1
|
Nayak SS, Rajawat D, Jain K, Sharma A, Gondro C, Tarafdar A, Dutt T, Panigrahi M. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Mamm Genome 2024; 35:577-599. [PMID: 39397083 DOI: 10.1007/s00335-024-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| |
Collapse
|
2
|
Sun J, Wang C, Wu Y, Xiang J, Zhang Y. Association Analysis of METTL23 Gene Polymorphisms with Reproductive Traits in Kele Pigs. Genes (Basel) 2024; 15:1061. [PMID: 39202421 PMCID: PMC11353829 DOI: 10.3390/genes15081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/27/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Methyltransferase-like 23 (METTL23) is a kind of RNA methyltransferase that catalyzes the methylation transfer to the N6-adenosine of RNA, serving as one of the key mediators in this process. However, the METTL23 gene has been poorly researched in pigs. In this study, we investigated the genetic effects of METTL23 single-nucleotide polymorphism(SNPs) on reproductive traits in Kele pigs. The DNA was extracted from 228 healthy multiparous Kele sows, and Sanger sequencing revealed three SNPs, g.4804958 G > T (intron 2), g.4805082 C > T (exon 2), and g.4806821 A > G (exon 3). The polymorphism information content (PIC) for each SNP was 0.264, 0.25, and 0.354, indicating moderate polymorphism (0.25 < PIC < 0.5) and providing genetic information. Linkage disequilibrium analysis showed no strong linkage disequilibrium between the three SNPs. The association analysis revealed that in the SNP g.4804958 G > T individuals with the GG genotype had a significantly higher number of piglets born alive, litter birth weight, number of weaned piglets, and weaning litter weight compared to those with the TT genotype (p < 0.05). Individuals with the GG genotype in the SNP g.4806821 A > G group had significantly higher litter birth weight and average birth weight than those with the AA genotype (p < 0.05). The H4H4 diplotype showed significant effects on the number of piglets born alive, litter birth weight, number of weaned piglets, weaning litter weight, and weaning weight (p < 0.05). Together, the METTL23 gene could be used as a candidate gene for the selection of reproductive traits in Kele pigs.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China; (J.S.); (C.W.); (Y.W.); (J.X.)
- Institute of Xiang Pigs, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China
| | - Chunyuan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China; (J.S.); (C.W.); (Y.W.); (J.X.)
- Institute of Xiang Pigs, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China
| | - Yan Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China; (J.S.); (C.W.); (Y.W.); (J.X.)
- Institute of Xiang Pigs, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China
| | - Jin Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China; (J.S.); (C.W.); (Y.W.); (J.X.)
- Institute of Xiang Pigs, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China; (J.S.); (C.W.); (Y.W.); (J.X.)
- Institute of Xiang Pigs, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China
| |
Collapse
|
3
|
Lin D, Qiu Y, Zhou F, Li X, Deng S, Yang J, Chen Q, Cai G, Yang J, Wu Z, Zheng E. Genome-wide detection of multiple variants associated with teat number in French Yorkshire pigs. BMC Genomics 2024; 25:722. [PMID: 39054457 PMCID: PMC11271213 DOI: 10.1186/s12864-024-10611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Teat number is a vital reproductive trait in sows, crucial for providing immunity and nutrition to piglets during lactation. However, "missing heritability" in Single Nucleotide Polymorphism (SNP)-based Genome-Wide Association Studies (GWAS) has led to an increasing focus on structural variations in the genetic analysis of complex biological traits. RESULTS In this study, we generated a comprehensive CNV map in a population of French Yorkshire pigs (n = 644) and identified 429 CNVRs. Notably, 44% (189 CNVRs) of these were detected for the first time. Subsequently, we conducted GWAS for teat number in the French Yorkshire pig population using both 80K chip and its imputed data, as well as a GWAS analysis based on CNV regions (CNVR). Interestingly, 80K chip GWAS identified two SNPs located on Sus scrofa chromosome 5 (SSC5) that were simultaneously associated with Total Teat Number (TTN), Left Teat Number (LTN), and Right Teat Number (RTN). The leading SNP (WU_10.2_5_76130558) explained 3.33%, 2.69%, and 2.67% of the phenotypic variance for TTN, LTN, and RTN, respectively. Moreover, through imputed GWAS, we successfully identified 30 genetic variants associated with TTN located within the 73.22 -73.30 Mb region on SSC5. The two SNPs identified in the 80K chip GWAS were also located in this region. In addition, CNVR-based GWAS revealed three significant CNVRs associated with TTN. Finally, through gene annotation, we pinpointed two candidate genes, TRIM66 and PRICKLE1, which are related to diverse processes such as breast cancer and abnormal vertebral development. CONCLUSIONS Our research provides an in-depth analysis of the complex genetic structure underlying teat number, contributing to the genetic enhancement of sows with improved reproductive performance and, ultimately, bolstering the economic benefits of swine production enterprises.
Collapse
Affiliation(s)
- Danyang Lin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Xuehua Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Shaoxiong Deng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Jisheng Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Qiaoer Chen
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Huang J, Ruan Y, Xiao M, Dai L, Jiang C, Li J, Xu J, Chen X, Xu H. Association between polymorphisms in NOBOX and litter size traits in Xiangsu pigs. Front Vet Sci 2024; 11:1359312. [PMID: 38523712 PMCID: PMC10959092 DOI: 10.3389/fvets.2024.1359312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
The newborn ovary homeobox gene (NOBOX) regulates ovarian and early oocyte development, and thus plays an essential role in reproduction. In this study, the mRNA expression level and single nucleotide polymorphism (SNP) of NOBOX in various tissues of Xiangsu pigs were studied to explore the relationship between its polymorphism and litter size traits. Also, bioinformatics was used to evaluate the effects of missense substitutions on protein structure and function. The results revealed that NOBOX is preferentially expressed in the ovary. Six mutations were detected in the NOBOX sequence, including g.1624 T>C, g.1858 G>A, g.2770 G>A, g.2821 A>G, g.5659 A>G, and g.6025 T>A, of which g.1858 G>A was a missense mutation. However, only g.1858 G>A, g.5659 A>G, and g.6025 T>A were significantly associated with litter size traits (p < 0.05). Further prediction of the effect of the missense mutation g.1858 G>A on protein function revealed that p.V82M is a non-conservative mutation that significantly reduces protein stability and thus alters protein function. Overall, these findings suggest that NOBOX polymorphism is closely related to the litter size of Xiangsu pigs, which may provide new insights into pig breeding.
Collapse
Affiliation(s)
- Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chuanmei Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Panda S, Kumar A, Gaur GK, Ahmad SF, Chauhan A, Mehrotra A, Dutt T. Genome wide copy number variations using Porcine 60K SNP Beadchip in Landlly pigs. Anim Biotechnol 2023; 34:1891-1899. [PMID: 35369845 DOI: 10.1080/10495398.2022.2056047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, Porcine 60K SNP genotype data from 69 Landlly pigs were used to explore Copy Number Variations (CNVs) across the autosomes. A total of 386 CNVs were identified using Hidden Markov Model (HMM) in PennCNV software, which were subsequently aggregated to 115 CNV regions (CNVRs). Among the total detected CNVRs, 58 gain, 49 were loss type while remaining 8 events were both gain and loss types. Identified CNVRs covered 12.5 Mb (0.55%) of Sus scrofa reference 11.1 genome. Comparison of our results with previous investigations on pigs revealed that approximately 75% CNVRs were novel, which may be due to differences in genetic background, environment and implementation of artificial selection in Landlly pigs. Functional annotation and pathway analysis showed the significant enrichment of 267 well-annotated Sus scrofa genes in CNVRs. These genes were involved in different biological functions like sensory perception, meat quality traits, back fat thickness and immunity. Additionally, KIT and FUT1 were two major genes detected on CNVR in our population. This investigation provided a comprehensive overview of CNV distribution in the Indian porcine genome for the first time, which may be useful for further investigating the association of important quantitative traits in Landlly pigs.Highlights115 CNVRs were identified in 69 Landlly pig population.Approximately 75% detected CNVRs were novel for Landlly population.Significant enrichment of 267 well-annotated Sus scrofa genes observed in these CNVRs.These genes were involved in different biological functions like sensory perception, meat quality traits, back fat thickness and immunity.Comprehensive CNV map in the Indian porcine genome developed for the first time.
Collapse
Affiliation(s)
- Snehasmita Panda
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Anuj Chauhan
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Arnav Mehrotra
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
- Animal Genomics, ETH Zürich, Zürich, Switzerland
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| |
Collapse
|
6
|
Zhang C, Yang H, Xu Q, Liu M, Chao X, Chen J, Zhou B, Liu Y. Comprehensive Genome and Transcriptome Analysis Identifies SLCO3A1 Associated with Aggressive Behavior in Pigs. Biomolecules 2023; 13:1381. [PMID: 37759782 PMCID: PMC10526945 DOI: 10.3390/biom13091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Copy number variation (CNV) represents a significant reservoir of genetic diversity within the genome and exhibits a strong association with economically valuable traits in livestock. The manifestation of aggressive behavior in pigs has detrimental effects on production efficiency, immune competency, and meat quality. Nevertheless, the impact of CNV on the aggressive behavior of pigs remains elusive. In this investigation, we employed an integrated analysis of genome and transcriptome data to investigate the interplay between CNV, gene expression changes, and indicators of aggressive behavior in weaned pigs. Specifically, a subset of pigs comprising the most aggressive pigs (MAP, n = 12) and the least aggressive pigs (LAP, n = 11) was purposefully selected from a herd of 500 weaned pigs following a mixing procedure based on their composite aggressive score (CAS). Subsequently, we thoroughly analyzed copy number variation regions (CNVRs) across the entire genome using next-generation sequencing techniques, ultimately revealing the presence of 6869 CNVRs. Using genome-wide association study (GWAS) analysis and evaluating variance-stabilizing transformation (VST) values, we successfully identified distinct CNVRs that distinguished the MAP and LAP counterparts. Among the prioritized CNVRs, CNVR-4962 (designated as the top-ranked p-value and VST value, No. 1) was located within the Solute Carrier Organic Anion Transporter Family Member 3A1 (SLCO3A1) gene. The results of our analyses indicated a significantly higher (p < 0.05) copy number of SLCO3A1 in the MAP compared to the LAP. Furthermore, this increased copy number exhibited a positive correlation with the CAS of the pigs (p < 0.05). Furthermore, we integrated genomic data with transcriptomic data from the temporal lobe to facilitate the examination of expression quantitative trait loci (eQTL). Importantly, these observations were consistent with the mRNA expression pattern of SLCO3A1 in the temporal lobe of both MAP and LAP (p < 0.05). Consequently, our findings strongly suggest that CNVs affecting SLCO3A1 may influence gene expression through a dosage effect. These results highlight the potential of SLCO3A1 as a candidate gene associated with aggressive traits in pig breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (H.Y.); (Q.X.); (M.L.); (X.C.); (J.C.)
| | - Yang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (H.Y.); (Q.X.); (M.L.); (X.C.); (J.C.)
| |
Collapse
|
7
|
Arias KD, Pablo Gutiérrez J, Fernandez I, Menéndez-Arias NA, Álvarez I, Goyache F. Segregation patterns and inheritance rate of copy number variations regions assessed in a Gochu Asturcelta pig pedigree. Gene X 2023; 854:147111. [PMID: 36509293 DOI: 10.1016/j.gene.2022.147111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Copy Number Variation Regions (CNVR) were subjected to pedigree analysis to contribute to the understanding of their segregation patterns. Up to 492 Gochu Asturcelta pig individuals forming 478 different parents-offspring trios (61 different families) were genotyped using the Axiom_PigHDv1 Array (658,692 SNPs). CNVR calling, performed using two different platforms (PennCNV and QuantiSNP), allowed to identify a total of 344 candidate CNVR on the 18 porcine autosomes covering about 106.8 Mb of the pig genome. Sixty-nine CNVR were identified, to some extent, in both the parents and the offspring and were classified as segregating CNVR. The other candidate CNVR were called in one or more progeny but in neither parent and classified either as singleton or recurrent de novo CNVR. Segregating CNVR were, on average, larger and more frequent than the recurrent de novo CNVR (444.8 kb vs 287.9 kb long and 34 vs 5 individuals, respectively). In any case, segregating CNVR did not conform to strict Mendelian inheritance patterns: estimates of average paternal and maternal transmission rates ranged from 11.0 % to 13.4 % and mean inheritance rate was below 21 %. This issue should be carefully considered when interpreting the results of CNV studies. Segregating CNVR, present across generations, are unlikely to be artifacts or false positives and can be hypothesized to be important at the population level.
Collapse
Affiliation(s)
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | | | | | - Félix Goyache
- SERIDA-Deva, Camino de Rioseco 1225, 33394-Gijón, Spain.
| |
Collapse
|
8
|
Xu J, Ruan Y, Sun J, Shi P, Huang J, Dai L, Xiao M, Xu H. Association Analysis of PRKAA2 and MSMB Polymorphisms and Growth Traits of Xiangsu Hybrid Pigs. Genes (Basel) 2022; 14:genes14010113. [PMID: 36672854 PMCID: PMC9858937 DOI: 10.3390/genes14010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, Xiangsu hybrid pig growth traits were evaluated via PRKAA2 and MSMB as candidate genes. Sanger sequencing revealed three mutation sites in PRKAA2, namely, g.42101G>T, g.60146A>T, and g.61455G>A, and all these sites were intronic mutations. Moreover, six mutation sites were identified in MSMB: intronic g.4374G>T, exonic g.4564T>C, exonic g.6378G>A, exonic g.6386C>T, intronic g.8643G>A, and intronic g.8857A>G. Association analysis revealed that g.42101G>T, g.60146A>T, g.61455G>A, g.4374G>T, g.4564T>C, g.6378G>A, g.6386C>T, g.8643G>A, and g.8857A>G showed different relationship patterns among body weight, body length, body height, chest circumference, abdominal circumference, tube circumference, and chest depth. Real-time polymerase chain reaction results revealed that the expression of PRKAA2 was highest in the longissimus dorsi muscle, followed by that in the heart, kidney, liver, lung, and spleen. The expression of MSMB was highest in the spleen, followed by that in the liver, kidney, lung, heart, and longissimus dorsi muscle. These results suggest that PRKAA2 and MSMB can be used in marker-assisted selection to improve growth related traits in Xiangsu hybrid pigs, providing new candidate genes for Pig molecular breeding.
Collapse
Affiliation(s)
- Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jinkui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pengfei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
9
|
Mielczarek M, Frąszczak M, Zielak-Steciwko AE, Nowak B, Hofman B, Pierścińska J, Kruszyński W, Szyda J. An effect of large-scale deletions and duplications on transcript expression. Funct Integr Genomics 2022; 23:19. [PMID: 36564645 PMCID: PMC9789009 DOI: 10.1007/s10142-022-00946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Since copy number variants (CNVs) have been recognized as an important source of genetic and transcriptomic variation, we aimed to characterize the impact of CNVs located within coding, intergenic, upstream, and downstream gene regions on the expression of transcripts. Regions in which deletions occurred most often were introns, while duplications in coding regions. The transcript expression was lower for deleted coding (P = 0.008) and intronic regions (P = 1.355 × 10-10), but it was not changed in the case of upstream and downstream gene regions (P = 0.085). Moreover, the expression was decreased if duplication occurred in the coding region (P = 8.318 × 10-5). Furthermore, a negative correlation (r = - 0.27) between transcript length and its expression was observed. The correlation between the percent of deleted/duplicated transcript and transcript expression level was not significant for all concerned genomic regions in five out of six animals. The exceptions were deletions in coding regions (P = 0.004) and duplications in introns (P = 0.01) in one individual. CNVs in coding (deletions, duplications) and intronic (deletions) regions are important modulators of transcripts by reducing their expression level. We hypothesize that deletions imply severe consequences by interrupting genes. The negative correlation between the size of the transcript and its expression level found in this study is consistent with the hypothesis that selection favours shorter introns and a moderate number of exons in highly expressed genes. This may explain the transcript expression reduction by duplications. We did not find the correlation between the size of deletions/duplications and transcript expression level suggesting that expression is modulated by CNVs regardless of their size.
Collapse
Affiliation(s)
- Magda Mielczarek
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland.
| | - Magdalena Frąszczak
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Anna E Zielak-Steciwko
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Błażej Nowak
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Bartłomiej Hofman
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Jagoda Pierścińska
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Wojciech Kruszyński
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Joanna Szyda
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| |
Collapse
|
10
|
Characterization and difference of lipids and metabolites from Jianhe White Xiang and Large White pork by high-performance liquid chromatography–tandem mass spectrometry. Food Res Int 2022; 162:111946. [DOI: 10.1016/j.foodres.2022.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
|
11
|
Wang X, Ran X, Niu X, Huang S, Li S, Wang J. Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs. Sci Rep 2022; 12:11823. [PMID: 35821031 PMCID: PMC9276726 DOI: 10.1038/s41598-022-14686-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Xiang pig (XP) is one of the best-known indigenous pig breeds in China, which is characterized by its small body size, strong disease resistance, high adaptability, favorite meat quality, small litter sizes, and early sexual maturity. However, the genomic evidence that links these unique traits of XP is still poorly understood. To identify the genomic signatures of selection in XP, we performed whole-genome resequencing on 25 unrelated individual XPs. We obtained 876.70 Gb of raw data from the genomic libraries. The LD analysis showed that the lowest level of linkage disequilibrium was observed in Xiang pig. Comparative genomic analysis between XPs and other breeds including Tibetan, Meishan, Duroc and Landrace revealed 3062, 1228, 907 and 1519 selected regions, respectively. The genes identified in selected regions of XPs were associated with growth and development processes (IGF1R, PROP1, TBX19, STAC3, RLF, SELENOM, MSTN), immunity and disease resistance (ZCCHC2, SERPINB2, ADGRE5, CYP7B1, STAT6, IL2, CD80, RHBDD3, PIK3IP1), environmental adaptation (NR2E1, SERPINB8, SERPINB10, SLC26A7, MYO1A, SDR9C7, UVSSA, EXPH5, VEGFC, PDE1A), reproduction (CCNB2, TRPM6, EYA3, CYP7B1, LIMK2, RSPO1, ADAM32, SPAG16), meat quality traits (DECR1, EWSR1), and early sexual maturity (TAC3). Through the absolute allele frequency difference (ΔAF) analysis, we explored two population-specific missense mutations occurred in NR6A1 and LTBP2 genes, which well explained that the vertebrae numbers of Xiang pigs were less than that of the European pig breeds. Our results indicated that Xiang pigs were less affected by artificial selection than the European and Meishan pig breeds. The selected candidate genes were mainly involved in growth and development, disease resistance, reproduction, meat quality, and early sexual maturity. This study provided a list of functional candidate genes, as well as a number of genetic variants, which would provide insight into the molecular basis for the unique traits of Xiang pig.
Collapse
Affiliation(s)
- Xiying Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.,Tongren University, Tongren, 554300, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Sheng Li
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Zhang C, Zhao J, Guo Y, Xu Q, Liu M, Cheng M, Chao X, Schinckel AP, Zhou B. Genome-Wide Detection of Copy Number Variations and Evaluation of Candidate Copy Number Polymorphism Genes Associated With Complex Traits of Pigs. Front Vet Sci 2022; 9:909039. [PMID: 35847642 PMCID: PMC9280686 DOI: 10.3389/fvets.2022.909039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Copy number variation (CNV) has been considered to be an important source of genetic variation for important phenotypic traits of livestock. In this study, we performed whole-genome CNV detection on Suhuai (SH) (n = 23), Chinese Min Zhu (MZ) (n = 11), and Large White (LW) (n = 12) pigs based on next-generation sequencing data. The copy number variation regions (CNVRs) were annotated and analyzed, and 10,885, 10,836, and 10,917 CNVRs were detected in LW, MZ, and SH pigs, respectively. Some CNVRs have been randomly selected for verification of the variation type by real-time PCR. We found that SH and LW pigs are closely related, while MZ pigs are distantly related to the SH and LW pigs by CNVR-based genetic structure, PCA, VST, and QTL analyses. A total of 14 known genes annotated in CNVRs were unique for LW pigs. Among them, the cyclin T2 (CCNT2) is involved in cell proliferation and the cell cycle. The FA Complementation Group M (FANCM) is involved in defective DNA repair and reproductive cell development. Ten known genes annotated in 47 CNVRs were unique for MZ pigs. The genes included glycerol-3-phosphate acyltransferase 3 (GPAT3) is involved in fat synthesis and is essential to forming the glycerol triphosphate. Glutathione S-transferase mu 4 (GSTM4) gene plays an important role in detoxification. Eleven known genes annotated in 23 CNVRs were unique for SH pigs. Neuroligin 4 X-linked (NLGN4X) and Neuroligin 4 Y-linked (NLGN4Y) are involved with nerve disorders and nerve signal transmission. IgLON family member 5 (IGLON5) is related to autoimmunity and neural activities. The unique characteristics of LW, MZ, and SH pigs are related to these genes with CNV polymorphisms. These findings provide important information for the identification of candidate genes in the molecular breeding of pigs.
Collapse
Affiliation(s)
- Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Bo Zhou
| |
Collapse
|
13
|
Qiu Y, Ding R, Zhuang Z, Wu J, Yang M, Zhou S, Ye Y, Geng Q, Xu Z, Huang S, Cai G, Wu Z, Yang J. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs. BMC Genomics 2021; 22:332. [PMID: 33964879 PMCID: PMC8106131 DOI: 10.1186/s12864-021-07654-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Background In the process of pig breeding, the average daily gain (ADG), days to 100 kg (AGE), and backfat thickness (BFT) are directly related to growth rate and fatness. However, the genetic mechanisms involved are not well understood. Copy number variation (CNV), an important source of genetic diversity, can affect a variety of complex traits and diseases and has gradually been thrust into the limelight. In this study, we reported the genome-wide CNVs of Duroc pigs using SNP genotyping data from 6627 animals. We also performed a copy number variation region (CNVR)-based genome-wide association studies (GWAS) for growth and fatness traits in two Duroc populations. Results Our study identified 953 nonredundant CNVRs in U.S. and Canadian Duroc pigs, covering 246.89 Mb (~ 10.90%) of the pig autosomal genome. Of these, 802 CNVRs were in U.S. Duroc pigs with 499 CNVRs were in Canadian Duroc pigs, indicating 348 CNVRs were shared by the two populations. Experimentally, 77.8% of nine randomly selected CNVRs were validated through quantitative PCR (qPCR). We also identified 35 CNVRs with significant association with growth and fatness traits using CNVR-based GWAS. Ten of these CNVRs were associated with both ADG and AGE traits in U.S. Duroc pigs. Notably, four CNVRs showed significant associations with ADG, AGE, and BFT, indicating that these CNVRs may play a pleiotropic role in regulating pig growth and fat deposition. In Canadian Duroc pigs, nine CNVRs were significantly associated with both ADG and AGE traits. Further bioinformatic analysis identified a subset of potential candidate genes, including PDGFA, GPER1, PNPLA2 and BSCL2. Conclusions The present study provides a necessary supplement to the CNV map of the Duroc genome through large-scale population genotyping. In addition, the CNVR-based GWAS results provide a meaningful way to elucidate the genetic mechanisms underlying complex traits. The identified CNVRs can be used as molecular markers for genetic improvement in the molecular-guided breeding of modern commercial pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07654-7.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ming Yang
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qian Geng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Sixiu Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China. .,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
14
|
Li H, Zhu Q, Chang R, Hu KE, Zhu X, Xu A, Xu S, Tang P. Effects of Dietary 5'-CMP on Neu5Gc Contents in the Muscle and Viscera of Xiang Pigs. J Food Prot 2021; 84:23-30. [PMID: 33393618 DOI: 10.4315/jfp-20-191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/06/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT In order to reduce the health risks associated with red meat as listed by the World Health Organization, the work presented in this article aimed to elucidate the interaction between 5'-CMP-supplemented feed and N-glycolylneuraminic acid (Neu5Gc) in experimental animals in vivo. 5'-CMP was added to the diet of 90-, 180-, and 270-day-old Xiang pigs, and after 30 days, the Neu5Gc contents, physicochemical parameters, and free amino acid contents of muscle and internal viscera were measured by high-performance liquid chromatography coupled with fluorescence detection. The mechanism by which 5'-CMP affects Neu5Gc contents was investigated using molecular docking. Results show that 5'-CMP significantly decreased the Neu5Gc content in 180-day-old Xiang pigs (P < 0.05) but had no effect on the Neu5Gc contents in 90- and 270-day-old Xiang pigs. Umami amino acids were significantly increased in 180-day-old Xiang pigs. In the 90- and 270-day-old pigs, histidine increased by 10.38 and 17.87%, respectively. The other free amino acids were either reduced or not affected. Moreover, the 5'-CMP-supplemented diet did not affect the physicochemical parameters of the longissimus muscle in the Xiang pigs. 5'-CMP could occupy almost all the sialyltransferase active-site residues but not His302 and showed inhibition of the sialyltransferase activity. The results provided an experimental basis for the subsequent reduction of Neu5Gc in red meat before slaughter. HIGHLIGHTS
Collapse
Affiliation(s)
- Hongying Li
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China.,Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Qiujin Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China.,Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Rui Chang
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - K E Hu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xuling Zhu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Aqi Xu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shitao Xu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Pengyu Tang
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
15
|
Bovo S, Ribani A, Muñoz M, Alves E, Araujo JP, Bozzi R, Charneca R, Di Palma F, Etherington G, Fernandez AI, García F, García-Casco J, Karolyi D, Gallo M, Gvozdanović K, Martins JM, Mercat MJ, Núñez Y, Quintanilla R, Radović Č, Razmaite V, Riquet J, Savić R, Schiavo G, Škrlep M, Usai G, Utzeri VJ, Zimmer C, Ovilo C, Fontanesi L. Genome-wide detection of copy number variants in European autochthonous and commercial pig breeds by whole-genome sequencing of DNA pools identified breed-characterising copy number states. Anim Genet 2020; 51:541-556. [PMID: 32510676 DOI: 10.1111/age.12954] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
In this study, we identified copy number variants (CNVs) in 19 European autochthonous pig breeds and in two commercial breeds (Italian Large White and Italian Duroc) that represent important genetic resources for this species. The genome of 725 pigs was sequenced using a breed-specific DNA pooling approach (30-35 animals per pool) obtaining an average depth per pool of 42×. This approach maximised CNV discovery as well as the related copy number states characterising, on average, the analysed breeds. By mining more than 17.5 billion reads, we identified a total of 9592 CNVs (~683 CNVs per breed) and 3710 CNV regions (CNVRs; 1.15% of the reference pig genome), with an average of 77 CNVRs per breed that were considered as private. A few CNVRs were analysed in more detail, together with other information derived from sequencing data. For example, the CNVR encompassing the KIT gene was associated with coat colour phenotypes in the analysed breeds, confirming the role of the multiple copies in determining breed-specific coat colours. The CNVR covering the MSRB3 gene was associated with ear size in most breeds. The CNVRs affecting the ELOVL6 and ZNF622 genes were private features observed in the Lithuanian Indigenous Wattle and in the Turopolje pig breeds respectively. Overall, the genome variability unravelled here can explain part of the genetic diversity among breeds and might contribute to explain their origin, history and adaptation to a variety of production systems.
Collapse
Affiliation(s)
- S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - A Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Muñoz
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - E Alves
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - J P Araujo
- Centro de Investigação de Montanha, Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, Ponte de Lima, 4990-706, Portugal
| | - R Bozzi
- DAGRI - Animal Science Section, Università di Firenze, Via delle Cascine 5, Firenze, 50144, Italy
| | - R Charneca
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - F Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - G Etherington
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - A I Fernandez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - F García
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - J García-Casco
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - D Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, Zagreb, 10000, Croatia
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, Roma, 00198, Italy
| | - K Gvozdanović
- Faculty of Agrobiotechnical Sciences Osijek, University of Osijek, Vladimira Preloga 1, Osijek, 31000, Croatia
| | - J M Martins
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - M J Mercat
- IFIP Institut Du Porc, La Motte au Vicomte, BP 35104, Le Rheu Cedex, 35651, France
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - R Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, Caldes de Montbui, Barcelona, 08140, Spain
| | - Č Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Belgrade-Zemun, 11080, Serbia
| | - V Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, Baisogala, 82317, Lithuania
| | - J Riquet
- GenPhySE, INRA, Université de Toulouse, Chemin de Borde-Rouge 24, Auzeville Tolosane, Castanet Tolosan, 31326, France
| | - R Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade-Zemun, 11080, Serbia
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Škrlep
- Kmetijski Inštitut Slovenije, Hacquetova 17, Ljubljana, SI-1000, Slovenia
| | - G Usai
- AGRIS SARDEGNA, Loc. Bonassai, Sassari, 07100, Italy
| | - V J Utzeri
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - C Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Haller Str. 20, Wolpertshausen, 74549, Germany
| | - C Ovilo
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
16
|
Keel BN, Nonneman DJ, Lindholm-Perry AK, Oliver WT, Rohrer GA. A Survey of Copy Number Variation in the Porcine Genome Detected From Whole-Genome Sequence. Front Genet 2019; 10:737. [PMID: 31475038 PMCID: PMC6707380 DOI: 10.3389/fgene.2019.00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Copy number variations (CNVs) are gains and losses of large regions of genomic sequence between individuals of a species. Although CNVs have been associated with various phenotypic traits in humans and other species, the extent to which CNVs impact phenotypic variation remains unclear. In swine, as well as many other species, relatively little is understood about the frequency of CNV in the genome, sizes, locations, and other chromosomal properties. In this work, we identified and characterized CNV by utilizing whole-genome sequence from 240 members of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the purebred founding boars (12 Duroc and 12 Landrace), 48 of the founding Yorkshire-Landrace composite sows, 109 composite animals from generations 4 through 9, 29 composite animals from generation 15, and 30 purebred industry boars (15 Landrace and 15 Yorkshire) used as sires in generations 10 through 15. Using a combination of split reads, paired-end mapping, and read depth approaches, we identified a total of 3,538 copy number variable regions (CNVRs), including 1,820 novel CNVRs not reported in previous studies. The CNVRs covered 0.94% of the porcine genome and overlapped 1,401 genes. Gene ontology analysis identified that CNV-overlapped genes were enriched for functions related to organism development. Additionally, CNVRs overlapped with many known quantitative trait loci (QTL). In particular, analysis of QTL previously identified in the USMARC herd showed that CNVRs were most overlapped with reproductive traits, such as age of puberty and ovulation rate, and CNVRs were significantly enriched for reproductive QTL.
Collapse
Affiliation(s)
- Brittney N Keel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Dan J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | | | - William T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Gary A Rohrer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
17
|
González-Prendes R, Mármol-Sánchez E, Quintanilla R, Castelló A, Zidi A, Ramayo-Caldas Y, Cardoso TF, Manunza A, Cánovas Á, Amills M. About the existence of common determinants of gene expression in the porcine liver and skeletal muscle. BMC Genomics 2019; 20:518. [PMID: 31234802 PMCID: PMC6591854 DOI: 10.1186/s12864-019-5889-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The comparison of expression QTL (eQTL) maps obtained in different tissues is an essential step to understand how gene expression is genetically regulated in a context-dependent manner. In the current work, we have compared the transcriptomic and eQTL profiles of two porcine tissues (skeletal muscle and liver) which typically show highly divergent expression profiles, in 103 Duroc pigs genotyped with the Porcine SNP60 BeadChip (Illumina) and with available microarray-based measurements of hepatic and muscle mRNA levels. Since structural variation could have effects on gene expression, we have also investigated the co-localization of cis-eQTLs with copy number variant regions (CNVR) segregating in this Duroc population. RESULTS The analysis of differential expresssion revealed the existence of 1204 and 1490 probes that were overexpressed and underexpressed in the gluteus medius muscle when compared to liver, respectively (|fold-change| > 1.5, q-value < 0.05). By performing genome scans in 103 Duroc pigs with available expression and genotypic data, we identified 76 and 28 genome-wide significant cis-eQTLs regulating gene expression in the gluteus medius muscle and liver, respectively. Twelve of these cis-eQTLs were shared by both tissues (i.e. 42.8% of the cis-eQTLs identified in the liver were replicated in the gluteus medius muscle). These results are consistent with previous studies performed in humans, where 50% of eQTLs were shared across tissues. Moreover, we have identified 41 CNVRs in a set of 350 pigs from the same Duroc population, which had been genotyped with the Porcine SNP60 BeadChip by using the PennCNV and GADA softwares, but only a small proportion of these CNVRs co-localized with the cis-eQTL signals. CONCLUSION Despite the fact that there are considerable differences in the gene expression patterns of the porcine liver and skeletal muscle, we have identified a substantial proportion of common cis-eQTLs regulating gene expression in both tissues. Several of these cis-eQTLs influence the mRNA levels of genes with important roles in meat (CTSF) and carcass quality (TAPT1), lipid metabolism (TMEM97) and obesity (MARC2), thus evidencing the practical importance of dissecting the genetic mechanisms involved in their expression.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Departament de Producció Animal-Agrotecnio Center, Universitat de Lleida, 191 Rovira Roure, 25198, Lleida, Spain
| | - Emilio Mármol-Sánchez
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Anna Castelló
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ali Zidi
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Yuliaxis Ramayo-Caldas
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Tainã Figueiredo Cardoso
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,CAPES Foundation, Ministry of Education of Brazil, Brasilia D. F, Zip Code 70.040-020, Brazil
| | - Arianna Manunza
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Ángela Cánovas
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
18
|
Stafuzza NB, Silva RMDO, Fragomeni BDO, Masuda Y, Huang Y, Gray K, Lourenco DAL. A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. BMC Genomics 2019; 20:321. [PMID: 31029102 PMCID: PMC6487013 DOI: 10.1186/s12864-019-5687-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background In this study we integrated the CNV (copy number variation) and WssGWAS (weighted single-step approach for genome-wide association) analyses to increase the knowledge about number of piglets born alive, an economically important reproductive trait with significant impact on production efficiency of pigs. Results A total of 3892 samples were genotyped with the Porcine SNP80 BeadChip. After quality control, a total of 57,962 high-quality SNPs from 3520 Duroc pigs were retained. The PennCNV algorithm identified 46,118 CNVs, which were aggregated by overlapping in 425 CNV regions (CNVRs) ranging from 2.5 Kb to 9718.4 Kb and covering 197 Mb (~ 7.01%) of the pig autosomal genome. The WssGWAS identified 16 genomic regions explaining more than 1% of the additive genetic variance for number of piglets born alive. The overlap between CNVR and WssGWAS analyses identified common regions on SSC2 (4.2–5.2 Mb), SSC3 (3.9–4.9 Mb), SSC12 (56.6–57.6 Mb), and SSC17 (17.3–18.3 Mb). Those regions are known for harboring important causative variants for pig reproductive traits based on their crucial functions in fertilization, development of gametes and embryos. Functional analysis by the Panther software identified 13 gene ontology biological processes significantly represented in this study such as reproduction, developmental process, cellular component organization or biogenesis, and immune system process, which plays relevant roles in swine reproductive traits. Conclusion Our research helps to improve the understanding of the genetic architecture of number of piglets born alive, given that the combination of GWAS and CNV analyses allows for a more efficient identification of the genomic regions and biological processes associated with this trait in Duroc pigs. Pig breeding programs could potentially benefit from a more accurate discovery of important genomic regions. Electronic supplementary material The online version of this article (10.1186/s12864-019-5687-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nedenia Bonvino Stafuzza
- Department of Exact Science, School of Agricultural and Veterinarian Sciences (FCAV), Sao Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil. .,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Rafael Medeiros de Oliveira Silva
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.,National Center for Cool and Cold Water Aquaculture (NCCCWA), Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA
| | | | - Yutaka Masuda
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Yijian Huang
- Smithfield Premium Genetics Group, Rose Hill, NC, USA
| | - Kent Gray
- Smithfield Premium Genetics Group, Rose Hill, NC, USA
| | | |
Collapse
|
19
|
Wang C, Chen H, Wang X, Wu Z, Liu W, Guo Y, Ren J, Ding N. Identification of copy number variations using high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1809-1815. [PMID: 30744341 PMCID: PMC6819687 DOI: 10.5713/ajas.18.0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/08/2019] [Indexed: 01/13/2023]
Abstract
Objective Copy number variations (CNVs) are a major source of genetic diversity complementary to single nucleotide polymorphism (SNP) in animals. The aim of the study was to perform a comprehensive genomic analysis of CNVs based on high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. Methods We used customized Affymetrix Axiom Pig1.4M array plates containing 1.4 million SNPs and the PennCNV algorithm to identify porcine CNVs on autosomes in Chinese Dongxiang spotted pigs. Then, the next generation sequence data was used to confirm the detected CNVs. Next, functional analysis was performed for gene contents in copy number variation regions (CNVRs). In addition, we compared the identified CNVRs with those reported ones and quantitative trait loci (QTL) in the pig QTL database. Results We identified 871 putative CNVs belonging to 2,221 CNVRs on 17 autosomes. We further discarded CNVRs that were detected only in one individual, leaving us 166 CNVRs in total. The 166 CNVRs ranged from 2.89 kb to 617.53 kb with a mean value of 93.65 kb and a genome coverage of 15.55 Mb, corresponding to 0.58% of the pig genome. A total of 119 (71.69%) of the identified CNVRs were confirmed by next generation sequence data. Moreover, functional annotation showed that these CNVRs are involved in a variety of molecular functions. More than half (56.63%) of the CNVRs (n = 94) have been reported in previous studies, while 72 CNVRs are reported for the first time. In addition, 162 (97.59%) CNVRs were found to overlap with 2,765 previously reported QTLs affecting 378 phenotypic traits. Conclusion The findings improve the catalog of pig CNVs and provide insights and novel molecular markers for further genetic analyses of Chinese indigenous pigs.
Collapse
Affiliation(s)
- Chengbin Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaopeng Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanmei Guo
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nengshui Ding
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
20
|
Gong J, Cheng T, Wu Y, Yang X, Feng Q, Mita K. Genome-wide patterns of copy number variations in Spodoptera litura. Genomics 2018; 111:1231-1238. [PMID: 30114452 DOI: 10.1016/j.ygeno.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/26/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023]
Abstract
Spodoptera litura is a polyphagous pest and can feed on more than 100 species of plants, causing great damage to agricultural production. The SNP results showed that there were gene exchanges between different regions. To explore the variations of larger segments in S. litura genome, we used genome resequencing samples from 14 regions of China, India, and Japan to study the copy number variations (CNVs). We identified 3976 CNV events and 1581 unique copy number variation regions (CNVRs) occupying the 108.5 Mb genome of S. litura. A total of 5527 genes that overlapped with CNVRs were detected. Selection signal analysis identified 19 shared CNVRs and 105 group-specific CNVRs, whose related genes were involved in various biological processes in S. litura. We constructed the first CNVs map in S. litura genome, and our findings will be valuable for understanding the genomic variations and population differences of S. litura.
Collapse
Affiliation(s)
- Jiao Gong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, South China Normal University, Guangzhou 510631, China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| |
Collapse
|
21
|
Bhanuprakash V, Chhotaray S, Pruthviraj DR, Rawat C, Karthikeyan A, Panigrahi M. Copy number variation in livestock: A mini review. Vet World 2018; 11:535-541. [PMID: 29805222 PMCID: PMC5960796 DOI: 10.14202/vetworld.2018.535-541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/31/2018] [Indexed: 01/22/2023] Open
Abstract
Copy number variation (CNV) is a phenomenon in which sections of the genome, ranging from one kilo base pair (Kb) to several million base pairs (Mb), are repeated and the number of repeats vary between the individuals in a population. It is an important source of genetic variation in an individual which is now being utilized rather than single nucleotide polymorphisms (SNPs), as it covers the more genomic region. CNVs alter the gene expression and change the phenotype of an individual due to deletion and duplication of genes in the copy number variation regions (CNVRs). Earlier, researchers extensively utilized SNPs as the main source of genetic variation. But now, the focus is on identification of CNVs associated with complex traits. With the recent advances and reduction in the cost of sequencing, arrays are developed for genotyping which cover the maximum number of SNPs at a time that can be used for detection of CNVRs and underlying quantitative trait loci (QTL) for the complex traits to accelerate genetic improvement. CNV studies are also being carried out to understand the evolutionary mechanism in the domestication of livestock and their adaptation to the different environmental conditions. The main aim of the study is to review the available data on CNV and its role in genetic variation among the livestock.
Collapse
Affiliation(s)
- V Bhanuprakash
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - Supriya Chhotaray
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - D R Pruthviraj
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - Chandrakanta Rawat
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - A Karthikeyan
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| |
Collapse
|
22
|
Liu C, Ran X, Yu C, Xu Q, Niu X, Zhao P, Wang J. Whole-genome analysis of structural variations between Xiang pigs with larger litter sizes and those with smaller litter sizes. Genomics 2018; 111:310-319. [PMID: 29481841 DOI: 10.1016/j.ygeno.2018.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 11/30/2022]
Abstract
To gain a better knowledge of structural variations (SVs) in Xiang pig, we used next-generation sequencing to analyze the Xiang pigs with larger (XL) or smaller litter sizes (XS). Our analysis yielded 28,040 putative SVs in the Xiang pig. These SVs distributed throughout all of chromosomes. Some functional regions including exons and untranslated regions were less varied than introns and intergenic regions. We detected 4637 and 4119 specific SVs, which contained 1697 and 1582 genes in XL and XS group, respectively. These genes were mainly enriched in the well-known pathways involved in development and reproduction processes. Population validation was carried out on 50 SVs candidates using PCR method in 144 Xiang pig crowds. All of 50 SVs were confirmed by PCR method and 14 SVs were associated with the litter size of Xiang pigs. These results may be helpful for the elucidation of growth and reproduction regulation in Xiang pig.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Changyan Yu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qian Xu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xi Niu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pengju Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China; Tongren University, Tongren 554300, China.
| |
Collapse
|
23
|
Ma Q, Liu X, Pan J, Ma L, Ma Y, He X, Zhao Q, Pu Y, Li Y, Jiang L. Genome-wide detection of copy number variation in Chinese indigenous sheep using an ovine high-density 600 K SNP array. Sci Rep 2017; 7:912. [PMID: 28424525 PMCID: PMC5430420 DOI: 10.1038/s41598-017-00847-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
Copy number variants (CNVs) represent a form of genomic structural variation underlying phenotypic diversity. In this study, we used the Illumina Ovine SNP 600 K BeadChip array for genome-wide detection of CNVs in 48 Chinese Tan sheep. A total of 1,296 CNV regions (CNVRs), ranging from 1.2 kb to 2.3 Mb in length, were detected, representing approximately 4.7% of the entire ovine genome (Oar_v3.1). We combined our findings with five existing CNVR reports to generate a composite genome-wide dataset of 4,321 CNVRs, which revealed 556 (43%) novel CNVRs. Subsequently, ten novel CNVRs were randomly chosen for further quantitative real-time PCR (qPCR) confirmation, and eight were successfully validated. Gene functional enrichment revealed that these CNVRs cluster into Gene Ontology (GO) categories of homeobox and embryonic skeletal system morphogenesis. One CNVR overlapping with the homeobox transcription factor DLX3 and previously shown to be associated with curly hair in sheep was identified as the candidate CNV for the special curly fleece phenotype in Tan sheep. We constructed a Chinese indigenous sheep genomic CNV map based on the Illumina Ovine SNP 600 K BeadChip array, providing an important addition to published sheep CNVs, which will be helpful for future investigations of the genomic structural variations underlying traits of interest in sheep.
Collapse
Affiliation(s)
- Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 75002, China
| | - Xuexue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jianfei Pan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Lina Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 75002, China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yingkang Li
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 75002, China.
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China. .,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|