1
|
Kobayashi M, Huynh LT, Ogino S, Hew LY, Koyasu M, Kamata H, Hiono T, Isoda N, Sakoda Y. Generation of Vaccine Candidate Strains That Antigenically Match Classical Swine Fever Virus Field Strains. Vaccines (Basel) 2025; 13:188. [PMID: 40006734 PMCID: PMC11860266 DOI: 10.3390/vaccines13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Classical swine fever virus (CSFV) is genetically categorized into three genotypes. A live-attenuated vaccine strain GPE-, currently used in Japan, belongs to genotype 1 and is genetically distinct from the field strains circulating in Japan, which belong to genotype 2. This study aimed to understand the antigenicity of recent field isolates in Japan and develop new vaccine candidates that antigenically match field strains. METHODS The serum samples of 20 pigs vaccinated with GPE- were subjected to a serum neutralizing test (SNT) using one of the field strains, CSFV/wb/Jpn-Mie/P96/2019 (Mie/2019). For the antigenic matching, vGPE-/HiBiT/Mie E2 was generated by replacing the viral glycoprotein E2, the main target of the neutralizing antibody, with that of Mie/2019. Additionally, vGPE-/HiBiT/Mie E2/PAPeV Erns was generated by further substituting glycoprotein Erns with that of pronghorn antelope pestivirus (PAPeV) since Erns is not important as a vaccine immunogen and can be replaced by that of other pestiviruses to provide an immunological marker. The efficacy of vGPE-/HiBiT/Mie E2/PAPeV Erns was further evaluated by the challenge experiments in pigs. RESULTS The SNT titers of serum sample against Mie/2019 were 6.1-fold lower than that against vGPE-. The generated recombinant viruses showed closer antigenicity to Mie/2019 than vGPE-. The challenge study confirmed that vGPE-/HiBiT/Mie E2/PAPeV Erns provided clinical and virological protection against a field CSFV equivalent to vGPE-. CONCLUSIONS This study demonstrated that swapping the E2 encoding region with the prevalent field CSFVs is a promising strategy to achieve antigenic matching between the vaccine and field strains.
Collapse
Affiliation(s)
- Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan (L.T.H.); (T.H.); (N.I.)
| | - Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan (L.T.H.); (T.H.); (N.I.)
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam
| | - Saho Ogino
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan (L.T.H.); (T.H.); (N.I.)
| | - Lim Yik Hew
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan (L.T.H.); (T.H.); (N.I.)
| | - Miki Koyasu
- Gifu Central Livestock Hygiene Service Center, Gifu 501-1112, Japan
| | - Hikaru Kamata
- Gifu Hida Livestock Hygiene Service Center, Gifu 506-8688, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan (L.T.H.); (T.H.); (N.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan (L.T.H.); (T.H.); (N.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan (L.T.H.); (T.H.); (N.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Geranio F, Affeldt S, Cechini A, Barth S, Reuscher CM, Riedel C, Rümenapf T, Lamp B. Exclusion of Superinfection or Enhancement of Superinfection in Pestiviruses-APPV Infection Is Not Dependent on ADAM17. Viruses 2024; 16:1834. [PMID: 39772144 PMCID: PMC11680174 DOI: 10.3390/v16121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Some viruses can suppress superinfections of their host cells by related or different virus species. The phenomenon of superinfection exclusion can be caused by inhibiting virus attachment, receptor binding and entry, by replication interference, or competition for host cell resources. Blocking attachment and entry not only prevents unproductive double infections but also stops newly produced virions from re-entering the cell post-exocytosis. In this study, we investigated the exclusion of superinfections between the different pestivirus species. Bovine and porcine cells pre-infected with non-cytopathogenic pestivirus strains were evaluated for susceptibility to subsequent superinfection using comparative titrations. Our findings revealed significant variation in exclusion potency depending on the pre- and superinfecting virus species, as well as the host cell species. Despite this variability, all tested classical pestivirus species reduced host cell susceptibility to subsequent infections, indicating a conserved entry mechanism. Unexpectedly, pre-infection with atypical porcine pestivirus (APPV) increased host cell susceptibility to classical pestiviruses. Further analysis showed that APPV can infect SK-6 cells independently of ADAM17, a critical attachment factor for the classical pestiviruses. These results indicate that APPV uses different binding and entry mechanisms than the other pestiviruses. The observed increase in the susceptibility of cells post-APPV infection warrants further investigation and could have practical implications, such as aiding challenging pestivirus isolation from diagnostic samples.
Collapse
Affiliation(s)
- Francesco Geranio
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sebastian Affeldt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Angelika Cechini
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Carina M. Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France;
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| |
Collapse
|
3
|
Chen HW, Zaruba M, Dawood A, Düsterhöft S, Lamp B, Ruemenapf T, Riedel C. Modulation of ADAM17 Levels by Pestiviruses Is Species-Specific. Viruses 2024; 16:1564. [PMID: 39459898 PMCID: PMC11512297 DOI: 10.3390/v16101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Upon host cell infection, viruses modulate their host cells to better suit their needs, including the downregulation of virus entry receptors. ADAM17, a cell surface sheddase, is an essential factor for infection of bovine cells with several pestiviruses. To assess the effect of pestivirus infection on ADAM17, the amounts of cellular ADAM17 and its presence at the cell surface were determined. Mature ADAM17 levels were reduced upon infection with a cytopathic pestivirus bovis (bovine viral diarrhea virus, cpBVDV), pestivirus suis (classical swine fever virus, CSFV) or pestivirus giraffae (strain giraffe), but not negatively affected by pestivirus L (Linda virus, LindaV). A comparable reduction of ADAM17 surface levels, which represents the bioactive form, could be observed in the presence of E2 of BVDV and CSFV, but not LindaV or atypical porcine pestivirus (pestivirus scrofae) E2. Superinfection exclusion in BVDV infection is caused by at least two proteins, glycoprotein E2 and protease/helicase NS3. To evaluate whether the lowered ADAM17 levels could be involved in superinfection exclusion, persistently CSFV- or LindaV-infected cells were challenged with different pestiviruses. Persistently LindaV-infected cells were significantly more susceptible to cpBVDV infection than persistently CSFV-infected cells, whilst the other pestiviruses tested were not or only hardly able to infect the persistently infected cells. These results provide evidence of a pestivirus species-specific effect on ADAM17 levels and hints at the possibility of its involvement in superinfection exclusion.
Collapse
Affiliation(s)
- Hann-Wei Chen
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Marianne Zaruba
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Aroosa Dawood
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Stefan Düsterhöft
- Institute for Molecular Pharmacology, RWTH Aachen University, 52062 Aachen, Germany;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany;
| | - Till Ruemenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Christiane Riedel
- CIRI—Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| |
Collapse
|
4
|
Coronado L, Muñoz-Aguilera A, Cantero G, Martínez P, Alberch M, Rosell R, Gladue DP, Borca MV, Ganges L. FlagT4G Vaccine Prevents Transplacental Transmission of Highly Virulent Classical Swine Fever Virus after Single Vaccination in Pregnant Sows. Vaccines (Basel) 2024; 12:832. [PMID: 39203958 PMCID: PMC11359035 DOI: 10.3390/vaccines12080832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
The transplacental transmission of CSFV and the resulting persistent congenital infection in newborn piglets have been abundantly discussed in pregnant sows suffering from virus infection. Importantly, the availability of safe commercial vaccines with proven efficacy to prevent the generation of congenital and postnatal persistent infections in pregnant sows are critical tools for controlling the disease in CSF endemic areas. Here, we demonstrate the high efficacy of a single dose of the recombinant FlagT4G vaccine to provide solid protection in pregnant sows against transplacental transmission of a highly virulent CSFV. Pregnant sows vaccinated with FlagT4G at 44 days of gestation elicited a strong CSFV-specific antibody response, with neutralizing antibody levels above those required for protection against CSFV. Importantly, after the challenge with a highly virulent CSFV, all foetuses from FlagT4G-vaccinated sows lacked CSF macroscopic lesions and showed a complete absence of the challenge virus in their internal organs at day 79 of gestation. Therefore, pregnant sows safely vaccinated with FlagT4G without affecting reproductive efficacy are efficaciously protected, along with their foetuses, against the infection and disease caused by a CSFV virulent field strain.
Collapse
Affiliation(s)
- Liani Coronado
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (L.C.); (A.M.-A.); (G.C.); (P.M.); (M.A.); (R.R.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Adriana Muñoz-Aguilera
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (L.C.); (A.M.-A.); (G.C.); (P.M.); (M.A.); (R.R.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- Subgerencia de Análisis y Diagnóstico, Instituto Colombiano Agropecuario (ICA), Bogotá 110221, Colombia
| | - Guillermo Cantero
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (L.C.); (A.M.-A.); (G.C.); (P.M.); (M.A.); (R.R.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Patricia Martínez
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (L.C.); (A.M.-A.); (G.C.); (P.M.); (M.A.); (R.R.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Mònica Alberch
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (L.C.); (A.M.-A.); (G.C.); (P.M.); (M.A.); (R.R.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Rosa Rosell
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (L.C.); (A.M.-A.); (G.C.); (P.M.); (M.A.); (R.R.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- Departament d’Agricultura, Ramadería, Pesca, Alimentació I Medi Natural i Rural (DAAM), 08007 Barcelona, Spain
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA;
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA;
| | - Llilianne Ganges
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (L.C.); (A.M.-A.); (G.C.); (P.M.); (M.A.); (R.R.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
5
|
MIMURA Y, HIONO T, HUYNH LT, OGINO S, KOBAYASHI M, ISODA N, SAKODA Y. Establishment of a superinfection exclusion method for pestivirus titration using a recombinant reporter pestiviruses. J Vet Med Sci 2024; 86:389-395. [PMID: 38355118 PMCID: PMC11061576 DOI: 10.1292/jvms.24-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Pestiviruses are classified into two biotypes based on their cytopathogenicity. As the majority of pestivirus field isolates are noncytopathogenic, their titration requires alternative methods rather than direct observation of cytopathogenic effects, such as immunostaining using specific antibodies or interference with cytopathogenic strains. However, these methods require microscopic observation to assess virus growth, which is time- and labor-intensive, especially when handling several samples. In this study, we developed a novel luciferase-based pestivirus titration method using the superinfection exclusion phenomenon with recombinant reporter pestiviruses that possessed an 11-amino-acid subunit derived from NanoLuc luciferase (HiBiT). In this method, swine kidney cells were inoculated with classical swine fever virus (CSFV) and superinfected with the reporter CSFV vGPE-/HiBiT 5 days postinoculation. Virus titer was determined based on virus growth measured in luminescence using the culture fluid 3 days after superinfection; the resultant virus titer was comparable to that obtained by immunoperoxidase staining. Furthermore, this method has proven to be applicable for the titration of border disease virus (BDV) by superinfection with both the homologous reporter BDV and heterologous reporter CSFV, suggesting that this novel virus titration method is a simple technique for automated virus detection based on the luciferase system.
Collapse
Affiliation(s)
- Yume MIMURA
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro HIONO
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Hokkaido University Institute for Vaccine Research and
Development (HU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Loc Tan HUYNH
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can
Tho University, Can Tho, Vietnam
| | - Saho OGINO
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Maya KOBAYASHI
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Norikazu ISODA
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Hokkaido University Institute for Vaccine Research and
Development (HU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Yoshihiro SAKODA
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Hokkaido University Institute for Vaccine Research and
Development (HU-IVReD), Hokkaido University, Hokkaido, Japan
| |
Collapse
|
6
|
Liu HM, Deng MC, Huang YL, Tsai KJ, Chang HW, Chang CY. In vivo characterization of the superior fitness of classical swine fever virus genotype 2.1 to genotype 3.4. Vet Microbiol 2023; 285:109854. [PMID: 37633061 DOI: 10.1016/j.vetmic.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease in pigs. In Taiwan, the emerging genotype 2.1 (G2.1) CSFV caused sporadic outbreaks in 1994 and replaced the previous G3.4 CSFV in the field. The shift of CSFV genotypes to G2 CSFV was also observed in several CSFV-affected countries. The present study aimed to explore the mechanism of the genotype shift of CSFV. Two groups of specific pathogen-free (SPF) pigs were first inoculated with either G2.1 or G3.4 CSFV (single-inoculated group) and housed together with naïve SPF pigs (cohabitating group). The results showed that peak viremia, viral loads in blood and tissues, and viral shedding of G2.1 were consistently higher than those of G3.4 CSFV in single-inoculated and cohabitating pigs. The phenomenon of superinfection exclusion (SIE), characterized by the prevention of secondary infection by a primary infection, was readily observed in CSFV single-inoculated pigs. Interestingly, coinfection of both genotypes of CSFV was observed in 3 out of 4 cohabitating pigs, while only one pig was infected with G2.1 CSFV alone. These findings suggest that the genetic shift in CSFV in the field may be in part the consequence of SIE.
Collapse
Affiliation(s)
- Hsin-Meng Liu
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC; Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Ming-Chung Deng
- Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Yu-Liang Huang
- Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Kuo-Jung Tsai
- Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Chia-Yi Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC.
| |
Collapse
|
7
|
Abstract
In nature, viral coinfection is as widespread as viral infection alone. Viral coinfections often cause altered viral pathogenicity, disrupted host defense, and mixed-up clinical symptoms, all of which result in more difficult diagnosis and treatment of a disease. There are three major virus-virus interactions in coinfection cases: viral interference, viral synergy, and viral noninterference. We analyzed virus-virus interactions in both aspects of viruses and hosts and elucidated their possible mechanisms. Finally, we summarized the protocol of viral coinfection studies and key points in the process of virus separation and purification.
Collapse
|
8
|
Bohórquez JA, Wang M, Díaz I, Alberch M, Pérez-Simó M, Rosell R, Gladue DP, Borca MV, Ganges L. The FlagT4G Vaccine Confers a Strong and Regulated Immunity and Early Virological Protection against Classical Swine Fever. Viruses 2022; 14:v14091954. [PMID: 36146761 PMCID: PMC9502879 DOI: 10.3390/v14091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Control of classical swine fever virus (CSFV) in endemic countries relies on vaccination, mostly using vaccines that do not allow for differentiation of vaccinated from infected animals (DIVA). FlagT4G vaccine is a novel candidate that confers robust immunity and shows DIVA capabilities. The present study assessed the immune response elicited by FlagT4G and its capacity to protect pigs for a short time after vaccination. Five days after a single dose of FlagT4G vaccine, animals were challenged with a highly virulent CSFV strain. A strong, but regulated, interferon-α response was found after vaccination. Vaccinated animals showed clinical and virological protection against the challenge, in the absence of antibody response at 5 days post-vaccination. Upon challenge, a rapid rise in the titers of CSFV neutralizing antibodies and an increase in the IFN-γ producing cells were noticed in all vaccinated-challenged pigs. Meanwhile, unvaccinated pigs showed severe clinical signs and high viral replication, being euthanized before the end of the trial. These animals were unable to generate neutralizing antibodies and IFN-γ responses after the CSFV challenge. The results from the present study assert the fast and efficient protection by FlagT4G, a highly promising tool for CSFV control worldwide.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Miaomiao Wang
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Ivan Díaz
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Mònica Alberch
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Marta Pérez-Simó
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Rosa Rosell
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Departament d’Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.); (L.G.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.); (L.G.)
| | - Llilianne Ganges
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Correspondence: (D.P.G.); (M.V.B.); (L.G.)
| |
Collapse
|
9
|
Removal of the E rns RNase Activity and of the 3' Untranslated Region Polyuridine Insertion in a Low-Virulence Classical Swine Fever Virus Triggers a Cytokine Storm and Lethal Disease. J Virol 2022; 96:e0043822. [PMID: 35758667 PMCID: PMC9327722 DOI: 10.1128/jvi.00438-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we assessed the potential synergistic effect of the Erns RNase activity and the poly-U insertion in the 3′ untranslated region (UTR) of the low-virulence classical swine fever virus (CSFV) isolate Pinar de Rio (PdR) in innate and adaptive immunity regulation and its relationship with classical swine fever (CSF) pathogenesis in pigs. We knocked out the Erns RNase activity of PdR and replaced the long polyuridine sequence of the 3′ UTR with 5 uridines found typically at this position, resulting in a double mutant, vPdR-H30K-5U. This mutant induced severe CSF in 5-day-old piglets and 3-week-old pigs, with higher lethality in the newborn (89.5%) than in the older (33.3%) pigs. However, the viremia and viral excretion were surprisingly low, while the virus load was high in the tonsils. Only alpha interferon (IFN-α) and interleukin 12 (IL-12) were highly and consistently elevated in the two groups. Additionally, high IL-8 levels were found in the newborn but not in the older pigs. This points toward a role of these cytokines in the CSF outcome, with age-related differences. The disproportional activation of innate immunity might limit systemic viral spread from the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms. Infection with vPdR-H30K-5U resulted in poor neutralizing antibody responses compared with results obtained previously with the parent and RNase knockout PdR. This study shows for the first time the synergistic effect of the 3′ UTR and the Erns RNase function in regulating innate immunity against CSFV, favoring virus replication in target tissue and thus contributing to disease severity. IMPORTANCE CSF is one of the most relevant viral epizootic diseases of swine, with high economic and sanitary impact. Systematic stamping out of infected herds with and without vaccination has permitted regional virus eradication. However, the causative agent, CSFV, persists in certain areas of the world, leading to disease reemergence. Nowadays, low- and moderate-virulence strains that could induce unapparent CSF forms are prevalent, posing a challenge for disease eradication. Here, we show for the first time the synergistic role of lacking the Erns RNase activity and the 3′ UTR polyuridine insertion from a low-virulence CSFV isolate in innate immunity disproportional activation. This might limit systemic viral spread to the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms, thus contributing to disease severity. These results highlight the role played by the Erns RNase activity and the 3′ UTR in CSFV pathogenesis, providing new perspectives for novel diagnostic tools and vaccine strategies.
Collapse
|
10
|
Wang M, Bohórquez JA, Hinojosa Y, Muñoz-González S, Gerber M, Coronado L, Perera CL, Liniger M, Ruggli N, Ganges L. Abrogation of the RNase activity of E rns in a low virulence classical swine fever virus enhances the humoral immune response and reduces virulence, transmissibility, and persistence in pigs. Virulence 2021; 12:2037-2049. [PMID: 34339338 PMCID: PMC8331007 DOI: 10.1080/21505594.2021.1959715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The prevalence of low virulence classical swine fever virus (CSFV) strains makes viral eradication difficult in endemic countries. However, the determinants for natural CSFV attenuation and persistence in the field remain unidentified. The aim of the present study was to assess the role of the RNase activity of CSFV Erns in pathogenesis, immune response, persistent infection, and viral transmission in pigs. To this end, a functional cDNA clone pPdR-H30K-36U with an Erns lacking RNase activity was constructed based on the low virulence CSFV field isolate Pinar de Rio (PdR). Eighteen 5-day-old piglets were infected with vPdR-H30K-36U. Nine piglets were introduced as contacts. The vPdR-H30K-36U virus was attenuated in piglets compared to the parental vPdR-36U. Only RNA traces were detected in sera and body secretions and no virus was isolated from tonsils, showing that RNase inactivation may reduce CSFV persistence and transmissibility. The vPdR-H30K-36U mutant strongly activated the interferon-α (IFN-α) production in plasmacytoid dendritic cells, while in vivo, the IFN-α response was variable, from moderate to undetectable depending on the animal. This suggests a role of the CSFV Erns RNase activity in the regulation of innate immune responses. Infection with vPdR-H30K-36U resulted in higher antibody levels against the E2 and Erns glycoproteins and in enhanced neutralizing antibody responses when compared with vPdR-36U. These results pave the way toward a better understanding of viral attenuation mechanisms of CSFV in pigs. In addition, they provide novel insights relevant for the development of DIVA vaccines in combination with diagnostic assays for efficient CSF control.
Collapse
Affiliation(s)
- Miaomiao Wang
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | | | - Yoandry Hinojosa
- Division of Virology, Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland.,Centro Nacional De Sanidad Agropecuaria (CENSA), Mayabeque, Cuba
| | - Sara Muñoz-González
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Markus Gerber
- Division of Virology, Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Liani Coronado
- Centro Nacional De Sanidad Agropecuaria (CENSA), Mayabeque, Cuba
| | | | - Matthias Liniger
- Division of Virology, Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Division of Virology, Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| |
Collapse
|
11
|
Early and Solid Protection Afforded by the Thiverval Vaccine Provides Novel Vaccination Alternatives Against Classical Swine Fever Virus. Vaccines (Basel) 2021; 9:vaccines9050464. [PMID: 34066376 PMCID: PMC8148177 DOI: 10.3390/vaccines9050464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/20/2022] Open
Abstract
Classical swine fever virus (CSFV) remains a challenge for the porcine industry. Inefficient vaccination programs in some endemic areas may have contributed to the emergence of low and moderate virulence CSFV variants. This work aimed to expand and update the information about the safety and efficacy of the CSFV Thiverval-strain vaccine. Two groups of pigs were vaccinated, and a contact and control groups were also included. Animals were challenged with a highly virulent CSFV strain at 21- or 5-days post vaccination (dpv). The vaccine induced rapid and strong IFN-α response, mainly in the 5-day immunized group, and no vaccine virus transmission was detected. Vaccinated pigs showed humoral response against CSFV E2 and Erns glycoproteins, with neutralising activity, starting at 14 days post vaccination (dpv). Strong clinical protection was afforded in all the vaccinated pigs as early as 5 dpv. The vaccine controlled viral replication after challenge, showing efficient virological protection in the 21-day immunized pigs despite being housed with animals excreting high CSFV titres. These results demonstrate the high efficacy of the Thiverval strain against CSFV replication. Its early protection capacity makes it a useful alternative for emergency vaccination and a consistent tool for CSFV control worldwide.
Collapse
|
12
|
Bohórquez JA, Sozzi E, Wang M, Alberch M, Abad X, Gaffuri A, Lelli D, Rosell R, Pérez LJ, Moreno A, Ganges L. The new emerging ovine pestivirus can infect pigs and confers strong protection against classical swine fever virus. Transbound Emerg Dis 2021; 69:1539-1555. [PMID: 33896109 DOI: 10.1111/tbed.14119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Several emerging pestiviruses have been reported lately, some of which have proved to cause disease. Recently, a new ovine pestivirus (OVPV), isolated from aborted lambs, with high genetic identity to classical swine fever virus (CSFV), has proved to induce reproductive disorders in pregnant ewes. OVPV also generated strong serological and molecular cross-reaction with CSFV. To assess the capacity of OVPV to infect swine, twelve piglets were infected either by intranasal or intramuscular route. Daily clinical evaluation and weekly samplings were performed to determine pathogenicity, viral replication and excretion and induction of immune response. Five weeks later, two pigs from each group were euthanized and tissue samples were collected to study viral replication and distribution. OVPV generated only mild clinical signs in the piglets, including wasting and polyarthritis. The virus was able to replicate, as shown by the RNA levels found in sera and swabs and persisted in tonsil for at least 5 weeks. Viral replication activated the innate and adaptive immunity, evidenced by the induction of interferon-alpha levels early after infection and cross-neutralizing antibodies against CSFV, including humoural response against CSFV E2 and Erns glycoproteins. Close antigenic relation between OVPV and CSFV genotype 2.3 was detected. To determine the OVPV protection against CSFV, the OVPV-infected pigs were challenged with a highly virulent strain. Strong clinical, virological and immunological protection was generated in the OVPV-infected pigs, in direct contrast with the infection control group. Our findings show, for the first time, the OVPV capacity to infect swine, activate immunity, and the robust protection conferred against CSFV. In addition, their genetic and antigenic similarities, the close relationship between both viruses, suggest their possible coevolution as two branches stemming from a shared origin at the same time in two different hosts.
Collapse
Affiliation(s)
| | - Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Miaomiao Wang
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Mònica Alberch
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Xavier Abad
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Alessandra Gaffuri
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain.,Departament d'Agricultura, Ramadería, Pesca i Alimentació (DARP), Generalitat de Catalunya, Barcelona, Spain
| | - Lester Josue Pérez
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| |
Collapse
|
13
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Coinfections and their molecular consequences in the porcine respiratory tract. Vet Res 2020; 51:80. [PMID: 32546263 PMCID: PMC7296899 DOI: 10.1186/s13567-020-00807-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Understudied, coinfections are more frequent in pig farms than single infections. In pigs, the term “Porcine Respiratory Disease Complex” (PRDC) is often used to describe coinfections involving viruses such as swine Influenza A Virus (swIAV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and Porcine CircoVirus type 2 (PCV2) as well as bacteria like Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae and Bordetella bronchiseptica. The clinical outcome of the various coinfection or superinfection situations is usually assessed in the studies while in most of cases there is no clear elucidation of the fine mechanisms shaping the complex interactions occurring between microorganisms. In this comprehensive review, we aimed at identifying the studies dealing with coinfections or superinfections in the pig respiratory tract and at presenting the interactions between pathogens and, when possible, the mechanisms controlling them. Coinfections and superinfections involving viruses and bacteria were considered while research articles including protozoan and fungi were excluded. We discuss the main limitations complicating the interpretation of coinfection/superinfection studies, and the high potential perspectives in this fascinating research field, which is expecting to gain more and more interest in the next years for the obvious benefit of animal health.
Collapse
|
15
|
In Vivo Demonstration of the Superior Replication and Infectivity of Genotype 2.1 with Respect to Genotype 3.4 of Classical Swine Fever Virus by Dual Infections. Pathogens 2020; 9:pathogens9040261. [PMID: 32260208 PMCID: PMC7238001 DOI: 10.3390/pathogens9040261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
In Taiwan, the prevalent CSFV population has shifted from the historical genotype 3.4 (94.4 strain) to the newly invading genotype 2.1 (TD/96 strain) since 1996. This study analyzed the competition between these two virus genotypes in dual infection pigs with equal and different virus populations and with maternally derived neutralizing antibodies induced by a third genotype of modified live vaccine (MLV), to simulate that occurring in natural situations in the field. Experimentally, under various dual infection conditions, with or without the presence of maternal antibodies, with various specimens from blood, oral and fecal swabs, and internal organs at various time points, the TD/96 had consistently 1.51-3.08 log higher loads than those of 94.4. A second passage of competition in the same animals further widened the lead of TD/96 as indicated by viral loads. The maternally derived antibodies provided partial protection to both wild type CSFVs and was correlated with lower clinical scores, febrile reaction, and animal mortality. In the presence of maternal antibodies, pigs could be infected by both wild type CSFVs, with TD/96 dominating. These findings partially explain the CSFV shift observed, furthering our understanding of CSFV pathogenesis in the field, and are helpful for the control of CSF.
Collapse
|
16
|
A Polyuridine Insertion in the 3' Untranslated Region of Classical Swine Fever Virus Activates Immunity and Reduces Viral Virulence in Piglets. J Virol 2020; 94:JVI.01214-19. [PMID: 31645448 PMCID: PMC6955259 DOI: 10.1128/jvi.01214-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 01/15/2023] Open
Abstract
Classical swine fever (CSF), a highly contagious viral disease of pigs, is still endemic in some countries of Asia and Central and South America. Considering that the 3′ untranslated region (3′ UTR) plays an important role in flavivirus replication, the present study showed for the first time that a long polyuridine sequence acquired in the 3′ UTR by an endemic CSFV isolate can activate immunity, control viral replication, and modulate disease in piglets. Our findings provide new avenues for the development of novel vaccines against infections with CSF virus and other flaviviruses. Knowledge of molecular virulence determinants is also relevant for future development of rapid and efficient diagnostic tools for the prediction of the virulence of field isolates and for efficient CSF control. Low-virulence classical swine fever virus (CSFV) strains make CSF eradication particularly difficult. Few data are available on the molecular determinants of CSFV virulence. The aim of the present study was to assess a possible role for CSFV virulence of a unique, uninterrupted 36-uridine (poly-U) sequence found in the 3′ untranslated region (3′ UTR) of the low-virulence CSFV isolate Pinar de Rio (PdR). To this end, a pair of cDNA-derived viruses based on the PdR backbone were generated, one carrying the long poly-U insertion in the 3′ UTR (vPdR-36U) and the other harboring the standard 5 uridines at this position (vPdR-5U). Two groups of 20 5-day-old piglets were infected with vPdR-36U and vPdR-5U. Ten contact piglets were added to each group. Disease progression, virus replication, and immune responses were monitored for 5 weeks. The vPdR-5U virus was significantly more virulent than the vPdR-36U virus, with more severe disease, higher mortality, and significantly higher viral loads in serum and body secretions, despite similar replication characteristics in cell culture. The two viruses were transmitted to all contact piglets. Ninety percent of the piglets infected with vPdR-36U seroconverted, while only one vPdR-5U-infected piglet developed antibodies. The vPdR-5U-infected piglets showed only transient alpha interferon (IFN-α) responses in serum after 1 week of infection, while the vPdR-36U-infected piglets showed sustained IFN-α levels during the first 2 weeks. Taken together, these data show that the 3′ UTR poly-U insertion acquired by the PdR isolate reduces viral virulence and activates the innate and humoral immune responses without affecting viral transmission. IMPORTANCE Classical swine fever (CSF), a highly contagious viral disease of pigs, is still endemic in some countries of Asia and Central and South America. Considering that the 3′ untranslated region (3′ UTR) plays an important role in flavivirus replication, the present study showed for the first time that a long polyuridine sequence acquired in the 3′ UTR by an endemic CSFV isolate can activate immunity, control viral replication, and modulate disease in piglets. Our findings provide new avenues for the development of novel vaccines against infections with CSF virus and other flaviviruses. Knowledge of molecular virulence determinants is also relevant for future development of rapid and efficient diagnostic tools for the prediction of the virulence of field isolates and for efficient CSF control.
Collapse
|
17
|
Identification of an Immunosuppressive Cell Population during Classical Swine Fever Virus Infection and Its Role in Viral Persistence in the Host. Viruses 2019; 11:v11090822. [PMID: 31487968 PMCID: PMC6783970 DOI: 10.3390/v11090822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022] Open
Abstract
Classical swine fever virus (CSFV) remains a highly important pathogen, causing major losses in the swine industry. Persistent infection is highly relevant for CSFV maintenance in the field; however, this form of infection is not fully understood. An increase in the granulocyte population has been detected in CSFV persistently infected animals. The aim of this work was to evaluate the possible immunosuppressive role of these cells in CSFV persistent infection. The phenotype of peripheral blood and bone marrow cells from persistently infected and naïve animals was evaluated by flow cytometry, and the capacity of specific cell subsets to reduce the interferon gamma (IFN-γ) response against unspecific and specific antigen was determined using co-culture assays. The frequency of granulocytic cells was increased in cells from CSFV persistently infected pigs and they showed a phenotype similar to immunosuppressive cell populations found in persistent infection in humans. These cells from persistently infected animals were able to reduce the IFN-γ response against unspecific and specific antigen. Our results suggest that immature immunosuppressive cell populations play a role in CSFV persistent infection in swine. The information obtained by studying the role of myeloid derived suppressor cells (MDSC) during CSFV persistent infection may extrapolate to other viral persistent infections in mammals.
Collapse
|
18
|
Coronado L, Bohórquez JA, Muñoz-González S, Perez LJ, Rosell R, Fonseca O, Delgado L, Perera CL, Frías MT, Ganges L. Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy. BMC Vet Res 2019; 15:247. [PMID: 31307464 PMCID: PMC6632193 DOI: 10.1186/s12917-019-1982-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have hypothesized that circulation of classical swine fever virus (CSFV) variants when the immunity induced by the vaccine is not sterilizing might favour viral persistence. Likewise, in addition to congenital viral persistence, CSFV has also been proven to generate postnatal viral persistence. Under experimental conditions, postnatal persistently infected pigs were unable to elicit a specific immune response to a CSFV live attenuated vaccine via the mechanism known as superinfection exclusion (SIE). Here, we study whether subclinical forms of classical swine fever (CSF) may be present in a conventional farm in an endemic country and evaluate vaccine efficacy under these types of infections in field conditions. Results Six litters born from CSF-vaccinated gilts were randomly chosen from a commercial Cuban farm at 33 days of age (weaning). At this time, the piglets were vaccinated with a lapinized live attenuated CSFV C-strain vaccine. Virological and immunological analyses were performed before and after vaccination. The piglets were clinically healthy at weaning; however, 82% were viraemic, and the rectal swabs in most of the remaining 18% were positive. Only five piglets from one litter showed a specific antibody response. The tonsils and rectal swabs of five sows were CSFV positive, and only one of the sows showed an antibody response. After vaccination, 98% of the piglets were unable to clear the virus and to seroconvert, and some of the piglets showed polyarthritis and wasting after 36 days post vaccination. The CSFV E2 glycoprotein sequences recovered from one pig per litter were the same. The amino acid positions 72(R), 20(L) and 195(N) of E2 were identified in silico as positions associated with adaptive advantage. Conclusions Circulation of chronic and persistent CSF infections was demonstrated in field conditions under a vaccination programme. Persistent infection was predominant. Here, we provide evidence that, in field conditions, subclinical infections are not detected by clinical diagnosis and, despite being infected with CSFV, the animals are vaccinated, rather than diagnosed and eliminated. These animals are refractory to vaccination, likely due to the SIE phenomenon. Improvement of vaccination strategies and diagnosis of subclinical forms of CSF is imperative for CSF eradication. Electronic supplementary material The online version of this article (10.1186/s12917-019-1982-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sara Muñoz-González
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lester Josue Perez
- University of Illinois, College of Veterinary Science, Department of Clinical Veterinary Medicine, Urbana, Illinois, 61802, United States
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament d'Agricultura Ramaderia i Pesca (DARP), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Osvaldo Fonseca
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Laiyen Delgado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Carmen Laura Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Maria Teresa Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
19
|
Bohórquez JA, Wang M, Pérez-Simó M, Vidal E, Rosell R, Ganges L. Low CD4/CD8 ratio in classical swine fever postnatal persistent infection generated at 3 weeks after birth. Transbound Emerg Dis 2018; 66:752-762. [PMID: 30457708 PMCID: PMC7379727 DOI: 10.1111/tbed.13080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/09/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
Abstract
Classical swine fever virus (CSFV) is one of the most important pathogens affecting swine. After infection with a moderate virulence strain at 8 hours after birth, CSFV is able to induce viral persistence. These animals may appear clinically healthy or showed unspecific clinical signs despite the permanent viremia and high viral shedding, in absence of immune response to the virus. Given the role played by this infection in disease control, we aimed to evaluate the capacity of CSFV to induce postnatal persistent infection at 3 weeks after birth. Nine pigs were CSFV infected and sampled weekly during 6 weeks and viral, clinical, pathological and immunological tests were carried out. Also, the CD4/CD8 ratio was calculated with the purpose to relate this marker with the CSFV persistent infection. The IFN‐α response was detected mainly 1 week after infection, being similar in all the infected animals. However, 44.4% of animals were CSFV persistently infected, 33.3% died and 22.2% developed specific antibody response. Interestingly, in persistently infected pigs, the T‐CD8 population was increased, the T‐CD4 subset was decreased and lower CD4/CD8 ratios were detected. This is the first report of CSFV capacity to confer postnatal persistent infection in pigs infected at 3 weeks after birth, an age in which the weaning could be carried out in some swine production systems. This type of infected animals shed high amounts of virus and are difficult to evaluate from the clinical and anatomopathological point of view. Therefore, the detection of this type of infection and its elimination in endemic areas will be relevant for global CSF eradication. Finally, the low CD4/CD8 ratios found in persistently infected animals may be implicated in maintaining high CSFV replication during persistence and further studies will be performed to decipher the role of these cells in CSFV immunopathogenesis.
Collapse
Affiliation(s)
| | - Miaomiao Wang
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Marta Pérez-Simó
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Enric Vidal
- IRTA-CReSA, Centre de Recerca en Sanitat Animal, Barcelona, Spain
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain.,Departament d'Agricultura, Ramaderia i Pesca (DARP), Generalitat de Catalunya, Barcelona, Spain
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| |
Collapse
|
20
|
Abstract
Coinfections involving viruses are being recognized to influence the disease pattern that occurs relative to that with single infection. Classically, we usually think of a clinical syndrome as the consequence of infection by a single virus that is isolated from clinical specimens. However, this biased laboratory approach omits detection of additional agents that could be contributing to the clinical outcome, including novel agents not usually considered pathogens. The presence of an additional agent may also interfere with the targeted isolation of a known virus. Viral interference, a phenomenon where one virus competitively suppresses replication of other coinfecting viruses, is the most common outcome of viral coinfections. In addition, coinfections can modulate virus virulence and cell death, thereby altering disease severity and epidemiology. Immunity to primary virus infection can also modulate immune responses to subsequent secondary infections. In this review, various virological mechanisms that determine viral persistence/exclusion during coinfections are discussed, and insights into the isolation/detection of multiple viruses are provided. We also discuss features of heterologous infections that impact the pattern of immune responsiveness that develops.
Collapse
|
21
|
Cabezón O, Muñoz-González S, Colom-Cadena A, Pérez-Simó M, Rosell R, Lavín S, Marco I, Fraile L, de la Riva PM, Rodríguez F, Domínguez J, Ganges L. African swine fever virus infection in Classical swine fever subclinically infected wild boars. BMC Vet Res 2017; 13:227. [PMID: 28764692 PMCID: PMC5540480 DOI: 10.1186/s12917-017-1150-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently moderate-virulence classical swine fever virus (CSFV) strains have been proven capable of generating postnatal persistent infection (PI), defined by the maintenance of viremia and the inability to generate CSFV-specific immune responses in animals. These animals also showed a type I interferon blockade in the absence of clinical signs. In this study, we assessed the infection generated in 7-week-old CSFV PI wild boars after infection with the African swine fever virus (ASFV). The wild boars were divided in two groups and were infected with ASFV. Group A comprised boars who were CSFV PI in a subclinical form and Group B comprised pestivirus-free wild boars. Some relevant parameters related to CSFV replication and the immune response of CSFV PI animals were studied. Additionally, serum soluble factors such as IFN-α, TNF-α, IL-6, IL-10, IFN-γ and sCD163 were analysed before and after ASFV infection to assess their role in disease progression. RESULTS After ASFV infection, only the CSFV PI wild boars showed progressive acute haemorrhagic disease; however, the survival rates following ASFV infection was similar in both experimental groups. Notwithstanding, the CSFV RNA load of CSFV PI animals remained unaltered over the study; likewise, the ASFV DNA load detected after infection was similar between groups. Interestingly, systemic type I FN-α and IL-10 levels in sera were almost undetectable in CSFV PI animals, yet detectable in Group B, while detectable levels of IFN-γ were found in both groups. Finally, the flow cytometry analysis showed an increase in myelomonocytic cells (CD172a+) and a decrease in CD4+ T cells in the PBMCs from CSFV PI animals after ASFV infection. CONCLUSIONS Our results showed that the immune response plays a role in the progression of disease in CSFV subclinically infected wild boars after ASFV infection, and the immune response comprised the systemic type I interferon blockade. ASFV does not produce any interference with CSFV replication, or vice versa. ASFV infection could be a trigger factor for the disease progression in CSFV PI animals, as their survival after ASFV was similar to that of the pestivirus-free ASFV-infected group. This fact suggests a high resistance in CSFV PI animals even against a virus like ASFV; this may mean that there are relevant implications for CSF control in endemic countries. The diagnosis of ASFV and CSFV co-infection in endemic countries cannot be ruled out and need to be studied in greater depth.
Collapse
Affiliation(s)
- Oscar Cabezón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Andreu Colom-Cadena
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.,Departament d'Agricultura, Ramaderia, Pesca i Alimentació (DARP), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Santiago Lavín
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ignasi Marco
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lorenzo Fraile
- Departament de Producció Animal, ETSEA, Universidad de Lleida, 25198, Lleida, Spain
| | - Paloma Martínez de la Riva
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Javier Domínguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
22
|
Coronado L, Liniger M, Muñoz-González S, Postel A, Pérez LJ, Pérez-Simó M, Perera CL, Frías-Lepoureau MT, Rosell R, Grundhoff A, Indenbirken D, Alawi M, Fischer N, Becher P, Ruggli N, Ganges L. Novel poly-uridine insertion in the 3'UTR and E2 amino acid substitutions in a low virulent classical swine fever virus. Vet Microbiol 2017; 201:103-112. [PMID: 28284595 DOI: 10.1016/j.vetmic.2017.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022]
Abstract
In this study, we compared the virulence in weaner pigs of the Pinar del Rio isolate and the virulent Margarita strain. The latter caused the Cuban classical swine fever (CSF) outbreak of 1993. Our results showed that the Pinar del Rio virus isolated during an endemic phase is clearly of low virulence. We analysed the complete nucleotide sequence of the Pinar del Rio virus isolated after persistence in newborn piglets, as well as the genome sequence of the inoculum. The consensus genome sequence of the Pinar del Rio virus remained completely unchanged after 28days of persistent infection in swine. More importantly, a unique poly-uridine tract was discovered in the 3'UTR of the Pinar del Rio virus, which was not found in the Margarita virus or any other known CSFV sequences. Based on RNA secondary structure prediction, the poly-uridine tract results in a long single-stranded intervening sequence (SS) between the stem-loops I and II of the 3'UTR, without major changes in the stem- loop structures when compared to the Margarita virus. The possible implications of this novel insertion on persistence and attenuation remain to be investigated. In addition, comparison of the amino acid sequence of the viral proteins Erns, E1, E2 and p7 of the Margarita and Pinar del Rio viruses showed that all non-conservative amino acid substitutions acquired by the Pinar del Rio isolate clustered in E2, with two of them being located within the B/C domain. Immunisation and cross-neutralisation experiments in pigs and rabbits suggest differences between these two viruses, which may be attributable to the amino acid differences observed in E2. Altogether, these data provide fresh insights into viral molecular features which might be associated with the attenuation and adaptation of CSFV for persistence in the field.
Collapse
Affiliation(s)
- Liani Coronado
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| | | | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | | | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Departamentd'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, (DAAM), Generalitat de Catalunya, Spain
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Malik Alawi
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany; Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
23
|
Huang YL, Deng MC, Tsai KJ, Liu HM, Huang CC, Wang FI, Chang CY. Competitive replication kinetics and pathogenicity in pigs co-infected with historical and newly invading classical swine fever viruses. Virus Res 2016; 228:39-45. [PMID: 27889614 DOI: 10.1016/j.virusres.2016.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
Classical swine fever (CSF), an economically important and highly contagious disease of pigs, is caused by classical swine fever virus (CSFV). In Taiwan, CSFVs from field outbreaks belong to two distinct genotypes. The historical genotype 3.4 dominated from the 1920s to 1996, and since 1996, the newly invading genotype 2.1 has dominated. To explain the phenomenon of this virus shift in the field, representative viruses belonging to genotypes 2.1 and 3.4 were either inoculated alone (single infection) or co-inoculated (co-infection), both in vivo and in vitro, to compare the virus replication and pathogenesis. In pigs co-infected with the genotype 2.1 TD/96/TWN strain and the genotype 3.4 94.4/IL/94/TWN strain, the newly invading genotype 2.1 was detected earlier in the blood, oral fluid, and feces, and the viral loads were consistently and significantly higher than that of the historical genotype 3.4. In cell cultures, the ratio of secreted virus to cell-associated virus of the genotype 2.1 strain was higher than that of the genotype 3.4 strain. This study is the first to demonstrate a possible explanation of virus shift in the field, wherein the newly invading genotype 2.1 replicates more efficiently than did genotype 3.4 and outcompetes the replication and pathogenicity of genotype 3.4 in pigs in the field.
Collapse
Affiliation(s)
- Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City, 25158, Taiwan.
| | - Ming-Chung Deng
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City, 25158, Taiwan.
| | - Kuo-Jung Tsai
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City, 25158, Taiwan.
| | - Hsin-Meng Liu
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City, 25158, Taiwan.
| | - Chin-Cheng Huang
- Council of Agriculture, Executive Yuan, No. 37 Nanhai Road, Taipei, 10014, Taiwan.
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Chia-Yi Chang
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City, 25158, Taiwan.
| |
Collapse
|
24
|
Weber MN, Bauermann FV, Canal CW, Bayles DO, Neill JD, Ridpath JF. Temporal dynamics of 'HoBi'-like pestivirus quasispecies in persistently infected calves generated under experimental conditions. Virus Res 2016; 227:23-33. [PMID: 27693289 DOI: 10.1016/j.virusres.2016.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/26/2022]
Abstract
'HoBi'-like virus is an atypical group within the Pestivirus genus that is implicated in economic losses for cattle producers due to both acute and persistent infections. Pestivirus strains exist as quasispecies (swarms of individual viruses) in infected animals and the viral populations making up the quasispecies differ widely in size and diversity in each animal. In the present study the viral quasispecies circulating in persistently infected (PI) calves, generated and maintained under experimental conditions using two different 'HoBi'-like strains, was observed over time. An increase in genetic variability and the development of certain mutations was observed over time. Mutations observed included the loss of a putative N-linked glycosylation site in the E2 region and the change of specific residues in E1/E2. It is hypothesized that these changes may be the results on continued adaption of the pestivirus to individual hosts. This is the first study characterizing variation in the viral swarms of animals persistently infected with HoBi-like viruses over time. Studies of the shifts in PI viral swarms will contribute to our understanding of the host and viral mechanisms that function in the maintenance of pestivirus persistent infections.
Collapse
Affiliation(s)
- Matheus N Weber
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, CEP 91-540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando V Bauermann
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service (ARS), National Animal Disease Center (NADC), United States Department of Agriculture (USDA), 1920 Dayton Av., Zip Code 50010, Ames, IA, United States
| | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, CEP 91-540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Darrell O Bayles
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service (ARS), National Animal Disease Center (NADC), United States Department of Agriculture (USDA), 1920 Dayton Av., Zip Code 50010, Ames, IA, United States
| | - John D Neill
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service (ARS), National Animal Disease Center (NADC), United States Department of Agriculture (USDA), 1920 Dayton Av., Zip Code 50010, Ames, IA, United States
| | - Julia F Ridpath
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service (ARS), National Animal Disease Center (NADC), United States Department of Agriculture (USDA), 1920 Dayton Av., Zip Code 50010, Ames, IA, United States.
| |
Collapse
|