the PvK12 gene. Overall, PA rapidly cleared P. vivax blood asexual stages and was highly efficacious in treating vivax malaria, with no evidence of artemisinin resistance found. PA provides an alternative to chloroquine treatment for vivax malaria in Vietnam. CLINICAL TRIALS This study is registered with the Australian New Zealand Clinical Trials Registry as ACTRN12618001429246.
Collapse
Affiliation(s)
- Nguyen Duc Manh
- Vietnam People’s Army Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Nguyen Van Thanh
- Vietnam People’s Army Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Huynh Hong Quang
- Vietnam Ministry of Health Institute of Malariology, Parasitology and Entomology, Qui Nhon, Vietnam
| | | | - Nguyen Ngoc San
- Vietnam People’s Army Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Nguen Chinh Phong
- Vietnam People’s Army Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Geoffrey W. Birrell
- Australian Defense Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | | | | | - Michael D. Edstein
- Australian Defense Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Marina Chavchich
- Australian Defense Force Malaria and Infectious Disease Institute, Brisbane, Australia
| |
Collapse
|
3
|
Sadhewa A, Cassidy-Seyoum S, Acharya S, Devine A, Price RN, Mwaura M, Thriemer K, Ley B. A Review of the Current Status of G6PD Deficiency Testing to Guide Radical Cure Treatment for Vivax Malaria. Pathogens 2023; 12:pathogens12050650. [PMID: 37242320 DOI: 10.3390/pathogens12050650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Plasmodium vivax malaria continues to cause a significant burden of disease in the Asia-Pacific, the Horn of Africa, and the Americas. In addition to schizontocidal treatment, the 8-aminoquinoline drugs are crucial for the complete removal of the parasite from the human host (radical cure). While well tolerated in most recipients, 8-aminoquinolines can cause severe haemolysis in glucose-6-phosphate dehydrogenase (G6PD) deficient patients. G6PD deficiency is one of the most common enzymopathies worldwide; therefore, the WHO recommends routine testing to guide 8-aminoquinoline based treatment for vivax malaria whenever possible. In practice, this is not yet implemented in most malaria endemic countries. This review provides an update of the characteristics of the most used G6PD diagnostics. We describe the current state of policy and implementation of routine point-of-care G6PD testing in malaria endemic countries and highlight key knowledge gaps that hinder broader implementation. Identified challenges include optimal training of health facility staff on point-of-care diagnostics, quality control of novel G6PD diagnostics, and culturally appropriate information and communication with affected communities around G6PD deficiency and implications for treatment.
Collapse
Affiliation(s)
- Arkasha Sadhewa
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Sarah Cassidy-Seyoum
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Sanjaya Acharya
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Angela Devine
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne 3010, Australia
- Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne 3010, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Muthoni Mwaura
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| |
Collapse
|
4
|
Rojphoung P, Rungroung T, Siriboonrit U, Vejbaesya S, Permpikul P, Kittivorapart J. Prevalence of G6PD deficiency in Thai blood donors, the characteristics of G6PD deficient blood, and the efficacy of fluorescent spot test to screen for G6PD deficiency in a hospital blood bank setting. Hematology 2022; 27:208-213. [PMID: 35134307 DOI: 10.1080/16078454.2022.2027082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Transfusion of blood from glucose-6-phosphate dehydrogenase (G6PD) enzyme deficient donors could cause a potentially unfavorable outcome, especially in newborns and those with hemoglobinopathies. AIMS To determine the prevalence of G6PD deficiency in Thai blood donors, the characteristics of G6PD deficient blood, and the efficacy of fluorescent spot test (FST) to screen for G6PD deficiency in a hospital blood bank setting. METHODS Blood samples were obtained from 514 Thai blood donors who donated blood at Siriraj Hospital (Bangkok, Thailand) during December 2020-February 2021. G6PD deficiency status was screened using FST, and in vitro hemolysis of red blood cell parameters of G6PD deficient blood units was compared with those of normal control units at different time points during 35 days of refrigerated storage. RESULTS The prevalence of G6PD deficiency was 7.59% (35 [8.73%] males, 4 [3.54%] females). The sensitivity of FST was 100% (95% confidence interval [CI]: 90.97-100%), and the specificity was 99.58% (95%CI: 98.49-99.95%). In vitro hemolysis was not significantly different between G6PD deficiency and normal controls. CONCLUSION The prevalence of G6PD deficiency in this study was 7.59%. FST was demonstrated to be an effective and reliable method for G6PD deficiency screening among Thai blood donors in a hospital blood bank setting.
Collapse
Affiliation(s)
- Phinyada Rojphoung
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thongbai Rungroung
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Usanee Siriboonrit
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sasijit Vejbaesya
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parichart Permpikul
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Janejira Kittivorapart
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Genzen JR, Nwosu A, Long T, Murphy H, Alter DN. An International Survey of Glucose-6-Phosphate Dehydrogenase Laboratory Reporting Practices. Arch Pathol Lab Med 2022; 146:477172. [PMID: 35090003 DOI: 10.5858/arpa.2021-0276-cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 02/21/2024]
Abstract
CONTEXT.— Glucose-6-phosphate dehydrogenase (G6PD) activity is used in the evaluation of hemolysis risk in patients being assessed for G6PD deficiency. A long-acting 8-aminoquinoline drug (tafenoquine) used in malaria treatment is contraindicated in patients with G6PD deficiency (<70% normal G6PD activity). The current state of G6PD reporting practices to support clinical eligibility assessment is poorly understood. OBJECTIVE.— To assess clinical laboratory reporting practices for G6PD testing. DESIGN.— In October 2019 and October 2020, voluntary questionnaires were distributed to 327 and 324 laboratories participating in the College of American Pathologists G6PD proficiency testing (PT). RESULTS.— Two hundred fifty-seven and 119 laboratories responded to the 2019 and 2020 questionnaires, respectively. Few laboratories have received clinical questions about average normal G6PD activity (US/Canada, 2.0% [3 of 149]; international, 8.4% [9 of 107]), whereas slightly more have determined the average normal G6PD activity for their own assay and patient populations (US/Canada, 6.7% [10 of 149]; international, 19.4% [21 of 108]). Few laboratories report G6PD activity in percent of normal format (US/Canada, 2.7% [4 of 149]; international, 8.3% [9 of 108]). The most common unit of measurement in use for quantitative G6PD reporting is unit per gram of hemoglobin. Reference intervals vary based on assay, reaction temperature, and participant laboratory and demonstrate moderate correlation (r = .46-.51) to G6PD activity measured from a "normal" PT challenge specimen. Nearly half of participants (47.8% [85 of 178]) categorized a quantitatively "intermediate" G6PD PT challenge as "normal" when using qualitative assays. CONCLUSIONS.— Percent of normal G6PD activity reporting would facilitate patient eligibility assessment for drugs, such as tafenoquine. Quantitative assays are better able to differentiate "intermediate" specimens than qualitative assays.
Collapse
Affiliation(s)
- Jonathan R Genzen
- From the Department of Pathology, University of Utah, Salt Lake City, Utah (Genzen)
- ARUP Laboratories, Salt Lake City, Utah (Genzen)
| | - Ann Nwosu
- The Division of Biostatistics (Nwosu, Long), College of American Pathologists, Northfield, Illinois
| | - Thomas Long
- The Division of Biostatistics (Nwosu, Long), College of American Pathologists, Northfield, Illinois
| | - Hilda Murphy
- Proficiency Testing (Murphy), College of American Pathologists, Northfield, Illinois
| | - David N Alter
- The Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia (Alter)
| |
Collapse
|
6
|
Ali Albsheer MM, Lover AA, Eltom SB, Omereltinai L, Mohamed N, Muneer MS, Mohamad AO, Abdel Hamid MM. Prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PDd), CareStart qualitative rapid diagnostic test performance, and genetic variants in two malaria-endemic areas in Sudan. PLoS Negl Trop Dis 2021; 15:e0009720. [PMID: 34699526 PMCID: PMC8547650 DOI: 10.1371/journal.pntd.0009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is the most common enzymopathy globally, and deficient individuals may experience severe hemolysis following treatment with 8-aminoquinolines. With increasing evidence of Plasmodium vivax infections throughout sub-Saharan Africa, there is a pressing need for population-level data at on the prevalence of G6PDd. Such evidence-based data will guide the expansion of primaquine and potentially tafenoquine for radical cure of P. vivax infections. This study aimed to quantify G6PDd prevalence in two geographically distinct areas in Sudan, and evaluating the performance of a qualitative CareStart rapid diagnostic test as a point-of-care test. Blood samples were analyzed from 491 unrelated healthy persons in two malaria-endemic sites in eastern and central Sudan. A pre-structured questionnaire was used which included demographic data, risk factors and treatment history. G6PD levels were measured using spectrophotometry (SPINREACT) and first-generation qualitative CareStart rapid tests. G6PD variants (202 G>A; 376 A>G) were determined by PCR/RFLP, with a subset confirmed by Sanger sequencing. The prevalence of G6PDd by spectrophotometry was 5.5% (27/491; at 30% of adjusted male median, AMM); 27.3% (134/491; at 70% of AMM); and 13.1% (64/490) by qualitative CareStart rapid diagnostic test. The first-generation CareStart rapid diagnostic test had an overall sensitivity of 81.5% (95%CI: 61.9 to 93.7) and negative predictive value of 98.8% (97.3 to 99.6). All persons genotyped across both study sites were wild type for the G6PD G202 variant. For G6PD A376G all participants in New Halfa had wild type AA (100%), while in Khartoum the AA polymorphism was found in 90.7%; AG in 2.5%; and GG in 6.8%. Phenotypic G6PD B was detected in 100% of tested participants in New Halfa while in Khartoum, the phenotypes observed were B (96.2%), A (2.8%), and AB (1%). The African A- phenotype was not detected in this study population. Overall, G6PDd prevalence in Sudan is low-to-moderate but highly heterogeneous. Point-of-care testing with the qualitative CareStart rapid diagnostic test demonstrated moderate performance with moderate sensitivity and specificity but high negative predicative value. The two sites harbored primarily the African B phenotype. A country-wide survey is recommended to understand GP6PD deficiencies more comprehensively in Sudan.
Collapse
Affiliation(s)
- Musab M. Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Faculty of Medical Laboratory Sciences, Sinnar University, Sennar, Sudan
| | - Andrew A. Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst; Amherst, Massachusetts, United States of America
| | - Sara B. Eltom
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Leena Omereltinai
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Nouh Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan
| | - Mohamed S. Muneer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Abdelrahim O. Mohamad
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
7
|
Rocca M, Temiz Y, Salva ML, Castonguay S, Gervais T, Niemeyer CM, Delamarche E. Rapid quantitative assays for glucose-6-phosphate dehydrogenase (G6PD) and hemoglobin combined on a capillary-driven microfluidic chip. LAB ON A CHIP 2021; 21:3573-3582. [PMID: 34341817 DOI: 10.1039/d1lc00354b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rapid tests for glucose-6-phosphate dehydrogenase (G6PD) are extremely important for determining G6PD deficiency, a widespread metabolic disorder which triggers hemolytic anemia in response to primaquine and tafenoquine medication, the most effective drugs for the radical cure of malaria caused by Plasmodium parasites. Current point-of-care diagnostic devices for G6PD are either qualitative, do not normalize G6PD activity to the hemoglobin concentration, or are very expensive. In this work we developed a capillary-driven microfluidic chip to perform a quantitative G6PD test and a hemoglobin measurement within 2 minutes and using less than 2 μL of sample. We used a powerful microfluidic module to integrate and resuspend locally the reagents needed for the G6PD assay and controls. We also developed a theoretical model that successfully predicts the enzymatic reactions on-chip, guides on-chip reagent spotting and allows efficient integration of multiple assays in miniaturized formats with only a few nanograms of reagents.
Collapse
Affiliation(s)
- Marco Rocca
- IBM Research Europe - Zurich, 8803 Rüschlikon, Switzerland.
- Institute for Biological Interfaces (IBG-1) - Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Yuksel Temiz
- IBM Research Europe - Zurich, 8803 Rüschlikon, Switzerland.
| | - Marie L Salva
- IBM Research Europe - Zurich, 8803 Rüschlikon, Switzerland.
- Institute for Biological Interfaces (IBG-1) - Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Samuel Castonguay
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, Canada
| | - Thomas Gervais
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG-1) - Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | | |
Collapse
|
8
|
Dynamics of G6PD activity in patients receiving weekly primaquine for therapy of Plasmodium vivax malaria. PLoS Negl Trop Dis 2021; 15:e0009690. [PMID: 34495956 PMCID: PMC8452019 DOI: 10.1371/journal.pntd.0009690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/20/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute Plasmodium vivax malaria is associated with haemolysis, bone marrow suppression, reticulocytopenia, and post-treatment reticulocytosis leading to haemoglobin recovery. Little is known how malaria affects glucose-6-phosphate dehydrogenase (G6PD) activity and whether changes in activity when patients present may lead qualitative tests, like the fluorescent spot test (FST), to misdiagnose G6PD deficient (G6PDd) patients as G6PD normal (G6PDn). Giving primaquine or tafenoquine to such patients could result in severe haemolysis. METHODS We investigated the G6PD genotype, G6PD enzyme activity over time and the baseline FST phenotype in Cambodians with acute P. vivax malaria treated with 3-day dihydroartemisinin piperaquine and weekly primaquine, 0·75 mg/kg x8 doses. RESULTS Of 75 recruited patients (males 63), aged 5-63 years (median 24), 15 were G6PDd males (14 Viangchan, 1 Canton), 3 were G6PD Viangchan heterozygous females, and 57 were G6PDn; 6 patients had α/β-thalassaemia and 26 had HbE. Median (range) Day0 G6PD activities were 0·85 U/g Hb (0·10-1·36) and 11·4 U/g Hb (6·67-16·78) in G6PDd and G6PDn patients, respectively, rising significantly to 1·45 (0·36-5·54, p<0.01) and 12·0 (8·1-17·4, p = 0.04) U/g Hb on Day7, then falling to ~Day0 values by Day56. Day0 G6PD activity did not correlate (p = 0.28) with the Day0 reticulocyte counts but both correlated over time. The FST diagnosed correctly 17/18 G6PDd patients, misclassifying one heterozygous female as G6PDn. CONCLUSIONS In Cambodia, acute P. vivax malaria did not elevate G6PD activities in our small sample of G6PDd patients to levels that would result in a false normal qualitative test. Low G6PDd enzyme activity at disease presentation increases upon parasite clearance, parallel to reticulocytosis. More work is needed in G6PDd heterozygous females to ascertain the effect of P. vivax on their G6PD activities. TRIAL REGISTRATION The trial was registered (ACTRN12613000003774) with the Australia New Zealand Clinical trials (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363399&isReview=true).
Collapse
|
9
|
Satyagraha AW, Sadhewa A, Panggalo LV, Subekti D, Elyazar I, Soebianto S, Mahpud N, Harahap AR, Baird JK. Genotypes and phenotypes of G6PD deficiency among Indonesian females across diagnostic thresholds of G6PD activity guiding safe primaquine therapy of latent malaria. PLoS Negl Trop Dis 2021; 15:e0009610. [PMID: 34270547 PMCID: PMC8318249 DOI: 10.1371/journal.pntd.0009610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Plasmodium vivax occurs as a latent infection of liver and a patent infection of red blood cells. Radical cure requires both blood schizontocidal and hypnozoitocidal chemotherapies. The hypnozoitocidal therapies available are primaquine and tafenoquine, 8-aminoquinoline drugs that can provoke threatening acute hemolytic anemia in patients having an X-linked G6PD-deficiency. Heterozygous females may screen as G6PD-normal prior to radical cure and go on to experience hemolytic crisis. METHODS & FINDINGS This study examined G6PD phenotypes in 1928 female subjects living in malarious Sumba Island in eastern Indonesia to ascertain the prevalence of females vulnerable to diagnostic misclassification as G6PD-normal. All 367 (19%) females having <80% G6PD normal activity were genotyped. Among those, 103 (28%) were G6PD wild type, 251 (68·4%) were heterozygous, three (0·8%) were compound heterozygotes, and ten (2·7%) were homozygous deficient. The variants Vanua Lava, Viangchan, Coimbra, Chatham, and Kaiping occurred among them. Below the 70% of normal G6PD activity threshold, just 18 (8%) were G6PD-normal and 214 (92%) were G6PD-deficient. Among the 31 females with <30% G6PD normal activity were all ten homozygotes, all three compound heterozygotes, and just 18 were heterozygotes (7% of those). CONCLUSIONS In this population, most G6PD heterozygosity in females occurred between 30% and 70% of normal (69·3%; 183/264). The prevalence of females at risk of G6PD misclassification as normal by qualitative screening was 9·5% (183/1928). Qualitative G6PD screening prior to 8-aminoquinoline therapies against P. vivax may leave one in ten females at risk of hemolytic crisis, which may be remedied by point-of-care quantitative tests.
Collapse
Affiliation(s)
| | | | | | - Decy Subekti
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Iqbal Elyazar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Saraswati Soebianto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Nunung Mahpud
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | | | - J. Kevin Baird
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Abstract
In this review for the Vivax malaria collection, Kamala Thriemer and colleagues explore efforts to eliminate P. vivax malaria.
Collapse
Affiliation(s)
- Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Calvaresi EC, Genzen JR. Evaluating Percentage-Based Reporting of Glucose-6-Phosphate Dehydrogenase (G6PD) Enzymatic Activity. Am J Clin Pathol 2020; 154:248-254. [PMID: 32405645 DOI: 10.1093/ajcp/aqaa040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES The World Health Organization recommends measurement of glucose-6-phosphate dehydrogenase (G6PD) activity before initiation of 8-aminoquinoline therapy. A new drug for malaria prophylaxis and treatment (tafenoquine) is contraindicated in patients with G6PD deficiency or unknown G6PD status given its prolonged half-life. Assessments of percentage of normal G6PD activity using laboratory-specific result distributions are not widely available, making tafenoquine-eligibility decisions potentially challenging. METHODS Using an institutional review board-exempt protocol, a data set of quantitative G6PD results was retrieved from a national reference laboratory. G6PD testing was previously performed at 37 °C using an automated enzymatic assay configured on a Roche cobas c501 chemistry analyzer. RESULTS Overall, 52,216 results from patients 18 years and older and 6,397 results from patients younger than 18 years were obtained. A modified adjusted male median of 12.7 U/g Hb was derived for adult males in this assay configuration. Result distributions showed higher G6PD activity in neonates. CONCLUSIONS Retrospective data analysis can be used to determine laboratory-specific normal G6PD activity values in clinical populations and thus can assist in clinical-eligibility considerations for 8-aminoquinoline treatment.
Collapse
Affiliation(s)
| | - Jonathan R Genzen
- Department of Pathology, University of Utah, Salt Lake City
- ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
12
|
White D, Keramane M, Capretta A, Brennan JD. A paper-based biosensor for visual detection of glucose-6-phosphate dehydrogenase from whole blood. Analyst 2020; 145:1817-1824. [DOI: 10.1039/c9an02219h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paper-based, colorimetric, visual detection of G6PD from whole blood without need for equipment.
Collapse
Affiliation(s)
- Dawn White
- Biointerfaces Institute
- McMaster University
- Canada
| | | | | | | |
Collapse
|
13
|
Ley B, Winasti Satyagraha A, Rahmat H, von Fricken ME, Douglas NM, Pfeffer DA, Espino F, von Seidlein L, Henriques G, Oo NN, Menard D, Parikh S, Bancone G, Karahalios A, Price RN. Performance of the Access Bio/CareStart rapid diagnostic test for the detection of glucose-6-phosphate dehydrogenase deficiency: A systematic review and meta-analysis. PLoS Med 2019; 16:e1002992. [PMID: 31834890 PMCID: PMC6910667 DOI: 10.1371/journal.pmed.1002992] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND To reduce the risk of drug-induced haemolysis, all patients should be tested for glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd) prior to prescribing primaquine (PQ)-based radical cure for the treatment of vivax malaria. This systematic review and individual patient meta-analysis assessed the utility of a qualitative lateral flow assay from Access Bio/CareStart (Somerset, NJ) (CareStart Screening test for G6PD deficiency) for the diagnosis of G6PDd compared to the gold standard spectrophotometry (International Prospective Register of Systematic Reviews [PROSPERO]: CRD42019110994). METHODS AND FINDINGS Articles published on PubMed between 1 January 2011 and 27 September 2019 were screened. Articles reporting performance of the standard CSG from venous or capillary blood samples collected prospectively and considering spectrophotometry as gold standard (using kits from Trinity Biotech PLC, Wicklow, Ireland) were included. Authors of articles fulfilling the inclusion criteria were contacted to contribute anonymized individual data. Minimal data requested were sex of the participant, CSG result, spectrophotometry result in U/gHb, and haemoglobin (Hb) reading. The adjusted male median (AMM) was calculated per site and defined as 100% G6PD activity. G6PDd was defined as an enzyme activity of less than 30%. Pooled estimates for sensitivity and specificity, unconditional negative predictive value (NPV), positive likelihood ratio (LR+), and negative likelihood ratio (LR-) were calculated comparing CSG results to spectrophotometry using a random-effects bivariate model. Of 11 eligible published articles, individual data were available from 8 studies, 6 from Southeast Asia, 1 from Africa, and 1 from the Americas. A total of 5,815 individual participant data (IPD) were available, of which 5,777 results (99.3%) were considered for analysis, including data from 3,095 (53.6%) females. Overall, the CSG had a pooled sensitivity of 0.96 (95% CI 0.90-0.99) and a specificity of 0.95 (95% CI 0.92-0.96). When the prevalence of G6PDd was varied from 5% to 30%, the unconditional NPV was 0.99 (95% CI 0.94-1.00), with an LR+ and an LR- of 18.23 (95% CI 13.04-25.48) and 0.05 (95% CI 0.02-0.12), respectively. Performance was significantly better in males compared to females (p = 0.027) but did not differ significantly between samples collected from capillary or venous blood (p = 0.547). Limitations of the study include the lack of wide geographical representation of the included data and that the CSG results were generated under research conditions, and therefore may not reflect performance in routine settings. CONCLUSIONS The CSG performed well at the 30% threshold. Its high NPV suggests that the test is suitable to guide PQ treatment, and the high LR+ and low LR- render the test suitable to confirm and exclude G6PDd. Further operational studies are needed to confirm the utility of the test in remote endemic settings.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- * E-mail:
| | | | - Hisni Rahmat
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Michael E. von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, United States of America
| | - Nicholas M. Douglas
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Daniel A. Pfeffer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Fe Espino
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Gisela Henriques
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nwe Nwe Oo
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Didier Menard
- Malaria Genetics and Resistance Unit, Institut Pasteur, Paris, France
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Amalia Karahalios
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Pal S, Bansil P, Bancone G, Hrutkay S, Kahn M, Gornsawun G, Penpitchaporn P, Chu CS, Nosten F, Domingo GJ. Evaluation of a Novel Quantitative Test for Glucose-6-Phosphate Dehydrogenase Deficiency: Bringing Quantitative Testing for Glucose-6-Phosphate Dehydrogenase Deficiency Closer to the Patient. Am J Trop Med Hyg 2019; 100:213-221. [PMID: 30350771 PMCID: PMC6335905 DOI: 10.4269/ajtmh.18-0612] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a common genetic blood condition, can result in kernicterus at birth, and later in life as severe hemolysis on exposure to certain infections, foods, and drugs. The unavailability of point-of-care tests for G6PD deficiency is a barrier to routine curative treatment of Plasmodium vivax malaria with 8-aminoquinolines, such as primaquine. Two quantitative reference tests (Trinity Biotech, Bray, Ireland and Pointe Scientific, Canton, MI; Cat No. G7583) and the point-of-care STANDARD™ G6PD test (SD Biosensor, Suwon, South Korea) were evaluated. The STANDARD G6PD test was evaluated at multiple temperatures, in anticoagulated venous and capillary samples, including 79 G6PD-deficient and 66 intermediate samples and across two laboratories, one in the United States and one in Thailand. The STANDARD test performed equivalently to a reference assay for its ability to diagnose G6PD deficiency (< 30% normal) with a sensitivity of 100% (0.95 confidence interval [CI]: 95.7–100) and specificity of 97% (0.95 CI: 94.5–98.5), and could reliably identify females with less than 70% normal G6PD activity with a sensitivity of 95.5% (0.95 CI: 89.7–98.5) and specificity of 97% (0.95 CI: 94.5–98.6). The STANDARD G6PD product represents an opportunity to diagnose G6PD deficiency equally for males and females in basic clinical laboratories in high- and low-resource settings. This quantitative point-of-care diagnostic test for G6PD deficiency can provide equal access to safe radical cure of P. vivax cases in high- and low-resource settings, for males and females and may support malaria elimination, in countries where P. vivax is endemic.
Collapse
Affiliation(s)
- Sampa Pal
- Diagnostics Program, PATH, Seattle, Washington
| | | | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Maria Kahn
- Diagnostics Program, PATH, Seattle, Washington
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pimsupah Penpitchaporn
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | |
Collapse
|
15
|
Abstract
The technical genesis and practice of 8-aminoquinoline therapy of latent malaria offer singular scientific, clinical, and public health insights. The 8-aminoquinolines brought revolutionary scientific discoveries, dogmatic practices, benign neglect, and, finally, enduring promise against endemic malaria. The clinical use of plasmochin-the first rationally synthesized blood schizontocide and the first gametocytocide, tissue schizontocide, and hypnozoitocide of any kind-commenced in 1926. Plasmochin became known to sometimes provoke fatal hemolytic crises. World War II delivered a newer 8-aminoquinoline, primaquine, and the discovery of glucose-6-phosphate dehydrogenase (G6PD) deficiency as the basis of its hemolytic toxicity came in 1956. Primaquine nonetheless became the sole therapeutic option against latent malaria. After 40 years of fitful development, in 2018 the U.S. Food and Drug Administration registered the 8-aminoquinoline called tafenoquine for the prevention of all malarias and the treatment of those that relapse. Tafenoquine also cannot be used in G6PD-unknown or -deficient patients. The hemolytic toxicity of the 8-aminoquinolines impedes their great potential, but this problem has not been a research priority. This review explores the complex technical dimensions of the history of 8-aminoquinolines. The therapeutic principles thus examined may be leveraged in improved practice and in understanding the bright prospect of discovery of newer drugs that cannot harm G6PD-deficient patients.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Djigo OKM, Bollahi MA, Hasni Ebou M, Ould Ahmedou Salem MS, Tahar R, Bogreau H, Basco L, Ould Mohamed Salem Boukhary A. Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania. PLoS One 2019; 14:e0220977. [PMID: 31525211 PMCID: PMC6746352 DOI: 10.1371/journal.pone.0220977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background Primaquine is recommended by the World Health Organization (WHO) for radical treatment of Plasmodium vivax malaria. This drug is known to provoke acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Due to lack of data on G6PD deficiency, the use of primaquine has been limited in Africa. In the present study, G6PD deficiency was investigated in blood donors of various ethnic groups living in Nouakchott, a P. vivax endemic area in Mauritania. Methodology/Principal findings Venous blood samples from 443 healthy blood donors recruited at the National Transfusion Center in Nouakchott were screened for G6PD activity using the CareStart G6PD deficiency rapid diagnostic test. G6PD allelic variants were investigated using DiaPlexC G6PD genotyping kit that detects African (A-) and Mediterranean (B-) variants. Overall, 50 of 443 (11.3%) individuals (49 [11.8%] men and 1 [3.7%] woman) were phenotypically deficient. Amongst men, Black Africans had the highest prevalence of G6PD deficiency (15 of 100 [15%]) and White Moors the lowest (10 of 168, [5.9%]). The most commonly observed G6PD allelic variants among 44 tested G6PD-deficient men were the African variant A- (202A/376G) in 14 (31.8%), the Mediterranean variant B- (563T) in 13 (29.5%), and the Betica-Selma A- (376G/968C) allelic variant in 6 (13.6%). The Santamaria A- variant (376G/542T) and A variant (376G) were observed in only one and two individuals, respectively. None of the expected variants was observed in 8 (18.2%) of the tested phenotypically G6PD-deficient men. Conclusion This is the first published data on G6PD deficiency in Mauritanians. The prevalence of phenotypic G6PD deficiency was relatively high (11.3%). It was mostly associated with either African or Mediterranean variants, in agreement with diverse Arab and Black African origins of the Mauritanian population.
Collapse
Affiliation(s)
- Oum kelthoum Mamadou Djigo
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | | | - Moina Hasni Ebou
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | - Rachida Tahar
- UMR 216 MERIT, IRD, Faculté de Pharmacie, Univ. Paris Descartes, Paris, France
| | - Hervé Bogreau
- Unité de Parasitologie et d’Entomologie, Institut de Recherche Biomédicale des Armées, IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de Référence du Paludisme, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Leonardo Basco
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- * E-mail:
| |
Collapse
|
17
|
Chamchoy K, Pakotiprapha D, Pumirat P, Leartsakulpanich U, Boonyuen U. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. BMC BIOCHEMISTRY 2019; 20:4. [PMID: 30961528 PMCID: PMC6454709 DOI: 10.1186/s12858-019-0108-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/31/2019] [Indexed: 01/12/2023]
Abstract
Background The reduction of tetrazolium salts by NAD(P)H to formazan product has been widely used to determine the metabolic activity of cells, and as an indicator of cell viability. However, the application of a WST-8 based assay for the quantitative measurement of dehydrogenase enzyme activity has not been described before. In this study, we reported the application of an assay based on the tetrazolium salt WST-8 for the quantitative measurement of dehydrogenase activity. The assay is performed in a microplate format, where a single endpoint is measured at 450 nm. Results The optimized dehydrogenase-WST-8 assay conditions, the limit of detection (LOD), accuracy, and precision for measuring NAD(P)H, were demonstrated. The sensitivity of the WST-8 assay for detecting NAD(P)H was 5-fold greater than the spectrophotometric measurement of NAD(P)H absorption at 340 nm (LOD of 0.3 nmole vs 1.7 nmole, respectively). In the dehydrogenase assay, the colorimetric WST-8 method exhibits excellent assay reproducibility with a Z’ factor of 0.9. The WST-8 assay was also used to determine dehydrogenase activity in biological samples, and for screening the substrate of uncharacterized short-chain dehydrogenase/oxidoreductase from Burkholderia pseudomallei. Conclusion The results suggest that the WST-8 assay is a sensitive and rapid method for determining NAD(P)H concentration and dehydrogenase enzyme activity, which can be further applied for the high-throughput screening of dehydrogenases.
Collapse
Affiliation(s)
- Kamonwan Chamchoy
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Hounkpatin AB, Kreidenweiss A, Held J. Clinical utility of tafenoquine in the prevention of relapse of Plasmodium vivax malaria: a review on the mode of action and emerging trial data. Infect Drug Resist 2019; 12:553-570. [PMID: 30881061 PMCID: PMC6411314 DOI: 10.2147/idr.s151031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tafenoquine is an 8-aminoquinoline with activity against all human life cycle stages of Plasmodium vivax, including dormant liver stages – so called hypnozoites. Its long half-life of ~15 days is allowing for a single exposure regimen. It has been under development since 1980 and received approval by the US Food and Drug Administration in summer 2018 as an anti-relapse drug for P. vivax malaria in patients aged 16 years and older and for prophylaxis of malaria caused by any Plasmodium species in adults. Prior to tafenoquine administration, glucose-6-phosphate dehydrogenase (G6PD) deficiency needs to be excluded by testing. Individuals with a deficient G6PD activity are at risk of tafenoquine-induced hemolysis – as is the case for primaquine, the mainstay drug for P. vivax radical cure. A wealth of clinical studies have been conducted and are still ongoing to assess the safety, tolerability, and efficacy of tafenoquine. This review focuses on data emerging from the latest clinical trials on P. vivax radical cure with tafenoquine, the key studies for regulatory approval of tafenoquine, and elucidates the latest hypothesis on the mode of action.
Collapse
Affiliation(s)
- Aurore B Hounkpatin
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Tübingen, Germany, .,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany, .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon,
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Tübingen, Germany, .,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany,
| | - Jana Held
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Tübingen, Germany, .,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany, .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon,
| |
Collapse
|
19
|
Henriques G, Phommasone K, Tripura R, Peto TJ, Raut S, Snethlage C, Sambo I, Sanann N, Nguon C, Adhikari B, Pongvongsa T, Imwong M, von Seidlein L, Day NP, White NJ, Dondorp AM, Newton P, Ley B, Mayxay M. Comparison of glucose-6 phosphate dehydrogenase status by fluorescent spot test and rapid diagnostic test in Lao PDR and Cambodia. Malar J 2018; 17:243. [PMID: 29929514 PMCID: PMC6013858 DOI: 10.1186/s12936-018-2390-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy worldwide. Primaquine is the only licensed drug that effectively removes Plasmodium vivax hypnozoites from the human host and prevents relapse. While well tolerated by most recipients, primaquine can cause haemolysis in G6PD deficient individuals and is, therefore, underused. Rapid diagnostic tests (RDTs) could permit ascertainment of G6PD status outside of laboratory settings and hence safe treatment in remote areas. The performance of the fluorescent spot test (Trinity, Ireland; FST) and a G6PD RDT (Carestart, USA) against spectrophotometry were assessed. METHODS Participants were enrolled during cross-sectional surveys in Laos and by purposive sampling in Cambodia. FST and RDT were performed during village surveys and 3 mL of venous blood was collected for subsequent G6PD measurement by spectrophotometry. RESULTS A total of 757 participants were enrolled in Laos and 505 in Cambodia. FST and RDT performed best at 30% cut-off activity and performed significantly better in Laos than in Cambodia. When defining intermediate results as G6PD deficient, the FST had a sensitivity of 100% (95%CI 90-100) and specificity of 90% (95%CI 87.7-92.2) in Laos and sensitivity of 98% (94.1-99.6) and specificity of 71% (95%CI 66-76) in Cambodia (p < 0.001). The RDT had sensitivity and specificity of 100% (95%CI 90-100) and 99% (95%CI 97-99) in Laos and sensitivity and specificity of 91% (86-96) and 93% (90-95) in Cambodia (p < 0.001). The RDT performed significantly better (all p < 0.05) than the FST when intermediate FST results were defined as G6PD deficient. CONCLUSION The interpretation of RDT results requires some training but is a good alternative to the FST. Trial registration clinicaltrials.gov; NCT01872702; 06/27/2013; https://clinicaltrials.gov/ct2/show/NCT01872702.
Collapse
Affiliation(s)
- Gisela Henriques
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Life Science, Imperial College London, London, UK
| | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Shristi Raut
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR
| | - Coco Snethlage
- School of Medicine, Amsterdam University, Amsterdam, The Netherlands
| | - Im Sambo
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nou Sanann
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chea Nguon
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Bipin Adhikari
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Station of Malariology, Parasitology and Entomology, Savannakhet, Savannakhet Province, Lao PDR
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| | - Nicholas P Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Paul Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Benedikt Ley
- Menzies School of Health Research, Darwin, Australia
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao PDR
| |
Collapse
|
20
|
Bancone G, Gornsawun G, Chu CS, Porn P, Pal S, Bansil P, Domingo GJ, Nosten F. Validation of the quantitative point-of-care CareStart biosensor for assessment of G6PD activity in venous blood. PLoS One 2018; 13:e0196716. [PMID: 29738562 PMCID: PMC5940185 DOI: 10.1371/journal.pone.0196716] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the human population affecting an estimated 8% of the world population, especially those living in areas of past and present malaria endemicity. Decreased G6PD enzymatic activity is associated with drug-induced hemolysis and increased risk of severe neonatal hyperbilirubinemia leading to brain damage. The G6PD gene is on the X chromosome therefore mutations cause enzymatic deficiency in hemizygote males and homozygote females while the majority of heterozygous females have an intermediate activity (between 30-80% of normal) with a large distribution into the range of deficiency and normality. Current G6PD qualitative tests are unable to diagnose G6PD intermediate activities which could hinder wide use of 8-aminoquinolines for Plasmodium vivax elimination. The aim of the study was to assess the diagnostic performances of the new Carestart G6PD quantitative biosensor. METHODS A total of 150 samples of venous blood with G6PD deficient, intermediate and normal phenotypes were collected among healthy volunteers living along the north-western Thailand-Myanmar border. Samples were analyzed by complete blood count, by gold standard spectrophotometric assay using Trinity kits and by the latest model of Carestart G6PD biosensor which analyzes both G6PD and hemoglobin. RESULTS Bland-Altman comparison of the CareStart normalized G6PD values to that of the gold standard assay showed a strong bias in values resulting in poor area under-the-curve values for both 30% and 80% thresholds. Performing a receiver operator curve identified threshold values for the CareStart product equivalent to the 30% and 80% gold standard values with good sensitivity and specificity values, 100% and 92% (for 30% G6PD activity) and 92% and 94% (for 80% activity) respectively. CONCLUSION The Carestart G6PD biosensor represents a significant improvement for quantitative diagnosis of G6PD deficiency over previous versions. Further improvements and validation studies are required to assess its utility for informing radical cure decisions in malaria endemic settings.
Collapse
Affiliation(s)
- Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S. Chu
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Pen Porn
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Sampa Pal
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Pooja Bansil
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Gonzalo J. Domingo
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Powers JL, Best DH, Grenache DG. Genotype-Phenotype Correlations of Glucose-6-Phosphate-Deficient Variants Throughout an Activity Distribution. J Appl Lab Med 2018; 2:841-850. [PMID: 33636823 DOI: 10.1373/jalm.2017.024935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/08/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked disorder that may manifest as neonatal jaundice or acute hemolytic anemia. Quantitative assessment of G6PD activity in erythrocytes is required to definitively diagnose a deficiency. Most males and homozygous females have low enzyme activities, whereas heterozygous females may have a range of activities. We sought to examine G6PD genotype-phenotype associations to identify an activity cutoff above which G6PD deficiency is unlikely. METHODS Ninety-five residual samples were randomly selected to represent the various regions of a G6PD activity distribution. DNA was isolated from the leukocyte fraction and sequenced using the Sanger method. ROC curves were used to establish cutoffs. RESULTS Thirteen variant alleles were identified, including 1 not previously reported. In the very deficient activity range, we found males and homozygous females of both class II and III variants. In the deficient category, we found predominantly class III males and heterozygous females. The presumed deficient category contained class III and IV variants and nonvariants. An activity cutoff of <7.85 U/g hemoglobin (Hb) was 100% sensitive and 94% specific for identifying a G6PD-deficient male, and a cutoff of <8.95 U/g Hb was 90% sensitive and 82% specific for a deficient female. CONCLUSIONS The observed activity groupings were not because of a particular variant class. Cutoffs to identify the presence of a deficiency variant for males and females may be useful when trying to decide whether to recommend genetic analysis.
Collapse
Affiliation(s)
- Jennifer L Powers
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - D Hunter Best
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - David G Grenache
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
22
|
Belfield KD, Tichy EM. Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency. Am J Health Syst Pharm 2018; 75:97-104. [PMID: 29305344 DOI: 10.2146/ajhp160961] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE The pathophysiology, diagnosis, and medication-use implications of glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzyme deficiency in humans, are reviewed. SUMMARY Originally identified as favism in patients who experienced hemolysis after ingestion of fava beans, G6PD deficiency results from an X-linked chromosomal mutation that leads to reduced activity of the enzyme responsible for the final step of the pentose phosphate pathway, through which reduced nicotinamide adenine dinucleotide phosphate required for protection of cells from oxidative stress is produced. G6PD deficiency affects about 400 million people worldwide. Diagnosis of G6PD can be made through detection of enzymatic activity (by spectrophotometric testing, fluorescence testing, or formazan-based spot testing) or molecular analysis to detect known mutations of the gene encoding G6PD. Most individuals with G6PD deficiency are asymptomatic throughout life. Symptoms of acute hemolysis associated with G6PD deficiency include anemia, fatigue, back or abdominal pain, jaundice, and hemoglobinuria. The most common precipitators of oxidative stress and hemolysis in G6PD deficiency include medication use and infection. CONCLUSION G6PD deficiency should be considered in patients who experience acute hemolysis after exposure to known oxidative medications, infection, or ingestion of fava beans. A diagnosis of G6PD deficiency is most often made through enzymatic activity detection, but molecular analysis may be required in females heterozygous for the disorder. When clinically feasible, rasburicase, primaquine, dapsone, pegloticase, and methylene blue should not be used until a G6PD diagnostic test has been performed.
Collapse
|
23
|
Point-of-Care Testing for G6PD Deficiency: Opportunities for Screening. Int J Neonatal Screen 2018; 4:34. [PMID: 31709308 PMCID: PMC6832607 DOI: 10.3390/ijns4040034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked genetic disorder, is associated with increased risk of jaundice and kernicterus at birth. G6PD deficiency can manifest later in life as severe hemolysis, when the individual is exposed to oxidative agents that range from foods such as fava beans, to diseases such as typhoid, to medications such as dapsone, to the curative drugs for Plasmodium (P.) vivax malaria, primaquine and tafenoquine. While routine testing at birth for G6PD deficiency is recommended by the World Health Organization for populations with greater than 5% prevalence of G6PD deficiency and to inform P. vivax case management using primaquine, testing coverage is extremely low. Test coverage is low due to the need to prioritize newborn interventions and the complexity of currently available G6PD tests, especially those used to inform malaria case management. More affordable, accurate, point-of-care (POC) tests for G6PD deficiency are emerging that create an opportunity to extend testing to populations that do not have access to high throughput screening services. Some of these tests are quantitative, which provides an opportunity to address the gender disparity created by the currently available POC qualitative tests that misclassify females with intermediate G6PD activity as normal. In populations where the epidemiology for G6PD deficiency and P. vivax overlap, screening for G6PD deficiency at birth to inform care of the newborn can also be used to inform malaria case management over their lifetime.
Collapse
|
24
|
Slusher TM, Day LT, Ogundele T, Woolfield N, Owa JA. Filtered sunlight, solar powered phototherapy and other strategies for managing neonatal jaundice in low-resource settings. Early Hum Dev 2017; 114:11-15. [PMID: 28919246 DOI: 10.1016/j.earlhumdev.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Challenges in treating severe neonatal jaundice in low and middle-income country settings still exist at many levels. These include: a lack of awareness of causes and prevention by families, communities and even sometimes health care professionals; insufficient, ineffective, high quality affordable diagnostic and therapeutic options; limited availability of rehabilitation provision for kernicterus. Collectively these challenges lead to an unacceptably high global morbidity and mortality from severe neonatal jaundice. In the past decade, there has been an explosion of innovations addressing some of these issues and these are increasingly available for scale up. Scientists, healthcare providers, and communities are joining hands to explore educational tools, low cost screening and diagnostic options including at point-of-care and treatment modalities including filtered sunlight and solar powered phototherapy. For the first time, the possibility of eliminating the tragedy of preventable morbidity and mortality from severe NNJ is on the horizon, for all.
Collapse
Affiliation(s)
- Tina M Slusher
- Division of Global Pediatrics, University of Minnesota, Minneapolis, MN 55415, USA; Pediatric Intensive Care Unit, Hennepin County Medical Center, 701 Park Ave., MC G7, Minneapolis, MN 55415, USA.
| | - Louise Tina Day
- Paediatrics, LAMB Integrated Rural Health & Development, Parbatipur, Dinajpur, Bangladesh
| | - Tolulope Ogundele
- Department of Paediatrics, University of Medical Sciences, Nigeria.; State Specialist Hospital, Ondo City, Ondo, Nigeria
| | - Nick Woolfield
- UNICEF, Kyrgyzstan; 63 Elliott St., Caboolture, Queensland, Australia
| | - Joshua Aderinsola Owa
- Department of Paediatrics and Child Health, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
25
|
Ley B, Bancone G, von Seidlein L, Thriemer K, Richards JS, Domingo GJ, Price RN. Methods for the field evaluation of quantitative G6PD diagnostics: a review. Malar J 2017; 16:361. [PMID: 28893237 PMCID: PMC5594530 DOI: 10.1186/s12936-017-2017-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/06/2017] [Indexed: 01/12/2023] Open
Abstract
Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk of severe haemolysis following the administration of 8-aminoquinoline compounds. Primaquine is the only widely available 8-aminoquinoline for the radical cure of Plasmodium vivax. Tafenoquine is under development with the potential to simplify treatment regimens, but point-of-care (PoC) tests will be needed to provide quantitative measurement of G6PD activity prior to its administration. There is currently a lack of appropriate G6PD PoC tests, but a number of new tests are in development and are likely to enter the market in the coming years. As these are implemented, they will need to be validated in field studies. This article outlines the technical details for the field evaluation of novel quantitative G6PD diagnostics such as sample handling, reference testing and statistical analysis. Field evaluation is based on the comparison of paired samples, including one sample tested by the new assay at point of care and one sample tested by the gold-standard reference method, UV spectrophotometry in an established laboratory. Samples can be collected as capillary or venous blood; the existing literature suggests that potential differences in capillary or venous blood are unlikely to affect results substantially. The collection and storage of samples is critical to ensure preservation of enzyme activity, it is recommended that samples are stored at 4 °C and testing occurs within 4 days of collection. Test results can be visually presented as scatter plot, Bland-Altman plot, and a histogram of the G6PD activity distribution of the study population. Calculating the adjusted male median allows categorizing results according to G6PD activity to calculate standard performance indicators and to perform receiver operating characteristic (ROC) analysis.
Collapse
Affiliation(s)
- Benedikt Ley
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Germana Bancone
- 0000 0004 1937 0490grid.10223.32Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand ,0000 0004 1936 8948grid.4991.5Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Kamala Thriemer
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jack S. Richards
- 0000 0001 2224 8486grid.1056.2Malaria Elimination Program, Burnet Institute, Melbourne, VIC Australia ,0000 0001 2179 088Xgrid.1008.9Department of Medicine, University of Melbourne, Parkville, VIC Australia ,Victorian Infectious Diseases Service, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| | - Gonzalo J. Domingo
- 0000 0000 8940 7771grid.415269.dDiagnostics Global Program, PATH, Seattle, WA USA
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia ,0000 0004 1936 8948grid.4991.5Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Ley B, Thriemer K, Jaswal J, Poirot E, Alam MS, Phru CS, Khan WA, Dysoley L, Qi G, Kheong CC, Shamsudin UK, Chen I, Hwang J, Gosling R, Price RN. Barriers to routine G6PD testing prior to treatment with primaquine. Malar J 2017; 16:329. [PMID: 28797255 PMCID: PMC5553859 DOI: 10.1186/s12936-017-1981-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Primaquine is essential for the radical cure of vivax malaria, however its broad application is hindered by the risk of drug-induced haemolysis in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. Rapid diagnostic tests capable of diagnosing G6PD deficiency are now available, but these are not used widely. METHODS A series of qualitative interviews were conducted with policy makers and healthcare providers in four vivax-endemic countries. Routine G6PD testing is not part of current policy in Bangladesh, Cambodia or China, but it is in Malaysia. The interviews were analysed with regard to respondents perceptions of vivax malaria, -primaquine based treatment for malaria and the complexities of G6PD deficiency. RESULTS Three barriers to the roll-out of routine G6PD testing were identified in all sites: (a) a perceived low risk of drug-induced haemolysis; (b) the perception that vivax malaria was benign and accordingly treatment with primaquine was not regarded as a priority; and, (c) the additional costs of introducing routine testing. In Malaysia, respondents considered the current test and treat algorithm suitable and the need for an alternative approach was only considered relevant in highly mobile and hard to reach populations. CONCLUSIONS Greater efforts are needed to increase awareness of the benefits of the radical cure of Plasmodium vivax and this should be supported by economic analyses exploring the cost effectiveness of routine G6PD testing.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT 0811 Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT 0811 Australia
| | - Jessica Jaswal
- 0000 0001 2297 6811grid.266102.1Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA USA
| | - Eugenie Poirot
- 0000 0001 2297 6811grid.266102.1Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA USA
| | - Mohammad Shafiul Alam
- 0000 0004 0600 7174grid.414142.6Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh, Mohakhali, Dhaka, 1212 Bangladesh
| | - Ching Swe Phru
- 0000 0004 0600 7174grid.414142.6Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh, Mohakhali, Dhaka, 1212 Bangladesh
| | - Wasif Ali Khan
- 0000 0004 0600 7174grid.414142.6Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh, Mohakhali, Dhaka, 1212 Bangladesh
| | - Lek Dysoley
- grid.452707.3Ministry of Health, National Center for Parasitology Entomology and Malaria Control (CNM), Phnom Penh, Cambodia ,grid.436334.5School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Gao Qi
- grid.452515.2National Key Laboratory ON Parasitic Diseases, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Chong Chee Kheong
- 0000 0001 0690 5255grid.415759.bDisease Control Division, Ministry of Health, Kuala Lumpur, Malaysia
| | - Ummi Kalthom Shamsudin
- 0000 0001 0690 5255grid.415759.bDisease Control Division, Ministry of Health, Kuala Lumpur, Malaysia
| | - Ingrid Chen
- 0000 0001 2297 6811grid.266102.1Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA USA
| | - Jimee Hwang
- 0000 0001 2297 6811grid.266102.1Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA USA ,0000 0001 2163 0069grid.416738.fDivision of Parasitic Diseases and Malaria, US President’s Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Roly Gosling
- 0000 0001 2297 6811grid.266102.1Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA USA
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT 0811 Australia ,0000 0004 1936 8948grid.4991.5Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Reading NS, Ruiz‐Bonilla JA, Christensen RD, Cáceres‐Perkins W, Prchal JT. A patient with both methemoglobinemia and G6PD deficiency: A therapeutic conundrum. Am J Hematol 2017; 92:474-477. [PMID: 28195434 DOI: 10.1002/ajh.24683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 11/10/2022]
Affiliation(s)
- N. Scott Reading
- Institute for Clinical and Experimental Pathology, ARUP LaboratoriesSalt Lake City Utah USA
- Division of HematologyDepartment of Internal Medicine, University of Utah School of MedicineSalt Lake City Utah USA
- Department of PathologyUniversity of Utah School of MedicineSalt Lake City Utah USA
| | - José A. Ruiz‐Bonilla
- Department of Hematology‐OncologyVA Caribbean Healthcare SystemSan Juan Puerto Rico
| | - Robert D. Christensen
- Division of NeonatologyDepartment of Pediatrics, University of Utah School of MedicineSalt Lake City Utah USA
| | | | - Josef T. Prchal
- Institute for Clinical and Experimental Pathology, ARUP LaboratoriesSalt Lake City Utah USA
- Division of HematologyDepartment of Internal Medicine, University of Utah School of MedicineSalt Lake City Utah USA
- Department of PathologyUniversity of Utah School of MedicineSalt Lake City Utah USA
| |
Collapse
|
28
|
Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group. Malar J 2017; 16:141. [PMID: 28381261 PMCID: PMC5382417 DOI: 10.1186/s12936-017-1784-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 03/18/2017] [Indexed: 01/12/2023] Open
Abstract
The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.
Collapse
|
29
|
Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: Target product profiles. PLoS Negl Trop Dis 2017; 11:e0005516. [PMID: 28369085 PMCID: PMC5391123 DOI: 10.1371/journal.pntd.0005516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/13/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
The global prevalence of malaria has decreased over the past fifteen years, but similar gains have not been realized against Plasmodium vivax because this species is less responsive to conventional malaria control interventions aimed principally at P. falciparum. Approximately half of all malaria cases outside of Africa are caused by P. vivax. This species places dormant forms in human liver that cause repeated clinical attacks without involving another mosquito bite. The diagnosis of acute patent P. vivax malaria relies primarily on light microscopy. Specific rapid diagnostic tests exist but typically perform relatively poorly compared to those for P. falciparum. Better diagnostic tests are needed for P. vivax. To guide their development, FIND, in collaboration with P. vivax experts, identified the specific diagnostic needs associated with this species and defined a series of three distinct target product profiles, each aimed at a particular diagnostic application: (i) point-of-care of acutely ill patients for clinical care purposes; (ii) point-of-care asymptomatic and otherwise sub-patent residents for public health purposes, e.g., mass screen and treat campaigns; and (iii) ultra-sensitive not point-of-care diagnosis for epidemiological research/surveillance purposes. This report presents and discusses the rationale for these P. vivax-specific diagnostic target product profiles. These contribute to the rational development of fit-for-purpose diagnostic tests suitable for the clinical management, control and elimination of P. vivax malaria. Plasmodium vivax is the second most prevalent Plasmodium species amongst the five that can infect humans and cause malaria. The control and elimination of P. vivax is complicated by its specific biology, such as hard-to-detect low densities of blood-circulating parasites in infected individuals, the existence of persistent liver forms causing relapse, or the early appearance of sexual stages of the parasite during the course of an infection, which facilitates its transmission. These difficulties are reinforced by the fact that most antimalarial tools have been developed primarily for P. falciparum, the most prevalent malaria species, and are not always as effective for P. vivax. Current tools for the diagnosis of P. vivax are of limited effectiveness. Rapid diagnostic tests exist but show, in average, lower performance than similar test for P. falciparum. P. vivax diagnosis often relies on light microscopy which is challenging to maintain at a high quality and not sensitive enough to detect a large fraction of all infections. Recognizing that better diagnostic tools for P. vivax are needed, we report in this study the development of new target product profiles to define the specific characteristics of such tests. The establishment of these consensus-based documents is an important first step to guide research and development efforts toward better diagnostic solutions for P. vivax malaria and to accelerate the elimination of this species alongside P. falciparum.
Collapse
|
30
|
Plewes K, Soontarawirat I, Ghose A, Bancone G, Kingston HWF, Herdman MT, Leopold SJ, Ishioka H, Faiz MA, Anstey NM, Day NPJ, Hossain MA, Imwong M, Dondorp AM, Woodrow CJ. Genotypic and phenotypic characterization of G6PD deficiency in Bengali adults with severe and uncomplicated malaria. Malar J 2017; 16:134. [PMID: 28356147 PMCID: PMC5372272 DOI: 10.1186/s12936-017-1788-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Control of malaria increasingly involves administration of 8-aminoquinolines, with accompanying risk of haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Few data on the prevalence and genotypic basis of G6PD deficiency are available from Bangladesh, where malaria remains a major problem in the South (Chittagong Division). The aim of this study was to determine the prevalence of G6PD deficiency, and associated G6PD genotypes, in adults with falciparum malaria in southern Bangladesh. METHODS G6PD status was assessed via a combination of fluorescent spot testing (FST) and genotyping in 141 Bengali patients admitted with falciparum malaria to two centres in Chittagong Division from 2012 to 2014. In addition, an analysis of genomic data from 1000 Genomes Project was carried out among five healthy Indian subcontinent populations. RESULTS One male patient with uncomplicated malaria was found to have G6PD deficiency on FST and a genotype associated with deficiency (hemizygous Orissa variant). In addition, there were two female patients heterozygous for deficiency variants (Orissa and Kerala-Kalyan). These three patients had a relatively long duration of symptoms prior to admission compared to G6PD normal cases, possibly suggesting an interaction with parasite multiplication rate. In addition, one of 27 healthy local controls was deficient on FST and hemizygous for the Mahidol variant of G6PD deficiency. Examination of 1000 Genomes Project sequencing data across the Indian subcontinent showed that 19/723 chromosomes (2.63%) carried a variant associated with deficiency. In the Bengali from Bangladesh 1000 Genomes population, three of 130 chromosomes (2.31%) carried deficient alleles; this included single chromosomes carrying the Kerala-Kalyan and Orissa variants. CONCLUSIONS In line with other recent work, G6PD deficiency is uncommon in Bengalis in Bangladesh. Further studies of particular ethnic groups are needed to evaluate the potential risk of wide deployment of primaquine in malaria control efforts in Bangladesh.
Collapse
Affiliation(s)
- Katherine Plewes
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ingfar Soontarawirat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aniruddha Ghose
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Hugh W F Kingston
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - M Trent Herdman
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Stije J Leopold
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Haruhiko Ishioka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Md Abul Faiz
- Malaria Research Group, and Dev Care Foundation, Dhaka, Bangladesh
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Md Amir Hossain
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Charles J Woodrow
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Gunawardena S, Kapilananda GMG, Samarakoon D, Maddevithana S, Wijesundera S, Goonaratne LV, Karunaweera ND. Prevalence of G6PD deficiency in selected populations from two previously high malaria endemic areas of Sri Lanka. PLoS One 2017; 12:e0171208. [PMID: 28152025 PMCID: PMC5289554 DOI: 10.1371/journal.pone.0171208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Glucose-6-Phosphate Dehydrogenase (G6PD) enzyme deficiency is known to offer protection against malaria and an increased selection of mutant genes in malaria endemic regions is expected. However, anti-malarial drugs such as primaquine can cause haemolytic anaemia in persons with G6PD deficiency. We studied the extent of G6PD deficiency in selected persons attending Teaching Hospitals of Anuradhapura and Kurunegala, two previously high malaria endemic districts in Sri Lanka. A total of 2059 filter-paper blood spots collected between November 2013 and June 2014 were analysed for phenotypic G6PD deficiency using the modified WST-8/1-methoxy PMS method. Each assay was conducted with a set of controls and the colour development assessed visually as well as with a microplate reader at OD450-630nm. Overall, 142/1018 (13.95%) and 83/1041 (7.97%) were G6PD deficient in Anuradhapura and Kurunegala districts respectively. The G6PD prevalence was significantly greater in Anuradhapura when compared to Kurunegala (P<0.0001). Surprisingly, females were equally affected as males in each district: 35/313 (11.18%) males and 107/705 (15.18%) females were affected in Anuradhapura (P = 0.089); 25/313 (7.99%) males and 58/728 (7.97%) females were affected in Kurunegala (P = 0.991). Prevalence was greater among females in Anuradhapura than in Kurunegala (P<0.05), while no such difference was observed between the males (P>0.05). Severe deficiency (<10% normal) was seen among 28/1018 (2.75%) in Anuradhapura (7 males; 21 females) and 17/1041 (1.63%) in Kurunegala (7 males; 10 females). Enzyme activity between 10–30% was observed among 114/1018 (11.20%; 28 males; 86 females) in Anuradhapura while it was 66/1041 (6.34%; 18 males; 48 females) in Kurunegala. Screening and educational programmes for G6PD deficiency are warranted in these high risk areas irrespective of gender for the prevention of disease states related to this condition.
Collapse
Affiliation(s)
- Sharmini Gunawardena
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- * E-mail:
| | - G. M. G. Kapilananda
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Dilhani Samarakoon
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Sashika Maddevithana
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Sulochana Wijesundera
- Department of Biochemistry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
32
|
Ley B, Alam MS, O’Donnell JJ, Hossain MS, Kibria MG, Jahan N, Khan WA, Thriemer K, Chatfield MD, Price RN, Richards JS. A Comparison of Three Quantitative Methods to Estimate G6PD Activity in the Chittagong Hill Tracts, Bangladesh. PLoS One 2017; 12:e0169930. [PMID: 28121993 PMCID: PMC5266301 DOI: 10.1371/journal.pone.0169930] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/22/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate-dehydrogenase-deficiency (G6PDd) is a major risk factor for primaquine-induced haemolysis. There is a need for improved point-of-care and laboratory-based G6PD diagnostics to unsure safe use of primaquine. METHODS G6PD activities of participants in a cross-sectional survey in Bangladesh were assessed using two novel quantitative assays, the modified WST-8 test and the CareStart™ G6PD Biosensor (Access Bio), The results were compared with a gold standard UV spectrophotometry assay (Randox). The handheld CareStart™ Hb instrument (Access Bio) is designed to be a companion instrument to the CareStart™ G6PD biosensor, and its performance was compared to the well-validated HemoCue™ method. All quantitative G6PD results were normalized with the HemoCue™ result. RESULTS A total of 1002 individuals were enrolled. The adjusted male median (AMM) derived by spectrophotometry was 7.03 U/g Hb (interquartile range (IQR): 5.38-8.69), by WST-8 was 7.03 U/g Hb (IQR: 5.22-8.16) and by Biosensor was 8.61 U/g Hb (IQR: 6.71-10.08). The AMM between spectrophotometry and WST-8 did not differ (p = 1.0) but differed significantly between spectrophotometry and Biosensor (p<0.01). Both, WST-8 and Biosensor were correlated with spectrophotometry (rs = 0.5 and rs = 0.4, both p<0.001). The mean difference in G6PD activity was -0.12 U/g Hb (95% limit of agreement (95% LoA): -5.45 to 5.20) between spectrophotometry and WST-8 and -1.74U/g Hb (95% LoA: -7.63 to 4.23) between spectrophotometry and Biosensor. The WST-8 identified 55.1% (49/89) and the Biosensor 19.1% (17/89) of individuals with G6PD activity <30% by spectrophotometry. Areas under the ROC curve did not differ significantly for the WST-8 and Biosensor irrespective of the cut-off activity applied (all p>0.05). Sensitivity and specificity for detecting G6PD activity <30% was 0.55 (95% confidence interval (95%CI): 0.44-0.66) and 0.98 (95%CI: 0.97-0.99) respectively for the WST-8 and 0.19 (95%CI: 0.12-0.29) and 0.99 (95%CI: 0.98-0.99) respectively for the Biosensor. Hb concentrations measured by HemoCue™ and CareStart™ Hb were strongly correlated (rs = 0.8, p<0.001, mean difference = 0.09 g Hb/dL, 95% LoA: -2.15 to 2.34). CONCLUSION WST-8 and the CareStart™ G6PD Biosensor represent advances in G6PD diagnostics in resource poor settings, but will require further development before clinical deployment. The CareStart™ Hb instrument produced a precise measure of haemoglobin concentration.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- * E-mail:
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - James J. O’Donnell
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | | | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Nusrat Jahan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Wasif A. Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Mark D. Chatfield
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Victorian Infectious Diseases Service, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Amoah LE, Opong A, Ayanful-Torgby R, Abankwa J, Acquah FK. Prevalence of G6PD deficiency and Plasmodium falciparum parasites in asymptomatic school children living in southern Ghana. Malar J 2016; 15:388. [PMID: 27456336 PMCID: PMC4960760 DOI: 10.1186/s12936-016-1440-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/12/2016] [Indexed: 01/03/2023] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked genetic disorder that results in impaired enzyme activity. Although G6PD deficiency is globally distributed it is more prevalent in malaria-endemic countries. Several mutations have been identified in the G6PD gene, which alter enzyme activity. The G6PD genotype predominantly found in sub-Saharan Africa is the G6PDB (G6PD376A) with (G6PD376G) and G6PDA- (G6PD376G/202A, G6PD376G/542T, G6PD376G/680T and G6PD376G/968C) occurring at lower frequencies. Aim The aim of this study was to identify the prevalence of G6PD deficiency and asymptomatic Plasmodium falciparum carriage in children living in southern Ghana and determine whether G6PD deficiency influences asymptomatic carriage of P. falciparum parasites. Methods Blood samples were obtained once a month from 170 healthy Ghanaian school children aged between 5 and 12 years from Basic schools in two communities Obom and Abura with similar rainfall patterns and malaria peak seasons. G6PD enzyme activity was assessed using the qualitative G6PD RDT kit (AccessBIO). G6PD genotyping and asymptomatic parasite carriage was determined by PCR followed by restriction fragment length polymorphism (RFLP) of DNA extracted from dried blood spots. Results The only sub-Saharan G6PD A- allele detected was the A376G/G202A found in 12.4 % (21/170), of the children and distributed as 4.1 % (7/170) A-, 1.8 % (3/170) A-/A- homozygous deficient males and females and 6.5 % (11/170) A/A- and B/A- heterozygous deficient females. Phenotypically, 10.6 % (15/142) of the children were G6PD deficient. The asymptomatic carriage of P. falciparum by PCR was 50, 29.4, 38.2 and 38.8 % over the months of February through May 2015, respectively, and 28.8, 22.4, 25.9 and 5.9 % by microscopy during the same periods. Conclusions G6PD deficiency was significantly associated with a lowered risk of PCR-estimated asymptomatic P. falciparum carriage in children during the off peak malaria season in Southern Ghana. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1440-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Akua Opong
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ruth Ayanful-Torgby
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.,Ghana Health Service, Ministry of Health, Accra, Ghana
| | - Joana Abankwa
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Festus K Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
34
|
Abdul-Ghani R, Mahdy MAK, Saif-Ali R, Alkubati SA, Alqubaty AR, Al-Mikhlafy AA, Al-Eryani SM, Al-Mekhlafi AM, Alhaj A. Glucose-6-phosphate dehydrogenase deficiency among Yemeni children residing in malaria-endemic areas of Hodeidah governorate and evaluation of a rapid diagnostic test for its detection. Malar J 2016; 15:327. [PMID: 27329471 PMCID: PMC4915072 DOI: 10.1186/s12936-016-1372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common genetic enzymopathy worldwide, is associated with an acute haemolytic anaemia in individuals exposed to primaquine. The present study aimed to determine G6PD deficiency among Yemeni children in malaria-endemic areas as well as to assess the performance of the CareStart™ G6PD rapid diagnostic test (RDT) for its detection. METHODS A cross-sectional study recruiting 400 children from two rural districts in Hodeidah governorate was conducted. Socio-demographic data and blood samples were collected and G6PD deficiency was qualitatively detected in fresh blood in the field using the CareStart™ G6PD RDT, while the enzymatic assay was used to quantitatively measure enzyme activity. Performance of the CareStart™ G6PD RDT was assessed by calculating its sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) against the reference enzymatic assay. RESULTS The ranges of enzyme activity were 0.14-18.45 and 0.21-15.94 units/g haemoglobin (U/gHb) for males and females, respectively. However, adjusted male median G6PD activity was 5.0 U/gHb. Considering the adjusted male median as representing 100 % normal enzyme activity, the prevalence rates of G6PD deficiency were 12.0 and 2.3 % at the cut-off activities of ≤60 and ≤10 %, respectively. Multivariable analysis showed that gender, district of residence and consanguinity between parents were independent risk factors for G6PD deficiency at the cut-off activity of ≤30 % of normal. The CareStart™ G6PD RDT showed 100 % sensitivity and NPV for detecting G6PD deficiency at the cut-off activities of ≤10 and ≤20 % of normal activity compared to the reference enzymatic method. However, it showed specificity levels of 90.0 and 95.4 % as well as positive/deficient predictive values (PPVs) of 18.0 and 66.0 % at the cut-off activities of ≤10 and ≤20 %, respectively, compared to the reference method. CONCLUSIONS G6PD deficiency with enzyme activity of ≤60 % of normal is prevalent among 12.0 % of children residing in malaria-endemic areas of Hodeidah governorate, with 2.3 % having severe G6PD deficiency. Gender, district of residence and consanguinity between parents are significant independent predictors of G6PD deficiency at the cut-off activity of ≤30 % of normal among children in malaria-endemic areas of Hodeidah. The CareStart™ G6PD RDT proved reliable as a point-of-care test to screen for severely G6PD-deficient patients, with 100 % sensitivity and NPV, and it can be used for making clinical decisions prior to the administration of primaquine in malaria elimination strategies.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- />Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Mohammed A. K. Mahdy
- />Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Reyadh Saif-Ali
- />Department of Biochemistry, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Sameer A. Alkubati
- />Department of Critical Care Nursing, Faculty of Medicine and Health Sciences, Hodeidah University, Hodeidah, Yemen
| | - Abdulhabib R. Alqubaty
- />Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Abdullah A. Al-Mikhlafy
- />Department of Community Medicine, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Samira M. Al-Eryani
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Abdusalam M. Al-Mekhlafi
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Ali Alhaj
- />Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| |
Collapse
|
35
|
Oo NN, Bancone G, Maw LZ, Chowwiwat N, Bansil P, Domingo GJ, Htun MM, Thant KZ, Htut Y, Nosten F. Validation of G6PD Point-of-Care Tests among Healthy Volunteers in Yangon, Myanmar. PLoS One 2016; 11:e0152304. [PMID: 27035821 PMCID: PMC4818080 DOI: 10.1371/journal.pone.0152304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/12/2016] [Indexed: 12/20/2022] Open
Abstract
Primaquine and other 8-amnoquinoline based anti-malarials can cause haemolysis in subjects with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Correct diagnosis of G6PD status in patients is crucial for safe treatment of both relapsing stages of Plasmodium vivax and transmitting forms of Plasmodium falciparum. Lack of suitable point-of-care tests has hampered a much needed wide use of primaquine for malaria elimination. In this study we have assessed the performances of two qualitative tests, the fluorescent spot test (FST) and the G6PD CareStart test (CST), against the gold standard quantitative spectrophotometric assay in a population of 1000 random adult healthy volunteers living in Yangon, Myanmar. The prevalence of G6PD deficiency in the Bamar, Karen and in the whole sample set was 6.6% (10.1% in males), 9.2% (21.0% in males) and 6.8% (11.1% in males) respectively. The FST and CST showed comparable performances with sensitivity over 95% and specificity over 90%, however for cases with severe G6PD activity the FTS had improved performance. If used with a conservative interpretation of the signal, the CareStart test has the potential to be used in the field and, by allowing a wider use of primaquine, to help malaria elimination.
Collapse
Affiliation(s)
- Nwe Nwe Oo
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
- * E-mail: (NNO); (GB)
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- * E-mail: (NNO); (GB)
| | - Lwin Zar Maw
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Nongnud Chowwiwat
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pooja Bansil
- Diagnostics Program, PATH, Seattle, WA, United States of America
| | | | - Moh Moh Htun
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Ye Htut
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|