1
|
Khan SK, Dutta J, Rather MA, Ahmad I, Nazir J, Shah S, Ballal S, Garg A, Imam F, Kumar A. Assessing the Combined Toxicity of Silver and Copper Nanoparticles in Rainbow Trout (Oncorhynchus mykiss) Fingerlings. Biol Trace Elem Res 2025:10.1007/s12011-025-04607-z. [PMID: 40205257 DOI: 10.1007/s12011-025-04607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
The growing use of silver (Ag) and copper (Cu) nanoparticles (NPs) for their antimicrobial properties has raised environmental health concerns due to their coexistence in aquatic ecosystems. This study assessed the combined physiological and molecular toxicity of AgNPs and CuNPs in rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal concentrations of the NP mixture for 21 days. Fish were exposed to varying concentrations of co-exposure of AgNPs and CuNPs (T1 group 0.2 AgNPs + 0.2 mg/L CuNPs, T2 group 0.8 AgNPs + 0.6 mg/L CuNPs, and T3 group 1.4 AgNPs + 1.0 mg/L CuNPs). Behavioral alterations were evident, accompanied by a significant (p < 0.05) reduction in hemoglobin, red blood cell count, and hematocrit levels, while white blood cell counts increased, indicating immune activation. Serum biochemical analyses revealed metabolic disturbances linked to oxidative stress and physiological imbalance. Enzymatic activities in gills and liver showed a dynamic response, with elevated catalase (CAT) and superoxide dismutase (SOD) levels at T2 and T3 after 14 days, followed by a decline by day 21. Glutathione S-transferase (GST) activity increased in gills at T2 and T3 after 7 days and in the liver at T3 after 14 days, while lipid peroxidation (LPO) significantly increased in gills at T3 after 7 days and in the liver at T2 and T3 after 14 days. Molecular analysis confirmed upregulation of oxidative stress genes (SOD1, CAT) and inflammatory markers (HSP70, IL- 1β). Histopathological examination revealed gill damage, including lamellar fusion and hyperplasia, and liver degeneration, such as hepatocyte vacuolation and necrosis, with the most severe effects observed at T3. These findings highlight dose-dependent toxicity and oxidative damage caused by the AgNPs-CuONPs mixture, emphasizing its potential physiological and molecular impacts on aquatic organisms.
Collapse
Affiliation(s)
- Saba Khursheed Khan
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India, 190006
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India, 190006.
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India, 190006
| | - Junaid Nazir
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Showkat Shah
- Department of Veterinary Pathology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, India, 190006
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Akshay Garg
- Nanaji Deshmukh Veterinary Science University, Jabalpur, 482004, India
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box: 2457, 11451, Riyadh, KSA, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
- Department of Mechanical Engineering and Renewable Energy, Technical Engineering College, The Islamic University, Najaf, Iraq
| |
Collapse
|
2
|
Li T, Lu YQ. Residual hyperglycemia after successful treatment of a patient with severe copper sulfate poisoning. J Zhejiang Univ Sci B 2024; 25:1120-1124. [PMID: 39743299 DOI: 10.1631/jzus.b2400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/11/2024] [Indexed: 01/04/2025]
Abstract
Copper sulfate is a frequently used copper compound in laboratory settings, with instances of poisoning being uncommon. A study conducted by the American Association of Poison Control Centers' National Poison Data System found that only 140 individuals were exposed to copper compounds over the course of a year, with five cases being intentional (Gummin et al., 2023). Severe poisoning from copper sulfate can result in isolated gastrointestinal injury (Galust et al., 2023), intravascular hemolysis (Adline et al., 2024), rhabdomyolysis (Richards et al., 2020), and other symptoms documented in the literature. However, there have been no reports of long-term uncontrolled hyperglycemia in patients with copper sulfate poisoning. This case study documents the treatment approach for a patient with unexplained, long-term, uncontrolled hyperglycemia, alongside multiple organ dysfunction resulting from intentional ingestion of a large dose of copper sulfate. This case report details the long-term complications in a patient's recovery from acute copper sulfate, highlighting the significance of ongoing monitoring and intervention.
Collapse
Affiliation(s)
- Ting Li
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou 310003, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou 310003, China.
| |
Collapse
|
3
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Issa HJ, Hassan MI, Mekkawy AM, El Sabry MI, Abousekken MSM. Benefit and potential risk: Effects of in ovo copper oxide nanoparticles supplementation on hatchability traits, organ weights and histological features of newly hatched chicks. J Anim Physiol Anim Nutr (Berl) 2024; 108:1641-1649. [PMID: 38890818 DOI: 10.1111/jpn.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
This investigation was directed to examine the influence of copper oxide nanoparticles (CuO-NPs) on the hatchability traits, and chick quality of newly hatched broiler chicks. A total of 480 eggs were randomly divided into four treatment groups, each consisting of three duplicates. As a negative control (NC), the first group was not injected; the second group was injected with saline and served as a positive control (PC), the third and fourth groups were injected with 30 and 60 ppm of (CuO-NPs)/egg. Eggs were injected into the amniotic fluid on the eighteenth day of the incubation period. Results showed that the hatchability, chick yield %, yolk free-body mass (YFBM), chick length, shank length (SL), and relative weight of the heart, gizzard and intestine of day-old broiler chicks were all unaffected by the in ovo injection of CuO-NPs. The Pasgar Score was slightly improved compared to the NC and PC groups. Also, the in ovo administration of CuO-NPs (60 ppm/egg) significantly increased the intestine length. Both levels of CuO-NPs significantly increased the concentration of Cu ions in the hepatic tissue. Additionally, different levels of tissue damage were seen in the liver of the birds that were given low or high dosages of CuO-NPs. Conclusively, the in ovo injection of CuO-NPs has a good result on the appearance of the chicks (Pasgar score). However, negative effect of CuO-NPs on liver tissue may raise concerns about the potential risks of applying CuO-NPs in ovo administration.
Collapse
Affiliation(s)
- Hussien Jamil Issa
- Department of Sustainability Development, Environmental Studies and Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mohamed I Hassan
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA- City), New Borg El-Arab, Alexandria, Egypt
| | - Aya M Mekkawy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed I El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mahmoud Saad M Abousekken
- Department of Sustainability Development, Environmental Studies and Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
5
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Wang Y, Liang X, Andrikopoulos N, Tang H, He F, Yin X, Li Y, Ding F, Peng G, Mortimer M, Ke PC. Remediation of Metal Oxide Nanotoxicity with a Functional Amyloid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310314. [PMID: 38582521 PMCID: PMC11187920 DOI: 10.1002/advs.202310314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Understanding the environmental health and safety of nanomaterials (NanoEHS) is essential for the sustained development of nanotechnology. Although extensive research over the past two decades has elucidated the phenomena, mechanisms, and implications of nanomaterials in cellular and organismal models, the active remediation of the adverse biological and environmental effects of nanomaterials remains largely unexplored. Inspired by recent developments in functional amyloids for biomedical and environmental engineering, this work shows their new utility as metallothionein mimics in the strategically important area of NanoEHS. Specifically, metal ions released from CuO and ZnO nanoparticles are sequestered through cysteine coordination and electrostatic interactions with beta-lactoglobulin (bLg) amyloid, as revealed by inductively coupled plasma mass spectrometry and molecular dynamics simulations. The toxicity of the metal oxide nanoparticles is subsequently mitigated by functional amyloids, as validated by cell viability and apoptosis assays in vitro and murine survival and biomarker assays in vivo. As bLg amyloid fibrils can be readily produced from whey in large quantities at a low cost, the study offers a crucial strategy for remediating the biological and environmental footprints of transition metal oxide nanomaterials.
Collapse
Affiliation(s)
- Yue Wang
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou510006China
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
| | - Xiufang Liang
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou510006China
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
| | - Nicholas Andrikopoulos
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Huayuan Tang
- Department of Engineering MechanicsHohai UniversityNanjing211100China
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Fei He
- College of Environmental Science and EngineeringKey Laboratory of Yangtze River Water EnvironmentTongji University1239 Siping RoadShanghai200092China
| | - Xiang Yin
- College of Environmental Science and EngineeringKey Laboratory of Yangtze River Water EnvironmentTongji University1239 Siping RoadShanghai200092China
| | - Yuhuan Li
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Liver Cancer InstituteZhongshan HospitalKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationFudan UniversityShanghai200032China
| | - Feng Ding
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Guotao Peng
- College of Environmental Science and EngineeringKey Laboratory of Yangtze River Water EnvironmentTongji University1239 Siping RoadShanghai200092China
| | - Monika Mortimer
- Laboratory of Environmental ToxicologyNational Institute of Chemical Physics and BiophysicsAkadeemia tee 23Tallinn12618Estonia
| | - Pu Chun Ke
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| |
Collapse
|
7
|
Anwar A, Khan FU, Younas W, Zaman M, Noorullah M, Li L, Zuberi A, Wang Y. Reduced toxic effects of nano‑copper sulfate in comparison of bulk CuSO 4 on biochemical parameters in the Rohu (Labeo rohita). Toxicol In Vitro 2024; 95:105766. [PMID: 38104743 DOI: 10.1016/j.tiv.2023.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Considering the wide application of nanoparticles in various fields of life and growing concern regarding their toxic effects, the present study was designed with the aim to evaluate the potential risks of using copper sulfate nanoparticles (CuSO4-NPs) in comparison to bulk form. Nanoparticles of CuSO4, having mean size of 73 nm were prepared by ball milling method, and fingerlings of Labeo rohita were exposed to two levels, 20 and 100 μg L-1 of CuSO4 in both bulk and nano forms for 28 days and their comparative effects on the metallothioneins (MTs), heat shock proteins 70 (HSP 70), lipid profile, cholesterol (CHOL) and triglyceraldehyde (TG) levels, activities of some metabolic enzymes Alanine transaminase (ALT), Aspartate transaminase (AST) Akaline phosphatase (ALP), and genes expressions of HSP-70, TNF-α and IL1-ß were investigated. CuSO4 showed the concentration and particle type dependent effects. The over expression of HSPs and MTs, significant decreases in CHOL, TG, low density lipid (LDL) levels and ALP activity, while significant increases in high density lipid (HDL)level as well as ALT and AST activities and HSP-70, TNF-α and IL1-β expressions were observed in response to higher concentration of both bulk and nano form of copper sulfate. At lower concentration (20 μg L-1), however, only bulk form showed toxicity. Thus, low concentrations of CuSO4-NPs pose negligible threat to freshwater fish.
Collapse
Affiliation(s)
- Azka Anwar
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Waqar Younas
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhib Zaman
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noorullah
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Amina Zuberi
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
8
|
He L, Zhao C, Xiao Q, Zhao J, Liu H, Jiang J, Cao Q. Profiling the Physiological Roles in Fish Primary Cell Culture. BIOLOGY 2023; 12:1454. [PMID: 38132280 PMCID: PMC10741176 DOI: 10.3390/biology12121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Fish primary cell culture has emerged as a valuable tool for investigating the physiological roles and responses of various cell types found in fish species. This review aims to provide an overview of the advancements and applications of fish primary cell culture techniques, focusing on the profiling of physiological roles exhibited by fish cells in vitro. Fish primary cell culture involves the isolation and cultivation of cells directly derived from fish tissues, maintaining their functional characteristics and enabling researchers to study their behavior and responses under controlled conditions. Over the years, significant progress has been made in optimizing the culture conditions, establishing standardized protocols, and improving the characterization techniques for fish primary cell cultures. The review highlights the diverse cell types that have been successfully cultured from different fish species, including gonad cells, pituitary cells, muscle cells, hepatocytes, kidney and immune cells, adipocyte cells and myeloid cells, brain cells, primary fin cells, gill cells, and other cells. Each cell type exhibits distinct physiological functions, contributing to vital processes such as metabolism, tissue regeneration, immune response, and toxin metabolism. Furthermore, this paper explores the pivotal role of fish primary cell culture in elucidating the mechanisms underlying various physiological processes. Researchers have utilized fish primary cell cultures to study the effects of environmental factors, toxins, pathogens, and pharmaceutical compounds on cellular functions, providing valuable insights into fish health, disease pathogenesis, and drug development. The paper also discusses the application of fish primary cell cultures in aquaculture research, particularly in investigating fish growth, nutrition, reproduction, and stress responses. By mimicking the in vivo conditions in vitro, primary cell culture has proven instrumental in identifying key factors influencing fish health and performance, thereby contributing to the development of sustainable aquaculture practices.
Collapse
Affiliation(s)
- Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Cheng Zhao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China;
| | - Qi Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Ju Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| |
Collapse
|
9
|
Razmara P, Zink L, Doering JA, Miller JGP, Wiseman SB, Pyle GG. The Combined Effect of Copper Nanoparticles and Microplastics on Transcripts Involved in Oxidative Stress Pathway in Rainbow Trout (Oncorhynchus Mykiss) Hepatocytes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:47. [PMID: 37740756 DOI: 10.1007/s00128-023-03811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Copper nanoparticles (CuNPs) and microplastics (MPs) are two emerging contaminants of freshwater systems. Despite their co-occurrence in many water bodies, the combined effects of CuNPs and MPs on aquatic organisms are not well-investigated. In this study, primary cultures of rainbow trout hepatocytes were exposed to dissolved Cu, CuNPs, MPs, or a combination of MPs and CuNPs for 48 h, and the transcript abundances of oxidative stress-related genes were investigated. Exposure to CuNPs or dissolved Cu resulted in a significant increase in the transcript abundances of two antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD). Exposure to CuNPs also led to an upregulation in the expression of Na+/K+ ATPase alpha 1 subunit (ATP1A1). Microplastics alone or in combination with CuNPs did not have a significant effect on abundances of the target gene transcripts. Overall, our findings suggested acute exposure to CuNPs or dissolved ions may induce oxidative stress in hepatocytes, and the Cu-induced effect on target gene transcripts was not associated with MPs.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Jon A Doering
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Justin G P Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Steve B Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
10
|
Qi N, Xing W, Li M, Liu J. Quercetin Alleviates Toxicity Induced by High Levels of Copper in Porcine Follicular Granulosa Cells by Scavenging Reactive Oxygen Species and Improving Mitochondrial Function. Animals (Basel) 2023; 13:2745. [PMID: 37685009 PMCID: PMC10486440 DOI: 10.3390/ani13172745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
CuSO4 is the most commonly used feed additive in pig production at present, but long-term ingestion of excessive copper would lead to chronic copper toxicity. High copper could reduce the reproductive efficiency of sows and seriously affect the development of the pig industry. Quercetin (QUE), a powerful antioxidant, reduces toxicity of a number of heavy metals. Porcine granulosa cells (pGCs) are crucial to the fate of follicle development. The present study found that high concentrations of CuSO4 induced ROS production, which resulted in decreased mRNA expression of antioxidant-related genes GPX4, CAT, and SOD2 and increased mRNA expression of SOD1, TRX, and HO-1. The protein expression of antioxidant enzymes SOD2 and HO-1 decreased. Moreover, the concentration of MDA increased, the activity of CAT decreased, and the content of GSH decreased. After high copper treatment, the mitochondrial membrane potential (MMP) was decreased and the morphological structure was changed. However, the combined treatment with Quercetin (QUE) reversed these changes, and the level of cellular oxidative stress decreased. Therefore, we conclude that high copper has oxidative toxicity to pGCs, and QUE could remove the ROS induced by high copper, protect mitochondria from oxidative stress damage, and improve the function of pGCs.
Collapse
Affiliation(s)
| | | | | | - Jiying Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (N.Q.); (W.X.); (M.L.)
| |
Collapse
|
11
|
Huang T, Li X, Maier M, O'Brien-Simpson NM, Heath DE, O'Connor AJ. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomater 2023; 158:56-79. [PMID: 36640952 DOI: 10.1016/j.actbio.2023.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Fungal infections pose a serious threat to human health and livelihoods. The number and variety of clinically approved antifungal drugs is very limited, and the emergence and rapid spread of resistance to these drugs means the impact of fungal infections will increase in the future unless alternatives are found. Despite the significance and major challenges associated with fungal infections, this topic receives significantly less attention than bacterial infections. A major challenge in the development of fungi-specific drugs is that both fungi and mammalian cells are eukaryotic and have significant overlap in their cellular machinery. This lack of fungi-specific drug targets makes human cells vulnerable to toxic side effects from many antifungal agents. Furthermore, antifungal drug resistance necessitates higher doses of the drugs, leading to significant human toxicity. There is an urgent need for new antifungal agents, specifically those that can limit the emergence of new resistant species. Non-drug nanomaterials have primarily been explored as antibacterial agents in recent years; however, they are also a promising source of new antifungal candidates. Thus, this article reviews current research on the use of inorganic nanoparticles as antifungal agents. We also highlight challenges facing antifungal nanoparticles and discuss possible future research opportunities in this field. STATEMENT OF SIGNIFICANCE: Fungal infections pose a growing threat to human health and livelihood. The rapid spread of resistance to current antifungal drugs has led to an urgent need to develop alternative antifungals. Nanoparticles have many properties that could make them useful antimycotic agents. To the authors' knowledge, there is no published review so far that has comprehensively summarized the current development status of antifungal inorganic nanomaterials, so we decided to fill this gap. In this review, we discussed the state-of-the-art research on antifungal inorganic nanoparticles including metal, metal oxide, transition-metal dichalcogenides, and inorganic non-metallic particle systems. Future directions for the design of inorganic nanoparticles with higher antifungal efficacy and lower toxicity are described as a guide for further development in this important area.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xin Li
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Maier
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Döndü M, Özdemir N, Demirak A, Keskin F, Zeynalova N. Bioaccumulation and human health risk assessment of some heavy metals in sediments, Sparus aurata and Salicornia europaea in Güllük Lagoon, the south of Aegean Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18227-18243. [PMID: 36208380 DOI: 10.1007/s11356-022-23463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In the current study, it was aimed to determine the sediment in Sparus aurata (Linnaeus 1758) tissues and Salicornia europaea L. Cu, Zn Fe, Hg, Cd, Pb and Mn concentration distributions in Güllük Lagoon which is located in the south of Aegean Sea and under the influence of anthropogenic activities by means of metal pollution and health indices and to investigate the effects of these metals on public health. The concentration range of Cu, Zn, Fe, Hg, Cd, Pb and Mn in sediment samples was determined as 12.16-26.00, 1.62-2.03, 7.77-8.36, 7.52-16.15, 0.071-0.40, 7.99-13.74 and 12.11-12.63 mg kg-1, respectively. Cu and Hg concentrations in sediment were found to be higher than sediment quality guidelines standards. In addition, according to the enrichment factor (EF), Hg, Cd and Cu were found to show above moderate enrichment. Cu, Zn, Fe, Hg, Cd and Mn concentrations in S. aurata muscle tissue were 1.31 ± 2.30, 1.01 ± 0.24, 3.43 ± 0.75, 2.79 ± 0.85, 0.01 ± 0.01 and 1.80 ± 1.12 mg kg-1, respectively. S. europaea heavy metals (HMs) concentrations were determined as Cu = 10.97 ± 3.20, Zn = 0.74 ± 0.62, Fe = 5.69 ± 0.22, Hg = 9.62 ± 8.84, Cd = 0.53 ± 0.33, Pb = 0.22 ± 0.26 and Mn = 8.61 ± 0.14 mg kg-1. It was seen that Hg in S. aurata muscle tissue and Hg in S. europaea concentrations exceeded the limit values determined for consumption purposes. Target hazard quotient (THQ) and total target hazard quotient (TTHQ) values were found to be < 1 for S. aurata and S. europaea. When all these results were considered, it was determined that the metals that could pose a potential ecological and health risk were Hg, Cd and Cu in the study area.
Collapse
Affiliation(s)
- Mustafa Döndü
- Department of Aquatic Sciences, Faculty of Fisheries, Mugla Sitki Kocman University, Mugla, 48000, Turkey.
| | - Nedim Özdemir
- Department of Aquatic Sciences, Faculty of Fisheries, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Ahmet Demirak
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Feyyaz Keskin
- Environmental Problems Research and Application Center, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Nigar Zeynalova
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| |
Collapse
|
13
|
Ghasemi P, Shafiee G, Ziamajidi N, Abbasalipourkabir R. Copper Nanoparticles Induce Apoptosis and Oxidative Stress in SW480 Human Colon Cancer Cell Line. Biol Trace Elem Res 2022:10.1007/s12011-022-03458-2. [PMID: 36274109 DOI: 10.1007/s12011-022-03458-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022]
Abstract
Cu nanoparticles (CuNPs) have various applications in biomedicine, owing to their unique properties. As the effect of CuNPs on the induction of oxidative stress and apoptosis in the human colorectal cancer cell line SW480 has not yet been studied, we investigated the toxicity and mechanism of action of these NPs in SW480 cells. MTT assay was performed to assess the effect of the particles on the viability of SW480 cells. The levels of oxidative stress were assessed after 24 h of treatment with CuNPs by evaluating the Reactive Oxygen Specious (ROS) production. The antioxidant enzyme activity was assessed using a colorimetric method. To investigate the effect of NPs on cellular apoptosis, Hoechst33258 staining was performed, and the expression of Bax, Bcl-2, and p53 was evaluated by qRT-PCR. The MTT assay results showed that CuNPs inhibited the viability of SW480 cells. Moreover, the increase in ROS production at all three concentrations (31, 68, and 100 μg/ml) was significant. It has been observed that CuNPs lead to increased expression of Bax and p53, and decreased expression of Bcl-2. Hoechst staining was performed to confirm apoptosis. In conclusion, the induction of apoptosis demonstrated the anticancer potential of the CuNPs.
Collapse
Affiliation(s)
- Parvin Ghasemi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517619657, Iran
| | - Gholamreza Shafiee
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517619657, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517619657, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517619657, Iran.
| |
Collapse
|
14
|
Gupta A, Maruthapandi M, Das P, Saravanan A, Jacobi G, Natan M, Banin E, Luong JHT, Gedanken A. Cuprous Oxide Nanoparticles Decorated Fabric Materials with Anti-biofilm Properties. ACS APPLIED BIO MATERIALS 2022; 5:4310-4320. [PMID: 35952666 DOI: 10.1021/acsabm.2c00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considering the global spread of bacterial infections, the development of anti-biofilm surfaces with high antimicrobial activities is highly desired. This work unraveled a simple, sonochemical method for coating Cu2O nanoparticles (NPs) on three different flexible substrates: polyester (PE), nylon 2 (N2), and polyethylene (PEL). The introduction of Cu2O NPs on these substrates enhanced their surface hydrophobicity, induced ROS generation, and completely inhibited the growth of sensitive (Escherichia coli and Staphyloccocus aureus) and drug-resistant (MDR E. coli and MRSA) planktonic and biofilm. The experimental results confirmed that Cu2O-PE exhibited complete biofilm mass reduction ability for all four strains, whereas Cu2O-N2 showed more than 99% biomass inhibition against both drug-resistant and sensitive pathogens in 6 h. Moreover, Cu2O-PEL also indicated a 99.95, 97.73, 98.00, and 99.20% biomass reduction of MRSA, MDR E. coli, E. coli, and S. aureus, respectively. All substrates were investigated for time-dependent inhibitions, and the associated biofilm mass and log reduction were evaluated. The mechanisms of Cu2O NP action against the mature biofilms include the generation of reactive oxygen species (ROS) as well as electrostatic interaction between Cu2O NPs and bacterial membranes. The current study could pave the way for the commercialization of sonochemically coated Cu2O NP flexible substrates for the prevention of microbial contamination in hospitals and industrial environments.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Moorthy Maruthapandi
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Poushali Das
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gila Jacobi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan5290002, Israel
| | - Michal Natan
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan5290002, Israel
| | - Ehud Banin
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan5290002, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
15
|
Li J, Chen C, Xia T. Understanding Nanomaterial-Liver Interactions to Facilitate the Development of Safer Nanoapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106456. [PMID: 35029313 PMCID: PMC9040585 DOI: 10.1002/adma.202106456] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Nanomaterials (NMs) are widely used in commercial and medical products, such as cosmetics, vaccines, and drug carriers. Exposure to NMs via various routes such as dermal, inhalation, and ingestion has been shown to gain access to the systemic circulation, resulting in the accumulation of NMs in the liver. The unique organ structures and blood flow features facilitate the liver sequestration of NMs, which may cause adverse effects in the liver. Currently, most in vivo studies are focused on NMs accumulation at the organ level and evaluation of the gross changes in liver structure and functions, however, cell-type-specific uptake and responses, as well as the molecular mechanisms at cellular levels leading to effects at organ levels are lagging. Herein, the authors systematically review diverse interactions of NMs with the liver, specifically on major liver cell types including Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), and hepatocytes as well as the detailed molecular mechanisms involved. In addition, the knowledge gained on nano-liver interactions that can facilitate the development of safer nanoproducts and nanomedicine is also reviewed.
Collapse
Affiliation(s)
- Jiulong Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
16
|
Phukan P, Kulshrestha A, Kumar A, chakraborti S, Chattopadhyay P, Sarma D. Cu(II) ionic liquid promoted Simple and Economical Synthesis of 1,4-disubstituted-1,2,3-triazoles with Low Catalyst Loading. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01980-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Kulasza M, Skuza L. Changes of Gene Expression Patterns from Aquatic Organisms Exposed to Metal Nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168361. [PMID: 34444111 PMCID: PMC8394891 DOI: 10.3390/ijerph18168361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022]
Abstract
Metal nanoparticles are used in various branches of industry due to their physicochemical properties. However, with intensive use, most of the waste and by-products from industries and household items, and from weathering of products containing nanoparticles, end up in the waters. These pollutants pose a risk to aquatic organisms, one of which is a change in the expression of various genes. Most of the data that focus on metal nanoparticles and their effects on aquatic organisms are about copper and silver nanoparticles, which is due to their popularity in general industry, but information about other nanoparticulate metals can also be found. This review aims to evaluate gene expression patterns in aquatic organisms by metal nanoparticles, specifying details about the transcription changes of singular genes and, if possible, comparing the changes in the expression of the same genes in different organisms. To achieve this goal, available publications tackling this problem are studied and summarized. Nanometals were found to have a modulatory effect on gene expression in different aquatic organisms. Data show both up-regulation and down-regulation of genes. Nano silver, nano copper, and nano zinc show a regulatory effect on genes involved in inflammation and apoptosis, cell cycle regulation and ROS defense as well as in general stress response and have a negative effect on the expression of genes involved in development. Nano gold, nano titanium, nano zinc, and nano iron tend to elevate the transcripts of genes involved in response to ROS, but also pro-apoptotic genes and down-regulate DNA repair-involved genes and anti-apoptotic-involved genes. Nano selenium showed a rare effect that is protective against harmful effects of other nanoparticles, but also induced up-regulation of stress response genes. This review focuses only on the effects of metal nanoparticles on the expression of various genes of aquatic organisms from different taxonomic groups.
Collapse
Affiliation(s)
- Mateusz Kulasza
- Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland;
- Correspondence:
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 71-415 Szczecin, Poland
| |
Collapse
|
18
|
Pessina A, Di Vincenzo M, Maradonna F, Marchegiani F, Olivieri F, Randazzo B, Gioacchini G, Carnevali O. Polydatin Beneficial Effects in Zebrafish Larvae Undergoing Multiple Stress Types. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031116. [PMID: 33513921 PMCID: PMC7908490 DOI: 10.3390/ijerph18031116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Polydatin is a polyphenol, whose beneficial properties, including anti-inflammatory and antioxidant activity, have been largely demonstrated. At the same time, copper has an important role in the correct organism homeostasis and alteration of its concentration can induce oxidative stress. In this study, the efficacy of polydatin to counteract the stress induced by CuSO4 exposure or by caudal fin amputation was investigated in zebrafish larvae. The study revealed that polydatin can reduced the stress induced by a 2 h exposure to 10 µM CuSO4 by lowering the levels of il1b and cxcl8b.1 and reducing neutrophils migration in the head and along the lateral line. Similarly, polydatin administration reduced the number of neutrophils in the area of fin cut. In addition, polydatin upregulates the expression of sod1 mRNA and CAT activity, both involved in the antioxidant response. Most of the results obtained in this study support the working hypothesis that polydatin administration can modulate stress response and its action is more effective in mitigating the effects rather than in preventing chemical damages.
Collapse
Affiliation(s)
- Andrea Pessina
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Mariangela Di Vincenzo
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Francesca Marchegiani
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60100 Ancona, Italy; (F.M.); (F.O.)
| | - Fabiola Olivieri
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60100 Ancona, Italy; (F.M.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Basilio Randazzo
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
- Correspondence:
| |
Collapse
|
19
|
Al-Zharani M, Qurtam AA, Daoush WM, Eisa MH, Aljarba NH, Alkahtani S, Nasr FA. Antitumor effect of copper nanoparticles on human breast and colon malignancies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1587-1595. [PMID: 32851522 DOI: 10.1007/s11356-020-09843-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Breast and colon carcinomas are two types of common cancers which lead to cancer-related deaths. Due to their cytotoxic potential against cancer cells, recently many studies of copper nanoparticles (CuNPs) have been conducted. In the current work, we aim to evaluate the cytotoxic and apoptosis-inducing effects of CuNPs on the human breast (MCF-7) and colon (LoVo) cancer cells. CuNPs were prepared in starch-stabilizing aqueous solution by electroless deposition technique in alkaline tartrate bath using formaldehyde as the reducing agent of copper sulfate. The obtained CuNPs were characterized by SEM, TEM, and XRD to confirm the particle size, morphology, and chemical composition. Standard colorimetric MTT and LDH assays were used to estimate the cytotoxic effect of CuNPs on MCF-7 and LoVo cells. Furthermore, CuNP-treated cells undergoing apoptosis were assessed based on the expression of apoptosis-related genes using qRT-PCR. The results indicate that the mean particle size of the synthesized CuNPs was ~ 50-60 nm, and they were spherical in shape with mainly the chemical structure of the copper metallic phase. MTT assay revealed that CuNPs induced cytotoxicity in tested cells with IC50 rates of 16.4 (in MCF-7) and 21.6 μg/ml (in LoVo). Moreover, qRT-PCR analysis showed that CuNPs caused a significant increment of Bax, P53, and Caspases 9, 8, and 3 genes. Overall, the anticancer potential of prepared CuNPs were reported through apoptotic induction which highlight the potential use of CuNPs as an efficient anticancer agent.
Collapse
Affiliation(s)
- Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| | - Ashraf Ahmed Qurtam
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Walid Mohamed Daoush
- Chemistry Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Production Technology, Faculty of Technology and Education, Helwan University, Saray-El Qoupa, El Sawah Street, Cairo, 11281, Egypt
| | - Mohamed Hassan Eisa
- Physics Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Physics Department, College of Science, Sudan University of Science and Technology, 11113, Khartoum, Sudan
| | - Nada Hamad Aljarba
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
20
|
Riaz A, Riaz MA, Shahzad K, Ijaz B, Khan MS. Deposition trend of subchronic exposure of copper oxide nanoparticles (CuO-NPs) and its effect on the antioxidant system of Labeo rohita. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00315-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
21
|
Bezza FA, Tichapondwa SM, Chirwa EMN. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci Rep 2020; 10:16680. [PMID: 33028867 PMCID: PMC7541485 DOI: 10.1038/s41598-020-73497-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
Cuprous oxide nanoparticles (Cu2O NPs) were fabricated in reverse micellar templates by using lipopeptidal biosurfactant as a stabilizing agent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrum (EDX) and UV-Vis analysis were carried out to investigate the morphology, size, composition and stability of the nanoparticles synthesized. The antibacterial activity of the as-synthesized Cu2O NPs was evaluated against Gram-positive B. subtilis CN2 and Gram-negative P. aeruginosa CB1 strains, based on cell viability, zone of inhibition and minimal inhibitory concentration (MIC) indices. The lipopeptide stabilized Cu2O NPs with an ultra-small size of 30 ± 2 nm diameter exhibited potent antimicrobial activity against both Gram-positive and Gram-negative bacteria with a minimum inhibitory concentration of 62.5 µg/mL at pH5. MTT cell viability assay displayed a median inhibition concentration (IC50) of 21.21 μg/L and 18.65 μg/mL for P. aeruginosa and B. subtilis strains respectively. Flow cytometric quantification of intracellular reactive oxygen species (ROS) using 2,7-dichlorodihydrofluorescein diacetate staining revealed a significant ROS generation up to 2.6 to 3.2-fold increase in the cells treated with 62.5 µg/mL Cu2O NPs compared to the untreated controls, demonstrating robust antibacterial activity. The results suggest that lipopeptide biosurfactant stabilized Cu2O NPs could have promising potential for biocompatible bactericidal and therapeutic applications.
Collapse
Affiliation(s)
- Fisseha A Bezza
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Shepherd M Tichapondwa
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Evans M N Chirwa
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
22
|
Alhusaini A, Fadda LM, Ali HM, Hasan IH, Ali RA, Zakaria EA. Mitigation of acetamiprid - induced renotoxicity by natural antioxidants via the regulation of ICAM, NF-kB and TLR 4 pathways. Pharmacol Rep 2019; 71:1088-1094. [PMID: 31629938 DOI: 10.1016/j.pharep.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Acetamiprid (ACMP) is a member of the neonicotinoid group of insecticides. It is extensively used worldwide. The misuse of ACMP creates danger hazards to human and animal. METHODS ACMP induced renal damage evidenced by an increase in kidney injury biomarkers. So the goal of this work is to clarify the reno protective effect of Quercetin (Qrctn) and/or Nano-glutathione (N-Gluta) solely or in combination to counterbalance the danger effect of ACMP. All treatments with the previous agents were coadministered orally with ACMP for one month. RESULTS ACMP ingestion caused a significant rise in serum creatinin, urea, and uric acid, TNF α along with renal cystatin C, lipid peroxidation and nitric oxide with the concomitant decline in the levels of reduced glutathione and IL-10 levels. Protein expression of ICAM was upregulated as well as mRNA expression of NF-κB while mRNA expression of Nrf2 was down-regulated. Immune histochemistry of TLR 4 revealed strong immune reaction. The administration of Qrctn or N-Gluta either individually or together modulated all the preceding aforementioned parameters. CONCLUSION Fascinatingly Qrctn and N-Gluta combination was the most powerful regimen to frustrate ACMP reno-toxicity and may be deliberate as a hopeful applicant for renal therapy.
Collapse
Affiliation(s)
- Ahlam Alhusaini
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila M Fadda
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa M Ali
- Genetic and Cytology Department, National Research Center, Dokki, Egypt; Common First Year Deanship, King Saud University, Riyadh, Saudi Arabia.
| | - Iman H Hasan
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rehab A Ali
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Enas A Zakaria
- Pharmaceutics Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Hassanen EI, Tohamy AF, Issa MY, Ibrahim MA, Farroh KY, Hassan AM. Pomegranate Juice Diminishes The Mitochondria-Dependent Cell Death And NF-kB Signaling Pathway Induced By Copper Oxide Nanoparticles On Liver And Kidneys Of Rats. Int J Nanomedicine 2019; 14:8905-8922. [PMID: 31814719 PMCID: PMC6863130 DOI: 10.2147/ijn.s229461] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pomegranate (Punica granatum L) has been used since ancient times in the traditional medicine of several cultures, particularly in the Middle East. It is an essential commercial crop full of bioactive compounds with several medical applications. Pomegranate is very popular for its biological effects exerted by phenolic compounds via free radical scavenging abilities. It has revealed high antioxidant and anti-inflammatory activities and is beneficial for the amelioration of liver and kidney diseases. PURPOSE To elucidate the potential efficacy of pomegranate juice (PJ) against copper oxide nanoparticles (CuO-NPs)-induced apoptosis, inflammation, and oxidative stress damage. STUDY DESIGN 37 nm sized CuO-NPs were prepared by precipitation method and characterized by using X-ray diffractometer (XRD), Zetasizer nano-and high-resolution transmission electron microscope (HR-TEM). 30 Wistar rats were partitioned into 6 equal groups as follows: Group 1 (negative control), groups 2 & 3 (PJ control groups), group 4 (CuO-NPs group), groups 5 & 6 (CuO-NPs + PJ groups). Methods: Hepato-renal protective effect of PJ was evaluated by measuring levels of serum marker enzymes (ALT, AST,blood urea nitrogen and creatinine). Cu NPs bioaccumulation in liver and kidneys was determined by using atomic absorption spectrophotometer. The oxidative stress markers, Rt-PCR analysis, histopathological and immunohistochemical studies were carried out in the liver and kidneys to support the above parameters. RESULTS Rats injected with CuO-NPs showed higher levels of the above serum marker enzymes, alteration of oxidant-antioxidant balance together with severe pathological alterations in liver and kidney tissues and overexpression of both caspase-3 and nuclear factor kappa B protein (NF-ĸB) associated with upregulation of Bax gene and downregulation of Bcl2 gene in these organs. PJ ameliorated all of the above toxicological parameters. CONCLUSION PJ was proved to be a potential hepato-renal protective agent against liver and kidney damage induced by CuO-NPs via its antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - AF Tohamy
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y Farroh
- Nanotechnology Department, Agricultural Research Center, Giza, Egypt
| | - Azza M Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
24
|
Yao Y, Zang Y, Qu J, Tang M, Zhang T. The Toxicity Of Metallic Nanoparticles On Liver: The Subcellular Damages, Mechanisms, And Outcomes. Int J Nanomedicine 2019; 14:8787-8804. [PMID: 31806972 PMCID: PMC6844216 DOI: 10.2147/ijn.s212907] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Metallic nanoparticles (MNPs) are new engineering materials with broad prospects for biomedical applications; thus, their biosafety has drawn great concern. The liver is the main detoxification organ of vertebrates. However, many issues concerning the interactions between MNPs and biological systems (cells and tissues) are unclear, particularly the toxic effects of MNPs on hepatocytes and other liver cells. Numerous researchers have shown that some MNPs can induce decreased cell survival rate, production of reactive oxygen species (ROS), mitochondrial damage, DNA strand breaks, and even autophagy, pyroptosis, apoptosis, or other forms of cell death. Our review focuses on the recent researches on the liver toxicity of MNPs and its mechanisms at cellular and subcellular levels to provide a scientific basis for the subsequent hepatotoxicity studies of MNPs.
Collapse
Affiliation(s)
- Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Yiteng Zang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Jing Qu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| |
Collapse
|
25
|
Maharramov AM, Hasanova UA, Suleymanova IA, Osmanova GE, Hajiyeva NE. The engineered nanoparticles in food chain: potential toxicity and effects. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1412-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
26
|
Fouad D, Badr A, Attia HA. Hepatoprotective activity of raspberry ketone is mediated via inhibition of the NF-κB/TNF-α/caspase axis and mitochondrial apoptosis in chemically induced acute liver injury. Toxicol Res (Camb) 2019; 8:663-676. [PMID: 31588343 PMCID: PMC6762009 DOI: 10.1039/c9tx00068b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Raspberry Ketone (RK) is a natural phenolic compound which is marketed nowadays as a popular weight-reducing remedy, with reported antioxidant and anti-inflammatory activities. However, its biological activity is not fully elucidated. Hepatotoxicity is the leading cause of acute liver failure in Europe and North America, and its management is still challenging. Therefore, this study aimed to assess the therapeutic detoxification activity of RK against liver injury in vivo and to explore the underlying mechanisms using carbon tetrachloride (CCl4)-induced hepatotoxicity as a model. First, a dose-response study using 4 different doses, 25, 50, 100, and 200 mg kg-1 day-1, of RK was conducted. RK was administered for 5 days as a pretreatment, followed by a single dose of CCl4 (1 ml kg-1, 1 : 1 v/v CCl4 : olive oil). The RK dose of 200 mg kg-1 showed the greatest protective effect and was selected for further investigations. CCl4 hepatotoxicity was confirmed by elevation of liver enzymes, and histopathological examination. CCl4-induced oxidative stress was evident from increased lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) along with depleted superoxide dismutase (SOD), reduced glutathione (GSH), and total antioxidant capacity (TAC). Increased oxidative stress was associated with increased cytochrome c expression with subsequent activation of caspase-9 and caspase-3, in addition to DNA fragmentation reflecting apoptosis. CCl4 also induced the expression of inflammatory cytokines (NF-κB and TNF-α). Interestingly, RK hepatoprotective activity was evident from the reduction of liver enzymes, and maintenance of hepatocyte integrity and microstructures as evaluated by histopathological examination using H and E, and transmission electron microscopy. The antioxidant activity of RK was demonstrated by the increase of TAC, SOD, and GSH, with a concomitant decrease of the TBARS level. Moreover, RK pretreatment inhibited CCl4-induced upregulation of inflammatory mediators. RK antiapoptotic activity was indicated by the reduction of the expression of cytoplasmic cytochrome-C, a decrease of caspases, and inhibition of DNA fragmentation. In conclusion, this study demonstrates that RK is a promising hepatoprotective agent. The underlying mechanisms include antioxidant, anti-inflammatory, and anti-apoptotic activities. This is the first study reporting RK hepatoprotective activity in acute hepatic injury and approves its antiapoptotic effect in the liver.
Collapse
Affiliation(s)
- Dalia Fouad
- Department of Zoology , College of Science , King Saud University , P.O. Box 22452 , Riyadh 11459 , Saudi Arabia
- Department of Zoology and Entomology , Faculty of Science , Helwan University , Ein Helwan , Cairo , Egypt
| | - Amira Badr
- Department of Pharmacology and Toxicology , College of Pharmacy , King Saud University , P.O. Box 22452 , Riyadh 11459 , Saudi Arabia . ; Tel: +96659575917
- Department of Pharmacology and Toxicology , College of Pharmacy , Ain Shams University , Heliopolis , Cairo , Egypt
| | - Hala A Attia
- Department of Pharmacology and Toxicology , College of Pharmacy , King Saud University , P.O. Box 22452 , Riyadh 11459 , Saudi Arabia . ; Tel: +96659575917
- Department of Biochemistry , College of Pharmacy , Mansoura University , Mansoura , Egypt
| |
Collapse
|
27
|
Qiang S, Carey T, Arbab A, Song W, Wang C, Torrisi F. Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures. NANOSCALE 2019; 11:9912-9919. [PMID: 31066397 DOI: 10.1039/c9nr00463g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two-dimensional (2D) materials are a rapidly growing area of interest for wearable electronics, due to their flexible and unique electrical properties. All-textile-based wearable electronic components are key to enable future wearable electronics. Single component electrical elements have been demonstrated; however heterostructure-based assemblies, combining electrically conductive and dielectric textiles such as all-textile capacitors are currently missing. Here we demonstrate a superhydrophobic conducting fabric with a sheet resistance Rs∼ 2.16 kΩ□-1, and a pinhole-free dielectric fabric with a relative permittivity εr∼ 2.35 enabled by graphene and hexagonal boron nitride inks, respectively. The different fabrics are then integrated to engineer the first example of an all-textile-based capacitive heterostructure with an effective capacitance C ∼ 26 pF cm-2 and a flexibility of ∼1 cm bending radius. The capacitor sustains 20 cycles of repeated washing and more than 100 cycles of repeated bending. Finally, an AC low-pass filter with a cut-off frequency of ∼15 kHz is integrated by combining the conductive polyester and the capacitor. These results pave the way toward all-textile vertically integrated electronic devices.
Collapse
Affiliation(s)
- Siyu Qiang
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. and Cambridge Graphene Centre, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Tian Carey
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Adrees Arbab
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Weihua Song
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Chaoxia Wang
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Felice Torrisi
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| |
Collapse
|
28
|
Hu S, Yang J, Rao M, Wang Y, Zhou F, Cheng G, Xia W, Zhu C. Copper nanoparticle-induced uterine injury in female rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:252-261. [PMID: 30556269 DOI: 10.1002/tox.22680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
Copper nanoparticles (Cu-NPs) have been used increasingly in various products and applications. Although recent studies have reported that exposure to Cu-NPs leads to organ accumulation and obvious toxicity, it remains unclear whether Cu-NPs can be translocated to and cause damage in the uterus. In this study, we investigated the potential for uterine injury and gene expression patterns in female rats exposed to 3.12, 6.25, or 12.5 mg/kg/d Cu-NPs via intraperitoneal injection for 14 consecutive days. The results indicated that exposure to Cu-NPs led to significant decreases in the relative uterine weight coefficients and increases in inflammatory cell infiltration, mitochondrial swelling and vacuolization, shortened and reduced endometrial epithelial cell microvilli, and apoptosis. Furthermore, exposure to Cu-NPs increased malondialdehyde (MDA) accumulation and decreased superoxide dismutase (SOD) levels. Signal transduction mechanism studies indicated that exposure to Cu-NPs activated caspases 3, 8, and 9 and BH3 interacting domain death agonist (tBid), reduced B cell leukemia/lymphoma 2 (Bcl-2) expression, and increased the expression of apoptotic peptidase activating factor 1 (Apaf-1), BCL2-associated X, apoptosis regulator (Bax), and cytochrome c. A microarray analysis revealed significant alterations in the expression of 963 genes; of these, 622 were upregulated and 341 were downregulated. The results of further evaluations of some altered genes, including matrix metallopeptidase 12 (Mmp12), using quantitative RT-PCR agreed with the microarray findings. These results provide strong evidence that Cu-NPs can trigger both intrinsic and extrinsic apoptotic pathways to mediate uterine injury, resulting in oxidative stress-related changes in gene expression.
Collapse
Affiliation(s)
- Shifu Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Rao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yingying Wang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Zhou
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guiping Cheng
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changhong Zhu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
29
|
Shedid SM, Abdel-Magied N, Saada HN. Role of betaine in liver injury induced by the exposure to ionizing radiation. ENVIRONMENTAL TOXICOLOGY 2019; 34:123-130. [PMID: 30311401 DOI: 10.1002/tox.22664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress, apoptosis, and fibrosis may play a major role in the development of radiation-induced liver damage. Betaine, a native compound widely present in beetroot, was reported to possess hepato-protective properties. The objective of this study was to investigate the influence of betaine on radiation-induced liver damage. Animals were exposed to 9 Gy applied in 3 doses of 3 Gy/wk. Betaine (400 mg/kg/d), was orally supplemented to rats after the first radiation dose, and daily during the irradiation period. Animals were sacrificed 1 day after the last dose of radiation. The results showed that irradiation has induced oxidative stress in the liver denoted by a significant elevation in malondialdehyde, protein carbonyl, and 8-hydroxy-2-deoxyguanosine with a significant reduction in catalase activity and glutathione (GSH) content. The activity of the detoxification enzyme cytochrome P450 (CYP450) increased while GSH transferase (GSH-T) decreased. The activity of the apoptotic marker caspase-3 increased concomitant with increased hyaluronic acid, hydroxyproline, laminin (LN), and collagen IV. These alterations were associated with a significant increase of gamma-glutamyl transferase, alkaline phosphatase and alanine and aspartate aminotransferase markers of liver dysfunction. Betaine treatment has significantly attenuated oxidative stress, decreased the activity of CYP450, enhanced GSH-T, reduced the activity of caspase-3, and the level of fibrotic markers concomitant with a significant improvement of liver function. In conclusion, betaine through its antioxidant activity and by enhancing liver detoxification and reducing apoptosis may alleviate the progression of liver fibrosis and exert a beneficial impact on radiation-induced liver damage.
Collapse
Affiliation(s)
- Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Helen N Saada
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
30
|
Torrealba D, More-Bayona JA, Wakaruk J, Barreda DR. Innate Immunity Provides Biomarkers of Health for Teleosts Exposed to Nanoparticles. Front Immunol 2019; 9:3074. [PMID: 30687312 PMCID: PMC6335578 DOI: 10.3389/fimmu.2018.03074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the unique properties of nanoparticles have fostered novel applications in various fields such as biology, pharmaceuticals, agriculture, and others. Unfortunately, their rapid integration into daily life has also led to environmental concerns due to uncontrolled release of nanoparticles into the aquatic environment. Despite increasing awareness of nanoparticle bioaccumulation in the aquatic environment, much remains to be learned about their impact on aquatic organisms and how to best monitor these effects. Herein, we provide the first review of innate immunity as an emerging tool to assess the health of fish following nanoparticle exposure. Fish are widely used as sentinels for aquatic ecosystem pollution and innate immune parameters offer sensitive and reliable tools that can be harnessed for evaluation of contamination events. The most frequent biomarkers highlighted in literature to date include, but are not limited to, parameters associated with leukocyte dynamics, oxidative stress, and cytokine production. Taken together, innate immunity offers finite and sensitive biomarkers for assessment of the impact of nanoparticles on fish health.
Collapse
Affiliation(s)
- Débora Torrealba
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Juan A. More-Bayona
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Franscescon F, Mazon SC, Bertoncello KT, Boligon AA, Sachett A, Rambo CL, Rosemberg DB, Magro JD, Siebel AM. Protective role of jaboticaba Plinia peruviana peel extract in copper-induced cytotoxicity in Allium cepa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35322-35329. [PMID: 30341761 DOI: 10.1007/s11356-018-3420-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Jaboticaba Plinia peruviana (Poir.) Govaerts is a Brazilian berry that presents high levels of polyphenols, which may play a key role in preventing cytotoxic and genotoxic effects of harmful agents. Although copper is an essential micronutrient that plays an important role in organisms, high copper concentrations may trigger toxicity to animals and plants. Here, we investigated whether Plinia peruviana hydroalcoholic extract prevents copper-induced cytotoxicity in Allium cepa root cells. Five different anthocyanins and phenolic compounds were identified in Plinia peruviana extract. Importantly, the exposure to 1.53 mg/L copper for 24 h impaired mitotic index, as well as increased mitosis disturbances and triggered DNA damage. Pre-incubation with Plinia peruviana extract (0.25 g/L and 0.75 g/L) for 3 h prevented copper-induced changes in the mitotic index and reduced the number of abnormal cells. In conclusion, we suggest that Plinia peruviana peel extract has protective effects against cellular and genetic disturbances induced by copper.
Collapse
Affiliation(s)
- Francini Franscescon
- Laboratory of Genetics and Molecular Ecotoxicology, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Environmental Sciences, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Samara C Mazon
- Laboratory of Genetics and Molecular Ecotoxicology, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
- Graduate Program in Environmental Sciences, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Kanandra T Bertoncello
- Laboratory of Genetics and Molecular Ecotoxicology, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aline A Boligon
- Phytochemical Research Laboratory, Department of Industrial Pharmacy, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adrieli Sachett
- Laboratory of Genetics and Molecular Ecotoxicology, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Cassiano L Rambo
- Laboratory of Genetics and Molecular Ecotoxicology, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
- Laboratory of Neurochemistry and Psychopharmacology, Graduate Program in Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Denis B Rosemberg
- Laboratory of Genetics and Molecular Ecotoxicology, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jacir Dal Magro
- Laboratory of Genetics and Molecular Ecotoxicology, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
- Graduate Program in Environmental Sciences, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Anna M Siebel
- Laboratory of Genetics and Molecular Ecotoxicology, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
- Graduate Program in Environmental Sciences, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
| |
Collapse
|
32
|
Alharbi B, Fadda L, Ali HM. Evaluation of the renoprotective effect of nano turmeric against toxic dose of copper sulfate: Role of vascular cell adhesion molecule-1, kidney injury molecule-1, and signal transducer and activator of transcription 3 protein expressions. J Biochem Mol Toxicol 2018; 33:e22243. [DOI: 10.1002/jbt.22243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Bshayer Alharbi
- Student at Faculty of Pharmacy, King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Laila Fadda
- Pharmacology Department; Faculty of Pharmacy, King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Hanaa M Ali
- First Common Year Deanship, King Saud University; Riyadh Kingdom of Saudi Arabia
- Department of Genetics and Cytology; National Research Centre; Dokki Egypt
| |
Collapse
|
33
|
Oxidative Stress in the Muscles of the Fish Nile Tilapia Caused by Zinc Oxide Nanoparticles and Its Modulation by Vitamins C and E. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6926712. [PMID: 29849910 PMCID: PMC5907420 DOI: 10.1155/2018/6926712] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
The effects of zinc oxide nanoparticles (ZnONPs) on antioxidants in Nile tilapia muscles and the protective role of vitamins C and E were examined. Two hundred males of Nile tilapia were held in aquaria (10 fishes/aquarium). Fishes were divided into 5 groups: 40 fishes in each group; the first group was the control; the 2nd and 3rd groups were exposed to 1 and 2 mg/L of ZnONPs, respectively; and the 4th and 5th group were exposed to 1 and 2 mg/L of ZnONPs and treated with a (500 mg/kg diet) mixture of vitamin C and E mixture (250 mg/kg diet of each). Muscles were collected on the 7th and 15th day of treatments. Muscle malondialdehyde, reduced glutathione levels, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activities were measured after treatments. Relative quantification of SOD, CAT, GR, GPx, and GST mRNA transcripts was detected in the muscles. Results showed that MDA and GSH concentration; SOD, CAT, GR, GPx, and GST activities; and mRNA expression were significantly decreased in groups exposed to ZnONPs. Vitamins C and E significantly ameliorated the toxic effects of ZnONPs. In conclusion, vitamins C and E have the ability to ameliorate ZnONP oxidative stress toxicity in Nile tilapia.
Collapse
|
34
|
Ostaszewska T, Śliwiński J, Kamaszewski M, Sysa P, Chojnacki M. Cytotoxicity of silver and copper nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:908-915. [PMID: 29071536 PMCID: PMC5756561 DOI: 10.1007/s11356-017-0494-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/16/2017] [Indexed: 05/02/2023]
Abstract
Nanoparticles are commonly used in the industry and are present in consumer goods; therefore, evaluation of their potential toxicity is necessary. The aim of the present study was to assess the cytotoxic effects of the nanoparticles of silver (AgNPs) at the concentration of 1.5 mg L-1 and copper (CuNPs) at 0.15 mg L-1 on rainbow trout (Oncorhynchus mykiss) hepatocytes after 28 days of exposure. Histological analysis revealed dilated sinusoids, shrunken hepatocytes, nuclear necrosis, and increased number of Kupffer cells in the liver of fish exposed to nanoparticles. The lowest hepatocyte proliferation index was observed in fish treated with AgNPs. Ultrastructural studies revealed mitochondrial edema and cristolysis, dilated and loosened endoplasmic reticulum, cytoplasm vacuolation, accumulation of lipid droplets, glycogen depletion, and formation of myelin-like bodies. The results also revealed that the liver of fish exposed to copper nanoparticles showed higher regenerative potential indicated by higher proliferation index, more abundant glycogen, and more numerous Kupffer cells compared to the fish treated with silver nanoparticles.
Collapse
Affiliation(s)
- Teresa Ostaszewska
- Department of Ichthyobiology, Fisheries and Aquaculture Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Jerzy Śliwiński
- Department of Ichthyobiology, Fisheries and Aquaculture Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Maciej Kamaszewski
- Department of Ichthyobiology, Fisheries and Aquaculture Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Paweł Sysa
- Center of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Gagarina 11, 87-100, Toruń, Poland
| | - Maciej Chojnacki
- Department of Ichthyobiology, Fisheries and Aquaculture Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| |
Collapse
|
35
|
Yang J, Hu S, Rao M, Hu L, Lei H, Wu Y, Wang Y, Ke D, Xia W, Zhu CH. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats. Int J Nanomedicine 2017; 12:5959-5971. [PMID: 28860760 PMCID: PMC5571856 DOI: 10.2147/ijn.s139215] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have reported the accumulation of copper nanoparticles (Cu NPs) in organs and the corresponding damage, although whether Cu NPs can be translocated to the ovaries and their ovarian toxicity are still unknown. In this study, three groups of female rats were injected with 3.12, 6.25, or 12.5 mg/kg Cu NPs for 14 consecutive days. The pathological changes, hormone levels, apoptosis and apoptotic proteins, oxidative stress, and gene expression characteristics in the ovaries were then investigated. The results demonstrated that the Cu NPs exhibited obvious accumulation in the rat ovaries, leading to ovarian injury, an imbalance of sex hormones, and ovarian cell apoptosis. Cu NP exposure activated caspase 3, caspase 8, caspase 9, and tBid, decreased the protein levels of Bcl-2, increased the expression levels of the proteins Bax and cytochrome c, and promoted malondialdehyde (MDA) accumulation and superoxide dismutase (SOD) reduction. Furthermore, gene microarray analysis showed that Cu NPs (12.5 mg/kg/d) caused 321 differentially expressed genes. Of these, 180 and 141 genes were upregulated and downregulated, respectively. Hsd17b1, Hsd3b1, Hsd3b6, and Hsd3b were involved in steroid and hormone metabolism, whereas Mt3 and Cebpb were associated with apoptosis. Overall, these findings provide strong evidence that Cu NPs trigger both intrinsic and extrinsic apoptotic pathways and regulate key ovarian genes in oxidative stress-mediated ovarian dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Shifu Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Meng Rao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Lixia Hu
- Department of Histology and Embryology, Preclinical Medicine College, Xinxiang Medical University, Henan Province, Xinxiang
| | - Hui Lei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Yanqing Wu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Yingying Wang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Dandan Ke
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Wei Xia
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei.,Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chang-Hong Zhu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei.,Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|