1
|
Di Simone M, Corsale AM, Toia F, Shekarkar Azgomi M, Di Stefano AB, Lo Presti E, Cordova A, Montesano L, Dieli F, Meraviglia S. Tumor-infiltrating γδ T cells as targets of immune checkpoint blockade in melanoma. J Leukoc Biol 2024; 115:760-770. [PMID: 38324004 DOI: 10.1093/jleuko/qiae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/21/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024] Open
Abstract
Melanoma is one of the most sensitive tumors to immune modulation, and the major challenge for melanoma patients' survival is immune checkpoint inhibitor (ICI) therapy. γδ T lymphocytes play an antitumoral role in a broad variety of tumors including melanoma and they are optimal candidates for cellular immunotherapy. Thus, a comprehensive analysis of the correlation between γδ T cells and immune checkpoint receptors in the context of melanoma was conducted, with the aim of devising an innovative combined immunotherapeutic strategy. In this study, using the GEPIA2.0 database, a significant positive correlation was observed between the expression of γδ T cell-related genes (TRGC1, TRGC2, TCRD) and immune checkpoint genes (PDCD1, HAVCR2, LAG3), highlighting the potential role of γδ T cells in the immune response within melanoma. Moreover, flow cytometry analysis unveiled a significant augmentation in the population of γδ T cells within melanoma lesions, which exhibited the expression of immune checkpoint receptors including LAG3, TIM3, and PD1. Analysis of single-cell RNA sequencing data revealed a significant enrichment and functional reprogramming of γδ T cell clusters in response to ICIs. Interestingly, the effects of ICI therapy varied between Vδ1 and Vδ2 γδ T cell subsets, with distinct changes in gene expression patterns. Last, a correlation analysis between γδ T cell abundance, immune checkpoint gene expression, and clinical outcomes in melanoma patients showed that low expression of immune checkpoint genes, including LAG3, HAVCR2, and PDCD1, was associated with improved 1-year overall survival, emphasizing the significance of these genes in predicting patient outcomes, potentially outweighing the impact of γδ T cell abundance. This study offers critical insights into the dynamic interaction between γδ T cells, immune checkpoint receptors, and melanoma, providing valuable perspectives for potential therapeutic avenues and predictive markers in this intricate interplay.
Collapse
Affiliation(s)
- Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Francesca Toia
- Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Anna Barbara Di Stefano
- Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Elena Lo Presti
- National Research Council Institute for Biomedical Research and Innovation, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Adriana Cordova
- Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Luigi Montesano
- Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
2
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Liu C, Skorupinska-Tudek K, Eriksson SG, Parmryd I. Potentiating Vγ9Vδ2 T cell proliferation and assessing their cytotoxicity towards adherent cancer cells at the single cell level. Biol Open 2022; 11:274281. [PMID: 34994391 PMCID: PMC8822357 DOI: 10.1242/bio.059049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Vγ9Vδ2 T cells is the dominant γδ T cell subset in human blood. They are cytotoxic and activated by phosphoantigens whose concentrations are increased in cancer cells, making the cancer cells targets for Vγ9Vδ2 T cell immunotherapy. For successful immunotherapy, it is important both to characterise Vγ9Vδ2 T cell proliferation and optimise the assessment of their cytotoxic potential, which is the aim of this study. We found that supplementation with freshly-thawed human serum potentiated Vγ9Vδ2 T cell proliferation from peripheral mononuclear cells (PBMCs) stimulated with (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and consistently enabled Vγ9Vδ2 T cell proliferation from cryopreserved PBMCs. In cryopreserved PBMCs the proliferation was higher than in freshly prepared PBMCs. In a panel of short-chain prenyl alcohols, monophosphates and diphosphates, most diphosphates and also dimethylallyl monophosphate stimulated Vγ9Vδ2 T cell proliferation. We developed a method where the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells is assessed at the single cell level using flow cytometry, which gives more clear-cut results than the traditional bulk release assays. Moreover, we found that HMBPP enhances the Vγ9Vδ2 T cell cytotoxicity towards colon cancer cells. In summary we have developed an easily interpretable method to assess the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells, found that Vγ9Vδ2 T cell proliferation can be potentiated media-supplementation and how misclassification of non-responders may be avoided. Our findings will be useful in the further development of Vγ9Vδ2 T cell immunotherapy.
Collapse
Affiliation(s)
- Chenxiao Liu
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Sven-Göran Eriksson
- Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Parmryd
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Girard P, Sosa Cuevas E, Ponsard B, Mouret S, Gil H, Col E, De Fraipont F, Sturm N, Charles J, Manches O, Chaperot L, Aspord C. Dysfunctional BTN3A together with deregulated immune checkpoints and type I/II IFN dictate defective interplay between pDCs and γδ T cells in melanoma patients, which impacts clinical outcomes. Clin Transl Immunology 2021; 10:e1329. [PMID: 34786191 PMCID: PMC8577077 DOI: 10.1002/cti2.1329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives pDCs and γδ T cells emerge as potent immune players participating in the pathophysiology of cancers, yet still remaining enigmatic while harbouring a promising potential for clinical translations. Despite strategic and closed missions, crosstalk between pDCs and γδ T cells has not been deciphered yet in cancers, especially in melanoma where the long‐term control of the tumor still remains a challenge. Methods This prompted us to explore the interplay between pDCs and γδ T cells in the context of melanoma, investigating the reciprocal features of pDCs or γδ T cells, the underlying molecular mechanisms and its impact on clinical outcomes. Results TLRL‐activated pDCs from the blood and tumor infiltrate of melanoma patients displayed an impaired ability to activate, to modulate immune checkpoints and trigger the functionality of γδ T cells. Conversely, γδ T cells from the blood or tumor infiltrate of melanoma patients activated by PAg were defective in triggering pDCs’ activation and modulation of immune checkpoints, and failed to elicit the functionality of pDCs. Reversion of the dysfunctional cross‐talks could be achieved by specific cytokine administration and immune checkpoint targeting. Strikingly, we revealed an increased expression of BTN3A on circulating and tumor‐infiltrating pDCs and γδ T cells from melanoma patients, but stressed out the potential impairment of this molecule. Conclusion Our study uncovered that melanoma hijacked the bidirectional interplay between pDCs and γδ T cells to escape from immune control, and revealed BTN3A dysfunction. Such understanding will help harness and synergise the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes.
Collapse
Affiliation(s)
- Pauline Girard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Benedicte Ponsard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Stephane Mouret
- Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Hugo Gil
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Edwige Col
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Florence De Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology) Grenoble University Hospital Grenoble France
| | - Nathalie Sturm
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Olivier Manches
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| |
Collapse
|
5
|
Lo Presti E, Dieli F, Fourniè JJ, Meraviglia S. Deciphering human γδ T cell response in cancer: Lessons from tumor-infiltrating γδ T cells. Immunol Rev 2020; 298:153-164. [PMID: 32691450 DOI: 10.1111/imr.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023]
Abstract
The finding that γδ T cells are present among tumor-infiltrating lymphocytes in humans suggests they participate in tumor immune surveillance, but their relevance is unclear because the relative abundance of tumor-infiltrating γδ T cells correlates with positive or negative, or even do not correlate with prognosis. This likely depends on the fact that tumor-infiltrating γδ T cells may play substantially different effector or regulatory functions, and correlation with patient's prognosis relies on distinct γδ T cell subsets in the context of the tumor. There is interest to exploit γδ T cells in tumor immunotherapy, but to make this approach successful there is urgent need to fully understand the biological functions of γδ T cells and of how they can be manipulated in vivo and ex vivo to safely provide benefit to the host. This review focuses on our previous and ongoing studies of tumor-infiltrating γδ T lymphocytes in different types of human cancer. Moreover, we discuss the interaction of tumor-infiltrating γδ T cells with other cells and molecules present in the tumor microenvironment, and their clinical relevance on the ground, that deep knowledge in this field can be used further for better immunotherapeutic intervention in cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Jean Jacques Fourniè
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Toulouse University, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France.,Laboratoire d'Excellence 'TOUCAN', Toulouse, France
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Fonseca S, Pereira V, Lau C, Teixeira MDA, Bini-Antunes M, Lima M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells 2020; 9:cells9030729. [PMID: 32188103 PMCID: PMC7140678 DOI: 10.3390/cells9030729] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1. Despite many studies in pathological conditions, only a few have quantified the γδ Tc subsets in healthy adults, and a comprehensive review of the factors influencing its representation in the blood is missing. Here we quantified the total γδ Tc and the Vδ2/Vγ9 and Vδ1 Tc subsets in the blood from 30 healthy, Caucasian, Portuguese adults, we characterized their immunophenotype by 8-color flow cytometry, focusing in a few relevant Tc markers (CD3/TCR-γδ, CD5, CD8), and costimulatory (CD28), cytotoxic (CD16) and adhesion (CD56) molecules, and we examined the impacts of age and gender. Additionally, we reviewed the literature on the influences of race/ethnicity, age, gender, special periods of life, past infections, diet, medications and concomitant diseases on γδ Tc and their subsets. Given the multitude of factors influencing the γδ Tc repertoire and immunophenotype and the high variation observed, caution should be taken in interpreting “abnormal” γδ Tc values and repertoire deviations, and the clinical significance of small populations of “phenotypically abnormal” γδ Tc in the blood.
Collapse
Affiliation(s)
- Sónia Fonseca
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Vanessa Pereira
- Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E); 4434-502 Vila Nova de Gaia, Portugal;
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Maria dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Marika Bini-Antunes
- Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001Porto, Portugal;
| | - Margarida Lima
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
- Correspondence: ; Tel.: + 351-22-20-77-500
| |
Collapse
|
7
|
Γ δ T Cell-Based Immunotherapy in Melanoma: State of the Art. JOURNAL OF ONCOLOGY 2019; 2019:9014607. [PMID: 31239842 PMCID: PMC6556315 DOI: 10.1155/2019/9014607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
Metastatic melanoma is still associated with a poor prognosis, and there is increasing interest in immunotherapy alone or in combination with other adjuvant therapies. Γδ T lymphocytes play a pivot role in the immune response against cancer, but while γδ-based immunotherapy is already a clinical reality for several solid tumors, data on melanoma are still limited and fragmented. This systematic review presents preclinical and clinical evidence for a role of γδ T lymphocytes in immunotherapeutic strategies for advanced melanoma and discusses research state of the art and future perspectives. Current strategies focus on in vivo stimulation, and ex vivo adoptive therapy and vaccination; results are promising, but further studies are needed to better investigate the interactions in tumoral microenvironment and to improve clinical efficacy of immunotherapeutic protocols.
Collapse
|
8
|
Girard P, Charles J, Cluzel C, Degeorges E, Manches O, Plumas J, De Fraipont F, Leccia MT, Mouret S, Chaperot L, Aspord C. The features of circulating and tumor-infiltrating γδ T cells in melanoma patients display critical perturbations with prognostic impact on clinical outcome. Oncoimmunology 2019; 8:1601483. [PMID: 31413911 DOI: 10.1080/2162402x.2019.1601483] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
γδT cells hold a pivotal role in tumor immunosurveillance through their prompt activation and cytokine secretion, their ability to kill tumor cells in an Human Leukocyte Antigen (HLA)-unrestricted manner, and their combination of features of both innate and adaptive immunity. These unique properties and functional plasticity render them very attractive both as targets and vectors for cancer immunotherapy. Yet, these potent and fascinating antitumor effectors have not been extensively explored in melanoma. We provided here a detailed investigation of the phenotypic and functional properties of circulating and tumor-infiltrating γδT cells in melanoma patients, and their impact on clinical evolution. High proportions of circulating- and tumor-infiltrating γδT and δ2+ subset were associated with better clinical outcome. We reported however that circulating and tumor-infiltrating γδT cells from melanoma patients displayed an altered expression of NCR, KIR, and immune checkpoints, and identified NKp44, PD1, 41BB/41BBL, TIM3, and LAG3 as crucial checkpoints allowing immune escape and tumor progression. Notably, melanoma drastically impaired the ability of γδT cells to exhibit activation molecules, secrete cytokines, and display cytotoxicity toward melanoma in response to stimulation with phosphoantigens. It drove them toward regulatory and Th17 profiles associated with poor clinical outcomes. Our study highlights that melanoma hijacked γδT cells to escape from immune control, and revealed that circulating and tumor-infiltrating γδT cell features are promising potential biomarkers of clinical evolution. Such understanding of the physiopathology of γδT cells may help designing new therapeutic approaches exploiting the antitumor potential of γδT cells while counteracting their skewing by tumors to improve patient outcomes.
Collapse
Affiliation(s)
- Pauline Girard
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Julie Charles
- University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,Dermatology clinic, Grenoble University Hospital, Grenoble, France
| | - Camille Cluzel
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Emmanuelle Degeorges
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Olivier Manches
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Joel Plumas
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,pDCline Pharma, Grenoble, France
| | - Florence De Fraipont
- University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,Department of Biochemistry of Cancers and Biotherapies, Grenoble University Hospital, Grenoble, France
| | - Marie-Therese Leccia
- University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,Dermatology clinic, Grenoble University Hospital, Grenoble, France
| | - Stephane Mouret
- University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,Dermatology clinic, Grenoble University Hospital, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Caroline Aspord
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| |
Collapse
|
9
|
Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018; 48:453-473. [PMID: 29562195 DOI: 10.1016/j.immuni.2018.03.009] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Most studies on the immunotherapeutic potential of T cells have focused on CD8 and CD4 T cells that recognize peptide antigens (Ag) presented by polymorphic major histocompatibility complex (MHC) class I and MHC class II molecules, respectively. However, unconventional T cells, which interact with MHC class Ib and MHC-I like molecules, are also implicated in tumor immunity, although their role therein is unclear. These include unconventional T cells targeting MHC class Ib molecules such as HLA-E and its murine ortholog Qa-1b, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, and γδ T cells. Here, we review the current understanding of the roles of these unconventional T cells in tumor immunity and discuss why further studies into the immunotherapeutic potential of these cells is warranted.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jérôme Le Nours
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
10
|
Chen H, He W. Human regulatory γδT cells and their functional plasticity in the tumor microenvironment. Cell Mol Immunol 2018; 15:411-413. [PMID: 28845043 PMCID: PMC6052840 DOI: 10.1038/cmi.2017.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Hui Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China
| | - Wei He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China.
| |
Collapse
|
11
|
Lo Presti E, Pizzolato G, Gulotta E, Cocorullo G, Gulotta G, Dieli F, Meraviglia S. Current Advances in γδ T Cell-Based Tumor Immunotherapy. Front Immunol 2017; 8:1401. [PMID: 29163482 PMCID: PMC5663908 DOI: 10.3389/fimmu.2017.01401] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/10/2017] [Indexed: 01/12/2023] Open
Abstract
γδ T cells are a minor population (~5%) of CD3 T cells in the peripheral blood, but abound in other anatomic sites such as the intestine or the skin. There are two major subsets of γδ T cells: those that express Vδ1 gene, paired with different Vγ elements, abound in the intestine and the skin, and recognize the major histocompatibility complex (MHC) class I-related molecules such as MHC class I-related molecule A, MHC class I-related molecule B, and UL16-binding protein expressed on many stressed and tumor cells. Conversely, γδ T cells expressing the Vδ2 gene paired with the Vγ9 chain are the predominant (50-90%) γδ T cell population in the peripheral blood and recognize phosphoantigens (PAgs) derived from the mevalonate pathway of mammalian cells, which is highly active upon infection or tumor transformation. Aminobisphosphonates (n-BPs), which inhibit farnesyl pyrophosphate synthase, a downstream enzyme of the mevalonate pathway, cause accumulation of upstream PAgs and therefore promote γδ T cell activation. γδ T cells have distinctive features that justify their utilization in antitumor immunotherapy: they do not require MHC restriction and are less dependent that αβ T cells on co-stimulatory signals, produce cytokines with known antitumor effects as interferon-γ and tumor necrosis factor-α and display cytotoxic and antitumor activities in vitro and in mouse models in vivo. Thus, there is interest in the potential application of γδ T cells in tumor immunotherapy, and several small-sized clinical trials have been conducted of γδ T cell-based immunotherapy in different types of cancer after the application of PAgs or n-BPs plus interleukin-2 in vivo or after adoptive transfer of ex vivo-expanded γδ T cells, particularly the Vγ9Vδ2 subset. Results from clinical trials testing the efficacy of any of these two strategies have shown that γδ T cell-based therapy is safe, but long-term clinical results to date are inconsistent. In this review, we will discuss the major achievements and pitfalls of the γδ T cell-based immunotherapy of cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Gabriele Pizzolato
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Humanitas University, Rozzano-Milano, Italy
| | - Eliana Gulotta
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Gianfranco Cocorullo
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Gaspare Gulotta
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Hodgins NO, Wang JTW, Al-Jamal KT. Nano-technology based carriers for nitrogen-containing bisphosphonates delivery as sensitisers of γδ T cells for anticancer immunotherapy. Adv Drug Deliv Rev 2017; 114:143-160. [PMID: 28694026 DOI: 10.1016/j.addr.2017.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Nitrogen containing bisphosphonates (N-BPs) including zoledronate (ZOL) and alendronate (ALD) inhibit farnesyl diphosphate synthase, and have been shown to have a cytotoxic affect against cancer cells as a monotherapy and to also sensitise tumour cells to destruction by γδ T cells. γδ T cells are a subset of human T lymphocytes and have a diverse range of roles in the immune system including the recognition and destruction of cancer cells. This property of γδ T cells can be harnessed for use in cancer immunotherapy through in vivo expansion or the adoptive transfer of ex vivo activated γδ T cells. The use of N-BPs with γδ T cells has been shown to have a synergistic effect in in vitro, animal and clinical studies. N-BPs have limited in vivo activity due to rapid clearance from the circulation. By encapsulating N-BPs in liposomes (L) it is possible to increase the levels of N-BPs at non-osseous tumour sites. L-ZOL and L-ALD have been shown to have different toxicological profiles than free ZOL or ALD. Both L-ALD and L-ZOL led to increased spleen weight, leucocytosis, neutrophilia and lymphocytopenia in mice after intravenous injection. L-ALD was shown to be better tolerated than L-ZOL in murine studies. Biodistribution studies have been performed in order to better understand the interaction of N-BPs and γδ T cells in vivo. Additionally, in vivo therapy studies have shown that mice treated with both L-ALD and γδ T cells had a significant reduction in tumour growth compared to mice treated with L-ALD or γδ T cells alone. The use of ligand-targeted liposomes may further increase the efficacy of this combinatory immunotherapy. Liposomes targeting the αvβ6 integrin receptor using the peptide A20FMDV2 had a greater ability than untargeted liposomes in sensitising cancer cells to destruction by γδ T cells in αvβ6 positive cancer cell lines.
Collapse
|
13
|
Halim L, Parente-Pereira AC, Maher J. Prospects for immunotherapy of acute myeloid leukemia using γδ T cells. Immunotherapy 2017; 9:111-114. [PMID: 28128710 DOI: 10.2217/imt-2016-0139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Viral/immunology
- Cancer Vaccines/immunology
- Cross Reactions
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Interleukin-17/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Tumor Microenvironment
Collapse
Affiliation(s)
- Leena Halim
- CAR Mechanics Group, Division of Cancer Studies, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Ana Catarina Parente-Pereira
- CAR Mechanics Group, Division of Cancer Studies, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - John Maher
- CAR Mechanics Group, Division of Cancer Studies, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
- Department of Clinical Immunology & Allergy, King's College Hospital NHS Foundation Trust, London, UK
- Department of Immunology, Eastbourne Hospital, East Sussex, UK
| |
Collapse
|
14
|
Payne KK. Lymphocyte-mediated Immune Regulation in Health and Disease: The Treg and γδ T Cell Co-conspiracy. Immunol Invest 2016; 45:767-775. [PMID: 27617588 DOI: 10.1080/08820139.2016.1213278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The significance of lymphocytes functioning to mediate immunological tolerance has garnered increasing appreciation during the last several decades. CD4+ CD25+ α/ β T cells have arguably been the most extensively studied regulatory lymphocyte to date, perhaps owing to the dramatic phenotype observed mice and humans with mutated Foxp3. However, emerging studies suggest that the lineage of regulatory lymphocytes is quite robust. Most notably, while γδ T cells are more traditionally regarded as mediators of cytotoxic function, they are beginning to be regarded as potential negative regulators of immunity. While regulatory γ/δ T cells may possess a degree of transcriptional overlap with 'classical Tregs', there remains less clarity in regard to the mechanisms driving the suppressive potential of these cells. In this review, I will discuss the role of Tregs in establishing tolerance in the steady state as well as disease, and how their accumulation and function may be modulated by myeloid cells in the local microenvironment. I will also discuss the necessity to extend our understanding of the regulatory nature of γδ T cells, which may lead to the unearthing of novel paradigms of immunity, perhaps most notably with respect to cancer.
Collapse
Affiliation(s)
- Kyle K Payne
- a Tumor Microenvironment and Metastasis Program, The Wistar Institute , Philadelphia , PA , USA
| |
Collapse
|
15
|
Fay NS, Larson EC, Jameson JM. Chronic Inflammation and γδ T Cells. Front Immunol 2016; 7:210. [PMID: 27303404 PMCID: PMC4882337 DOI: 10.3389/fimmu.2016.00210] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023] Open
Abstract
The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programed to mobilize the host innate and adaptive immune responses. Included among these immune cells are gamma delta T lymphocytes (γδ T cells) that are unique in their T cell receptor usage, location, and functions in the body. Stress reception by γδ T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces γδ T cell activation. Once activated, γδ T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon γδ T cell activation. Pathogenesis of many chronic inflammatory diseases involves γδ T cells; some of which are exacerbated by their presence, while others are improved. γδ T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial γδ T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts γδ T cell function. Future studies will be important to understand how this balance is achieved.
Collapse
Affiliation(s)
- Nathan S Fay
- Department of Biological Sciences, California State University, San Marcos , San Marcos, CA , USA
| | - Emily C Larson
- Department of Biological Sciences, California State University, San Marcos , San Marcos, CA , USA
| | - Julie M Jameson
- Department of Biological Sciences, California State University, San Marcos , San Marcos, CA , USA
| |
Collapse
|