1
|
Gómez HAG, Niederauer GF, Minatel IO, Antunes ERM, Carneiro MJ, Sawaya ACHF, Zanus MC, Ritschel PS, Quecini V, Pereira Lima GP, Marques MOM. Wine metabolome and sensory analyses demonstrate the oenological potential of novel grapevine genotypes for sustainable viticulture in warm climates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:329-341. [PMID: 39171419 DOI: 10.1002/jsfa.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Genetic breeding is essential to develop grapevine genotypes adapted to warm climates and resistant to pathogens. Traditionally cultivated Vitis vinifera is susceptible to biotic and abiotic stresses. Winemakers and consumers, however, perceive wines from non-vinifera or hybrid cultivars as inferior. In this study, sensory analyses and comprehensive metabolite profiling by targeted and untargeted approaches were used to investigate the oenological potential of wines from grapes of genotypes developed throughout four breeding cycles to improve climate adaptation, sugar contents and berry color. RESULTS Novel genotypes had higher yields and the wines exhibited increased contents of polyphenols, including anthocyanins. Volatile monoterpenes in the wines decreased throughout breeding cycles in the absence of selective pressure. Polyphenol contents were higher in intermediate wines, with hydroxytyrosol contents reaching up to three times reported values. Mouthfeel attributes astringency, leafy taste, flavor and body, and persistency showed significant correlation with untargeted features. Supervised model-based analyses of the metabolome effectively discriminate wines from distinct genetic origins. CONCLUSION Taken together, the results demonstrate the potential of novel grapevine genotypes to a more sustainable viticulture and quality wine production in warm climates. Comprehensive metabolite profiling of the wines reveals that genotype clustering is dependent on the chemical class and that traits not submitted to selective pressure are also altered by breeding. Supervised multivariate models were effective to predict the genetic origin of the wines based on the metabolic profile, indicating the potential of the technique to identify biomarkers for wines from sustainable genotypes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Héctor Alonzo Gómez Gómez
- School of Agriculture, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Plant Genetic Resources Center, Agronomic Institute (IAC), Campinas, São Paulo, Brazil
- Academic Department of Food, Faculty of Technological Sciences, National University of Agriculture, Catacamas, Honduras
| | | | - Igor Otavio Minatel
- Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | | | | | | | | | | | - Vera Quecini
- Embrapa Uva e Vinho, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
2
|
Duley G, Ceci AT, Longo E, Boselli E. Oenological potential of wines produced from disease-resistant grape cultivars. Compr Rev Food Sci Food Saf 2023; 22:2591-2610. [PMID: 37078603 DOI: 10.1111/1541-4337.13155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Within the EU, changes in policy and public sentiment have made it more urgent to consider the adoption of sustainable agricultural practices. Consequently, one of the EU's goals is to reduce pesticide use by 50 per cent by 2030, including in viticulture. One of the proposed approaches is to expand the use of disease resistant hybrid grape-cultivars (DRHGC), such as 'PIWI' grapes (German, Pilzwiderstandsfähige Rebsorten), and to introduce new DRHGCs. However, the characteristics of DRHGCs are different from those of Vitis vinifera, which makes it necessary to take measures and make changes in winemaking technology to maintain high wine quality. This paper examines the chemistry of wines made from DRHGC and discusses their impact on aroma and flavor profiles. It also reviews the main winemaking practices suggested to produce high-quality wines from DRHGCs. The chemistry of DRHGCs is different to wine produced from V. vinifera, which can lead to both challenges during winemaking and unusual flavor profiles. Although newer DRHGCs have been bred to avoid unexpected flavors, many DRHGCs are still rich in proteins and polysaccharides. This can make tannin extraction difficult and produce wines with little astringency. In addition to this, new or alternative winemaking techniques such as thermovinification and the use of alternative yeast strains (non-Saccharomyces) can be used to produce wines from DRHGCs that are acceptable to consumers.
Collapse
Affiliation(s)
- Gavin Duley
- Oenolab, NOI TechPark Alto Adige/Südtirol, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Adriana Teresa Ceci
- Oenolab, NOI TechPark Alto Adige/Südtirol, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Edoardo Longo
- Oenolab, NOI TechPark Alto Adige/Südtirol, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Emanuele Boselli
- Oenolab, NOI TechPark Alto Adige/Südtirol, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
3
|
De Mori G, Cipriani G. Marker-Assisted Selection in Breeding for Fruit Trait Improvement: A Review. Int J Mol Sci 2023; 24:ijms24108984. [PMID: 37240329 DOI: 10.3390/ijms24108984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Breeding fruit species is time-consuming and expensive. With few exceptions, trees are likely the worst species to work with in terms of genetics and breeding. Most are characterized by large trees, long juvenile periods, and intensive agricultural practice, and environmental variability plays an important role in the heritability evaluations of every single important trait. Although vegetative propagation allows for the production of a significant number of clonal replicates for the evaluation of environmental effects and genotype × environment interactions, the spaces required for plant cultivation and the intensity of work necessary for phenotypic surveys slow down the work of researchers. Fruit breeders are very often interested in fruit traits: size, weight, sugar and acid content, ripening time, fruit storability, and post-harvest practices, among other traits relevant to each individual species. The translation of trait loci and whole-genome sequences into diagnostic genetic markers that are effective and affordable for use by breeders, who must choose genetically superior parents and subsequently choose genetically superior individuals among their progeny, is one of the most difficult tasks still facing tree fruit geneticists. The availability of updated sequencing techniques and powerful software tools offered the opportunity to mine tens of fruit genomes to find out sequence variants potentially useful as molecular markers. This review is devoted to analysing what has been the role of molecular markers in assisting breeders in selection processes, with an emphasis on the fruit traits of the most important fruit crops for which examples of trustworthy molecular markers have been developed, such as the MDo.chr9.4 marker for red skin colour in apples, the CCD4-based marker CPRFC1, and LG3_13.146 marker for flesh colour in peaches, papayas, and cherries, respectively.
Collapse
Affiliation(s)
- Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
4
|
Alahakoon D, Fennell A. Genetic analysis of grapevine root system architecture and loci associated gene networks. FRONTIERS IN PLANT SCIENCE 2023; 13:1083374. [PMID: 36816477 PMCID: PMC9932984 DOI: 10.3389/fpls.2022.1083374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Own-rooted grapevines and grapevine rootstocks are vegetatively propagated from cuttings and have an adventitious root system. Unraveling the genetic underpinnings of the adventitious root system architecture (RSA) is important for improving own-rooted and grafted grapevine sustainability for a changing climate. Grapevine RSA genetic analysis was conducted in an Vitis sp. 'VRS-F2' population. Nine root morphology, three total root system morphology, and two biomass traits that contribute to root anchorage and water and nutrient uptake were phenotyped. Quantitative trait loci (QTL) analysis was performed using a high density integrated GBS and rhAmpSeq genetic map. Thirty-one QTL were detected for eleven of the RSA traits (surface area, root volume, total root length, fresh weight, number of tips, forks or links, longest root and average root diameter, link length, and link surface area) revealing many small effects. Several QTL were colocated on chromosomes 1, 9, 13, 18, and 19. QTL with identical peak positions on chromosomes 1 or 13 were enriched for AP2-EREBP, AS2, C2C2-CO, HMG, and MYB transcription factors, and QTL on chromosomes 9 or 13 were enriched for the ALFIN-LIKE transcription factor and regulation of autophagy pathways. QTL modeling for individual root traits identified eight models explaining 13.2 to 31.8% of the phenotypic variation. 'Seyval blanc' was the grandparent contributing to the allele models that included a greater surface area, total root length, and branching (number of forks and links) traits promoting a greater root density. In contrast, V. riparia 'Manitoba 37' contributed the allele for greater average branch length (link length) and diameter, promoting a less dense elongated root system with thicker roots. LATERAL ORGAN BOUNDARY DOMAIN (LBD or AS2/LOB) and the PROTODERMAL FACTOR (PFD2 and ANL2) were identified as important candidate genes in the enriched pathways underlying the hotspots for grapevine adventitious RSA. The combined QTL hotspot and trait modeling identified transcription factors, cell cycle and circadian rhythm genes with a known role in root cell and epidermal layer differentiation, lateral root development and cortex thickness. These genes are candidates for tailoring grapevine root system texture, density and length in breeding programs.
Collapse
Affiliation(s)
| | - Anne Fennell
- Agronomy, Horticulture, and Plant Science Department, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
5
|
Duval H, Coindre E, Ramos-Onsins SE, Alexiou KG, Rubio-Cabetas MJ, Martínez-García PJ, Wirthensohn M, Dhingra A, Samarina A, Arús P. Development and Evaluation of an Axiom TM 60K SNP Array for Almond ( Prunus dulcis). PLANTS (BASEL, SWITZERLAND) 2023; 12:242. [PMID: 36678957 PMCID: PMC9866729 DOI: 10.3390/plants12020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A high-density single nucleotide polymorphism (SNP) array is essential to enable faster progress in plant breeding for new cultivar development. In this regard, we have developed an Axiom 60K almond SNP array by resequencing 81 almond accessions. For the validation of the array, a set of 210 accessions were genotyped and 82.8% of the SNPs were classified in the best recommended SNPs. The rate of missing data was between 0.4% and 2.7% for the almond accessions and less than 15.5% for the few peach and wild accessions, suggesting that this array can be used for peach and interspecific peach × almond genetic studies. The values of the two SNPs linked to the RMja (nematode resistance) and SK (bitterness) genes were consistent. We also genotyped 49 hybrids from an almond F2 progeny and could build a genetic map with a set of 1159 SNPs. Error rates, less than 1%, were evaluated by comparing replicates and by detection of departures from Mendelian inheritance in the F2 progeny. This almond array is commercially available and should be a cost-effective genotyping tool useful in the search for new genes and quantitative traits loci (QTL) involved in the control of agronomic traits.
Collapse
Affiliation(s)
- Henri Duval
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Eva Coindre
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Sebastian E. Ramos-Onsins
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Konstantinos G. Alexiou
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| | - Maria J. Rubio-Cabetas
- CITA (Agrifood Research and Technology Centre of Aragon), Department of Plant Science, Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Pedro J. Martínez-García
- CEBAS (Centro de Edafología y Biología Aplicada del Segura), CSIC, Department of Plant Breeding, Campus Universitario de Espinardo, 30100 Espinardo, Spain
| | - Michelle Wirthensohn
- Waite Research Institute, University of Adelaide, PMB 1 Glen, Osmond, SA 5064, Australia
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Anna Samarina
- Thermo Fisher Scientific, Frankfurter Str. 129B, 64293 Darmstadt, Germany
| | - Pere Arús
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
6
|
Varanasi A, Worthington M, Nelson L, Brown A, Chizk TM, Threlfall R, Howard L, Conner P, Figueroa-Balderas R, Massonnet M, Cantu D, Clark JR. Glutathione S-transferase: a candidate gene for berry color in muscadine grapes (Vitis rotundifolia). G3 (BETHESDA, MD.) 2022; 12:6550507. [PMID: 35302606 PMCID: PMC9073687 DOI: 10.1093/g3journal/jkac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Muscadine grapes (Vitis rotundifolia Michx.) are a specialty crop cultivated in the southern United States. Muscadines (2n = 40) belong to the Muscadinia subgenus of Vitis, while other cultivated grape species belong to the subgenus Euvitis (2n = 38). The muscadine berry color locus was mapped to a 0.8 Mbp region syntenic with chromosome 4 of Vitis vinifera. In this study, we identified glutathione S-transferase4 as a likely candidate gene for anthocyanin transport within the berry color locus. PCR and Kompetitive allele-specific PCR genotyping identified a single intragenic SNP (C/T) marker corresponding to a proline to leucine mutation within the muscadine glutathione S-transferase4 (VrGST4) that differentiated black (CC and CT) from bronze (TT) muscadines in 126 breeding selections, 76 cultivars, and 359 progeny from 3 mapping populations. Anthocyanin profiling on a subset of the progeny indicated a dominant VrGST4 action. VrGST4 was expressed in skins of both black and bronze muscadines at similar levels. While nonsynonymous polymorphisms between black and bronze muscadines were discovered in VrGSTF12, another Type I GST-coding gene in the muscadine color locus, this gene was ruled out as a possible candidate for berry color because RNA sequencing indicated it is not expressed in berry skins at véraison from black or bronze genotypes. These results suggest that the bronze phenotype in muscadines is regulated by a mechanism distinct from the MybA gene cluster responsible for berry color variation in Vitis vinifera.
Collapse
Affiliation(s)
- Aruna Varanasi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Lacy Nelson
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Autumn Brown
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Thomas Mason Chizk
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Renee Threlfall
- Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Luke Howard
- Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Patrick Conner
- Department of Horticulture, University of Georgia, Tifton, GA 31793, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture & Enology, University of California, Davis, Davis, CA 95616, USA
| | - Mélanie Massonnet
- Department of Viticulture & Enology, University of California, Davis, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture & Enology, University of California, Davis, Davis, CA 95616, USA
| | - John R Clark
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Alahakoon D, Fennell A, Helget Z, Bates T, Karn A, Manns D, Mansfield AK, Reisch BI, Sacks G, Sun Q, Zou C, Cadle-Davidson L, Londo JP. Berry Anthocyanin, Acid, and Volatile Trait Analyses in a Grapevine-Interspecific F2 Population Using an Integrated GBS and rhAmpSeq Genetic Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:696. [PMID: 35270166 PMCID: PMC8912348 DOI: 10.3390/plants11050696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Increased map density and transferability of markers are essential for the genetic analysis of fruit quality and stress tolerance in interspecific grapevine populations. We used 1449 GBS and 2000 rhAmpSeq markers to develop a dense map for an interspecific F2 population (VRS-F2) that was derived by selfing a single F1 from a Vitis riparia x 'Seyval blanc' cross. The resultant map contained 2519 markers spanning 1131.3 cM and was highly collinear with the Vitis vinifera 'PN40024' genome. Quantitative trait loci (QTL) for berry skin color and flower type were used to validate the map. Four rhAmpSeq transferable markers were identified that can be used in pairs (one pistillate and one hermaphroditic) to predict pistillate and hermaphrodite flower type with ≥99.7% accuracy. Total and individual anthocyanin diglucoside QTL mapped to chromosome 9 near a 5-O-GLUCOSYLTRANSFERASE candidate gene. Malic acid QTL were observed on chromosome 1 and 6 with two MALATE DEHYRDROGENASE CYTOPLASMIC 1 and ALUMINUM-ACTIVATED MALATE TRANSPORTER 2-LIKE (ALMT) candidate genes, respectively. Modeling malic acid identified a potential QTL on chromosome 8 with peak position in proximity of another ALMT. A first-ever reported QTL for the grassy smelling volatile (E)-2-hexenal was found on chromosome 2 with a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE candidate gene near peak markers.
Collapse
Affiliation(s)
- Dilmini Alahakoon
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Anne Fennell
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Zachary Helget
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Terry Bates
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (T.B.); (G.S.)
| | - Avinash Karn
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| | - David Manns
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.M.); (A.K.M.)
| | - Anna Katharine Mansfield
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.M.); (A.K.M.)
| | - Bruce I. Reisch
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| | - Gavin Sacks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (T.B.); (G.S.)
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA; (Q.S.); (C.Z.)
| | - Cheng Zou
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA; (Q.S.); (C.Z.)
| | | | - Jason P. Londo
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| |
Collapse
|
8
|
Reshef N, Karn A, Manns DC, Mansfield AK, Cadle-Davidson L, Reisch B, Sacks GL. Stable QTL for malate levels in ripe fruit and their transferability across Vitis species. HORTICULTURE RESEARCH 2022; 9:uhac009. [PMID: 35369130 PMCID: PMC8968676 DOI: 10.1093/hr/uhac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Malate is a major contributor to the sourness of grape berries (Vitis spp.) and their products, such as wine. Excessive malate at maturity, commonly observed in wild Vitis grapes, is detrimental to grape and wine quality and complicates the introgression of valuable disease resistance and cold hardy genes through breeding. This study investigated an interspecific Vitis family that exhibited strong and stable variation in malate at ripeness for five years and tested the separate contribution of accumulation, degradation, and dilution to malate concentration in ripe fruit in the last year of study. Genotyping was performed using transferable rhAmpSeq haplotype markers, based on the Vitis collinear core genome. Three significant QTL for ripe fruit malate on chromosomes 1, 7, and 17, accounted for over two-fold and 6.9 g/L differences, and explained 40.6% of the phenotypic variation. QTL on chromosomes 7 and 17 were stable in all and in three out of five years, respectively. Variation in pre-veraison malate was the major contributor to variation in ripe fruit malate (39%), and based on two and five years of data, respectively, their associated QTL overlapped on chromosome 7, indicating a common genetic basis. However, use of transferable markers on a closely related Vitis family did not yield a common QTL across families. This suggests that diverse physiological mechanisms regulate the levels of this key metabolite in the Vitis genus, a conclusion supported by a review of over a dozen publications from the past decade, showing malate-associated genetic loci on all 19 chromosomes.
Collapse
Affiliation(s)
| | - Avinash Karn
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - David C Manns
- Department of Food Science, Cornell AgriTech, Geneva, NY 14456, USA
| | | | | | - Bruce Reisch
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Gavin L Sacks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
10
|
Weldon WA, Knaus BJ, Grünwald NJ, Havill JS, Block MH, Gent DH, Cadle-Davidson LE, Gadoury DM. Transcriptome-Derived Amplicon Sequencing Markers Elucidate the U.S. Podosphaera macularis Population Structure Across Feral and Commercial Plantings of Humulus lupulus. PHYTOPATHOLOGY 2021; 111:194-203. [PMID: 33044132 DOI: 10.1094/phyto-07-20-0299-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Obligately biotrophic plant pathogens pose challenges in population genetic studies due to their genomic complexities and elaborate culturing requirements with limited biomass. Hop powdery mildew (Podosphaera macularis) is an obligately biotrophic ascomycete that threatens sustainable hop production. P. macularis populations of the Pacific Northwest (PNW) United States differ from those of the Midwest and Northeastern United States, lacking one of two mating types needed for sexual recombination and harboring two strains that are differentially aggressive on the cultivar Cascade and able to overcome the Humulus lupulus R-gene R6 (V6), respectively. To develop a high-throughput marker platform for tracking the flow of genotypes across the United States and internationally, we used an existing transcriptome of diverse P. macularis isolates to design a multiplex of 54 amplicon sequencing markers, validated across a panel of 391 U.S. samples and 123 international samples. The results suggest that P. macularis from U.S. commercial hop yards form one population closely related to P. macularis of the United Kingdom, while P. macularis from U.S. feral hop locations grouped with P. macularis of Eastern Europe. Included in this multiplex was a marker that successfully tracked V6-virulence in 65 of 66 samples with a confirmed V6-phenotype. A new qPCR assay for high-throughput genotyping of P. macularis mating type generated the highest resolution distribution map of P. macularis mating type to date. Together, these genotyping strategies enable the high-throughput and inexpensive tracking of pathogen spread among geographical regions from single-colony samples and provide a roadmap to develop markers for other obligate biotrophs.
Collapse
Affiliation(s)
- William A Weldon
- Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Brian J Knaus
- Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - Niklaus J Grünwald
- U.S. Department of Agriculture-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR 97330
| | - Joshua S Havill
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Mary H Block
- Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - David H Gent
- U.S. Department of Agriculture-Agricultural Research Service Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| | - Lance E Cadle-Davidson
- Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456
- U.S. Department of Agriculture-Agricultural Research Service Grape Genetics Research Unit, Geneva, NY 14456
| | - David M Gadoury
- Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456
| |
Collapse
|
11
|
Patel S, Robben M, Fennell A, Londo JP, Alahakoon D, Villegas-Diaz R, Swaminathan P. Draft genome of the Native American cold hardy grapevine Vitis riparia Michx. 'Manitoba 37'. HORTICULTURE RESEARCH 2020; 7:92. [PMID: 32528704 PMCID: PMC7261805 DOI: 10.1038/s41438-020-0316-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/31/2023]
Abstract
Vitis riparia, a critically important Native American grapevine species, is used globally in rootstock and scion breeding and contributed to the recovery of the French wine industry during the mid-19th century phylloxera epidemic. This species has abiotic and biotic stress tolerance and the largest natural geographic distribution of the North American grapevine species. Here we report an Illumina short-read 369X coverage, draft de novo heterozygous genome sequence of V. riparia Michx. 'Manitoba 37' with the size of ~495 Mb for 69,616 scaffolds and a N50 length of 518,740 bp. Using RNAseq data, 40,019 coding sequences were predicted and annotated. Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis of predicted gene models found 96% of the complete BUSCOs in this assembly. The assembly continuity and completeness were further validated using V. riparia ESTs, BACs, and three de novo transcriptome assemblies of three different V. riparia genotypes resulting in >98% of respective sequences/transcripts mapping with this assembly. Alignment of the V. riparia assembly and predicted CDS with the latest V. vinifera 'PN40024' CDS and genome assembly showed 99% CDS alignment and a high degree of synteny. An analysis of plant transcription factors indicates a high degree of homology with the V. vinifera transcription factors. QTL mapping to V. riparia 'Manitoba 37' and V. vinifera PN40024 has identified genetic relationships to phenotypic variation between species. This assembly provides reference sequences, gene models for marker development and understanding V. riparia's genetic contributions in grape breeding and research.
Collapse
Affiliation(s)
- Sagar Patel
- Agronomy, Horticulture and Plant Science Department and BioSNTR, South Dakota State University, Brookings, SD 57006 USA
| | - Michael Robben
- Agronomy, Horticulture and Plant Science Department and BioSNTR, South Dakota State University, Brookings, SD 57006 USA
| | - Anne Fennell
- Agronomy, Horticulture and Plant Science Department and BioSNTR, South Dakota State University, Brookings, SD 57006 USA
| | - Jason P. Londo
- Grape Genetics Research Unit, USDA ARS, Geneva, NY 14456 USA
| | - Dilmini Alahakoon
- Agronomy, Horticulture and Plant Science Department and BioSNTR, South Dakota State University, Brookings, SD 57006 USA
| | - Roberto Villegas-Diaz
- Agronomy, Horticulture and Plant Science Department and BioSNTR, South Dakota State University, Brookings, SD 57006 USA
| | - Padmapriya Swaminathan
- Agronomy, Horticulture and Plant Science Department and BioSNTR, South Dakota State University, Brookings, SD 57006 USA
| |
Collapse
|
12
|
Duchêne É, Dumas V, Butterlin G, Jaegli N, Rustenholz C, Chauveau A, Bérard A, Le Paslier MC, Gaillard I, Merdinoglu D. Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:993-1008. [PMID: 31932953 DOI: 10.1007/s00122-019-03524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/23/2019] [Indexed: 05/08/2023]
Abstract
In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.
Collapse
Affiliation(s)
- Éric Duchêne
- SVQV, Univ. Strasbourg, INRAE, 68000, Colmar, France.
| | - Vincent Dumas
- SVQV, Univ. Strasbourg, INRAE, 68000, Colmar, France
| | | | | | | | | | | | | | - Isabelle Gaillard
- BPMP, Univ. Montpellier, CNRS, INRAE, SupAgro, 34000, Montpellier, France
| | | |
Collapse
|
13
|
Guillaumie S, Decroocq S, Ollat N, Delrot S, Gomès E, Cookson SJ. Dissecting the control of shoot development in grapevine: genetics and genomics identify potential regulators. BMC PLANT BIOLOGY 2020; 20:43. [PMID: 31996141 PMCID: PMC6988314 DOI: 10.1186/s12870-020-2258-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/20/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Grapevine is a crop of major economic importance, yet little is known about the regulation of shoot development in grapevine or other perennial fruits crops. Here we combine genetic and genomic tools to identify candidate genes regulating shoot development in Vitis spp. RESULTS An F2 population from an interspecific cross between V. vinifera and V. riparia was phenotyped for shoot development traits, and three Quantitative Trait Loci (QTLs) were identified on linkage groups (LGs) 7, 14 and 18. Around 17% of the individuals exhibited a dwarfed phenotype. A transcriptomic study identified four candidate genes that were not expressed in dwarfed individuals and located within the confidence interval of the QTL on LG7. A deletion of 84,482 bp was identified in the genome of dwarfed plants, which included these four not expressed genes. One of these genes was VviCURLY LEAF (VviCLF), an orthologue of CLF, a regulator of shoot development in Arabidopsis thaliana. CONCLUSIONS The phenotype of the dwarfed grapevine plants was similar to that of clf mutants of A. thaliana and orthologues of the known targets of CLF in A. thaliana were differentially expressed in the dwarfed plants. This suggests that CLF, a major developmental regulator in A. thaliana, also controls shoot development in grapevine.
Collapse
Affiliation(s)
- Sabine Guillaumie
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France.
| | - Stéphane Decroocq
- UMR1332 BFP, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Nathalie Ollat
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Serge Delrot
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Eric Gomès
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Sarah J Cookson
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| |
Collapse
|
14
|
Construction of a High-Density Genetic Map and Mapping of Firmness in Grapes ( Vitis vinifera L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2020; 21:ijms21030797. [PMID: 31991832 PMCID: PMC7037167 DOI: 10.3390/ijms21030797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Berry firmness is one of the most important quality traits in table grapes. The underlying molecular and genetic mechanisms for berry firmness remain unclear. We constructed a high-density genetic map based on whole-genome resequencing to identify loci associated with berry firmness. The genetic map had 19 linkage groups, including 1662 bin markers (26,039 SNPs), covering 1463.38 cM, and the average inter-marker distance was 0.88 cM. An analysis of berry firmness in the F1 population and both parents for three consecutive years revealed continuous variability in F1, with a distribution close to the normal distribution. Based on the genetic map and phenotypic data, three potentially significant quantitative trait loci (QTLs) related to berry firmness were identified by composite interval mapping. The contribution rate of each QTL ranged from 21.5% to 28.6%. We identified four candidate genes associated with grape firmness, which are related to endoglucanase, abscisic acid (ABA), and transcription factors. A qRT-PCR analysis revealed that the expression of abscisic-aldehyde oxidase-like gene (VIT_18s0041g02410) and endoglucanase 3 gene (VIT_18s0089g00210) in Muscat Hamburg was higher than in Crimson Seedless at the veraison stage, which was consistent with that of parent berry firmness. These results confirmed that VIT_18s0041g02410 and VIT_18s0089g00210 are candidate genes associated with berry firmness.
Collapse
|
15
|
Zou C, Karn A, Reisch B, Nguyen A, Sun Y, Bao Y, Campbell MS, Church D, Williams S, Xu X, Ledbetter CA, Patel S, Fennell A, Glaubitz JC, Clark M, Ware D, Londo JP, Sun Q, Cadle-Davidson L. Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus. Nat Commun 2020; 11:413. [PMID: 31964885 PMCID: PMC6972940 DOI: 10.1038/s41467-019-14280-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Transferable DNA markers are essential for breeding and genetics. Grapevine (Vitis) breeders utilize disease resistance alleles from congeneric species ~20 million years divergent, but existing Vitis marker platforms have cross-species transfer rates as low as 2%. Here, we apply a marker strategy targeting the inferred Vitis core genome. Incorporating seven linked-read de novo assemblies and three existing assemblies, the Vitis collinear core genome is estimated to converge at 39.8 Mb (8.67% of the genome). Adding shotgun genome sequences from 40 accessions enables identification of conserved core PCR primer binding sites flanking polymorphic haplotypes with high information content. From these target regions, we develop 2,000 rhAmpSeq markers as a PCR multiplex and validate the panel in four biparental populations spanning the diversity of the Vitis genus, showing transferability increases to 91.9%. This marker development strategy should be widely applicable for genetic studies in many taxa, particularly those ~20 million years divergent.
Collapse
Affiliation(s)
- Cheng Zou
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Avinash Karn
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | - Bruce Reisch
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | - Allen Nguyen
- Integrated DNA Technologies, Redwood City, CA, 94063, USA
| | - Yongming Sun
- Integrated DNA Technologies, Redwood City, CA, 94063, USA
| | - Yun Bao
- Integrated DNA Technologies, Redwood City, CA, 94063, USA
| | | | | | | | - Xia Xu
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA
| | - Craig A Ledbetter
- USDA-ARS, Crop Diseases, Pests and Genetics Research, Parlier, CA, 93648, USA
| | - Sagar Patel
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Anne Fennell
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Jeffrey C Glaubitz
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew Clark
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jason P Londo
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA
| | - Qi Sun
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
16
|
Lin J, Massonnet M, Cantu D. The genetic basis of grape and wine aroma. HORTICULTURE RESEARCH 2019; 6:81. [PMID: 31645942 PMCID: PMC6804543 DOI: 10.1038/s41438-019-0163-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 05/23/2023]
Abstract
The grape is one of the oldest and most important horticultural crops. Grape and wine aroma has long been of cultural and scientific interest. The diverse compound classes comprising aroma result from multiple biosynthetic pathways. Only fairly recently have researchers begun to elucidate the genetic mechanisms behind the biosynthesis and metabolism of grape volatile compounds. This review summarizes current findings regarding the genetic bases of grape and wine aroma with an aim towards highlighting areas in need of further study. From the literature, we compiled a list of functionally characterized genes involved in berry aroma biosynthesis and present them with their corresponding annotation in the grape reference genome.
Collapse
Affiliation(s)
- Jerry Lin
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
17
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
18
|
Liang Z, Duan S, Sheng J, Zhu S, Ni X, Shao J, Liu C, Nick P, Du F, Fan P, Mao R, Zhu Y, Deng W, Yang M, Huang H, Liu Y, Ding Y, Liu X, Jiang J, Zhu Y, Li S, He X, Chen W, Dong Y. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat Commun 2019; 10:1190. [PMID: 30867414 PMCID: PMC6416300 DOI: 10.1038/s41467-019-09135-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/21/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding the Vitis species at the genomic level is important for cultivar improvement of grapevine. Here we report whole-genome genetic variation at single-base resolution of 472 Vitis accessions, which cover 48 out of 60 extant Vitis species from a wide geographic distribution. The variation helps to identify a recent dramatic expansion and contraction of effective population size in the domesticated grapevines and that cultivars from the pan-Black Sea region have a unique demographic history in comparison to the other domesticated cultivars. We also find selective sweeps for berry edibility and stress resistance improvement. Furthermore, we find associations between candidate genes and important agronomic traits, such as berry shape and aromatic compounds. These results demonstrate resource value of the resequencing data for illuminating the evolutionary biology of Vitis species and providing targets for grapevine genetic improvement. Despite the importance of grapevine cultivation in human history and the economic values of cultivar improvement, large-scale genomic variation data are lacking. Here the authors resequence 472 Vitis accessions and use the identified genetic variations for domestication history, demography, and GWAS analyses.
Collapse
Affiliation(s)
- Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Nowbio Biotechnology Company, Kunming, 650201, China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuemei Ni
- BGI, BGI-Shenzhen, Shenzhen, 518120, China.,BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jianhui Shao
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76128, Germany
| | - Fei Du
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ruzhi Mao
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Yifan Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Weiping Deng
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Min Yang
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Yixiang Liu
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiqing Ding
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China. .,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China. .,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China. .,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.
| |
Collapse
|
19
|
Teh SL, Rostandy B, Awale M, Luby JJ, Fennell A, Hegeman AD. Genetic analysis of stilbenoid profiles in grapevine stems reveals a major mQTL hotspot on chromosome 18 associated with disease-resistance motifs. HORTICULTURE RESEARCH 2019; 6:121. [PMID: 31728196 PMCID: PMC6838171 DOI: 10.1038/s41438-019-0203-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 05/09/2023]
Abstract
Grapevine (Vitis spp.) contains a wealth of phytochemicals that have received considerable attention due to health-promoting properties and biological activities as phytoalexins. To date, the genetic basis of the quantitative variations for these potentially beneficial compounds has been limited. Here, metabolic quantitative trait locus (mQTL) mapping was conducted using grapevine stems of a segregating F2 population. Metabolic profiling of grapevine stems was performed using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), resulting in the detection of 1317 ions/features. In total, 19 of these features matched with literature-reported stilbenoid masses and were genetically mapped using a 1449-SNP linkage map and R/qtl software, resulting in the identification of four mQTLs. Two large-effect mQTLs that corresponded to a stilbenoid dimer and a trimer were mapped on chromosome 18, accounting for phenotypic variances of 29.0% and 38.4%. Functional annotations of these large-effect mQTLs on the VitisNet network database revealed a major hotspot of disease-resistance motifs on chromosome 18. This 2.8-Mbp region contains 48 genes with R-gene motifs, including variants of TIR, NBS, and LRR, that might potentially confer resistance to powdery mildew, downy mildew, or other pathogens. The locus also encompasses genes associated with flavonoid and biosynthetic pathways that are likely involved in the production of secondary metabolites, including phytoalexins. In addition, haplotype dosage effects of the five mQTLs further characterized the genomic regions for differential production of stilbenoids that can be applied in resistance breeding through manipulation of stilbenoid production in planta.
Collapse
Affiliation(s)
- Soon L. Teh
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
- Present Address: Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, Wenatchee, WA 98801 USA
| | - Bety Rostandy
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
- Present Address: Department of Mathematics and Statistics, University of North Carolina, Greensboro, NC 27412 USA
| | - Mani Awale
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD 57007 USA
- Present Address: Grape and Wine Institute, University of Missouri, Columbia, MO 65211 USA
| | - James J. Luby
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| | - Anne Fennell
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD 57007 USA
| | - Adrian D. Hegeman
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| |
Collapse
|
20
|
Smith HM, Smith BP, Morales NB, Moskwa S, Clingeleffer PR, Thomas MR. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLoS One 2018; 13:e0193121. [PMID: 29462210 PMCID: PMC5819801 DOI: 10.1371/journal.pone.0193121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/05/2018] [Indexed: 11/17/2022] Open
Abstract
Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.
Collapse
Affiliation(s)
- Harley M. Smith
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Brady P. Smith
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Norma B. Morales
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Sam Moskwa
- CSIRO Information Management & Technology, Clayton South, Victoria, Australia
| | | | - Mark R. Thomas
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| |
Collapse
|
21
|
Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses. G3-GENES GENOMES GENETICS 2017; 7:1693-1705. [PMID: 28592651 PMCID: PMC5473750 DOI: 10.1534/g3.117.042127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics.
Collapse
|
22
|
Cadle-Davidson L, Gadoury D, Fresnedo-Ramírez J, Yang S, Barba P, Sun Q, Demmings EM, Seem R, Schaub M, Nowogrodzki A, Kasinathan H, Ledbetter C, Reisch BI. Lessons from a Phenotyping Center Revealed by the Genome-Guided Mapping of Powdery Mildew Resistance Loci. PHYTOPATHOLOGY 2016; 106:1159-1169. [PMID: 27135675 DOI: 10.1094/phyto-02-16-0080-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The genomics era brought unprecedented opportunities for genetic analysis of host resistance, but it came with the challenge that accurate and reproducible phenotypes are needed so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce variable results due to the uncontrolled environment, uneven distribution and genetics of the pathogen, and developmentally regulated resistance among other factors. To address these challenges, we developed highly controlled, standardized methodologies for phenotyping powdery mildew resistance in the context of a phenotyping center, receiving samples of up to 140 grapevine progeny per F1 family. We applied these methodologies to F1 families segregating for REN1- or REN2-mediated resistance and validated that some but not all bioassays identified the REN1 or REN2 locus. A point-intercept method (hyphal transects) to quantify colony density objectively at 8 or 9 days postinoculation proved to be the phenotypic response most reproducibly predicted by these resistance loci. Quantitative trait locus (QTL) mapping with genotyping-by-sequencing maps defined the REN1 and REN2 loci at relatively high resolution. In the reference PN40024 genome under each QTL, nucleotide-binding site-leucine-rich repeat candidate resistance genes were identified-one gene for REN1 and two genes for REN2. The methods described here for centralized resistance phenotyping and high-resolution genetic mapping can inform strategies for breeding resistance to powdery mildews and other pathogens on diverse, highly heterozygous hosts.
Collapse
Affiliation(s)
- Lance Cadle-Davidson
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - David Gadoury
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Jonathan Fresnedo-Ramírez
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Shanshan Yang
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Paola Barba
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Qi Sun
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Elizabeth M Demmings
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Robert Seem
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Michelle Schaub
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Anna Nowogrodzki
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Hema Kasinathan
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Craig Ledbetter
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Bruce I Reisch
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| |
Collapse
|
23
|
Regner F, Hack R, Nauer S, Zöch B. Breeding of fungal resistant varieties derived from Grüner Veltliner by chromosomal selection. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160701014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|