1
|
Peroutka-Bigus N, Nielsen DW, Trachsel J, Mou KT, Sharma VK, Kudva IT, Loving CL. Phenotypic and genomic comparison of three human outbreak and one cattle-associated Shiga toxin-producing Escherichia coli O157:H7. Microbiol Spectr 2024; 12:e0414023. [PMID: 39254337 PMCID: PMC11451603 DOI: 10.1128/spectrum.04140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Escherichia coli O157:H7-adulterated food products are associated with disease outbreaks in humans. Although cattle feces are a source for E. coli O157:H7 contamination, it is unclear if human-associated outbreak isolates differentially colonize and shed in the feces of cattle from that of non-outbreak isolates. It is also unclear if phenotypes, such as biofilm formation, cell attachment, or toxin production, differentiate environmental E. coli O157:H7 isolates from those associated with human illness. The objective of this study was to compare the genotypes and phenotypes of a diverse set of E. coli O157:H7 isolates, with the intent of identifying differences that could inform cattle colonization and fecal shedding, along with virulence potential in humans. Isolates differed in attachment phenotypes on human Caco-2 cells and bovine-derived recto-anal junction squamous epithelial cells, with curli having a strong impact on attachment to the human-derived cell line. The prototypical E. coli O157 isolate EDL933 had the greatest expression of the adhesin gene iha, yet it had decreased expression of the virulence genes stx2, eae, and ehxA compared the lineage I/II isolates RM6067W and/or FRIK1989. Strong or weak biofilm production was not associated with significant differences in cattle colonization or shedding, suggesting biofilms may not play a major role in cattle colonization. No significant differences in cattle colonization and fecal shedding were detected, despite genomic and in vitro phenotypic differences. The outbreak isolate associated with the greatest incidence of hemolytic uremic syndrome, RM6067W, induced the greatest Vero cell cytotoxicity and had the greatest stx2 gene expression. IMPORTANCE Foodborne illness has major impacts on global health and imposes financial hardships on food industries. Escherichia coli serotype O157:H7 is associated with foodborne illness. Cattle feces are a source of E. coli O157:H7, and routine surveillance has led to an abundance of E. coli O157:H7 genomic data. The relationship between E. coli O157:H7 genome and phenotype is not clearly discerned for cattle colonization/shedding and improved understanding could lead to additional strategies to limit E. coli O157:H7 in the food chain. The goal of the research was to evaluate genomic and phenotypic attributes of E. coli O157:H7 associated with cattle colonization and shedding, environmental persistence, and human illness. Our results indicate variations in biofilm formation and in vitro cellular adherence was not associated with differences in cattle colonization or shedding. Overall, processes involved in cattle colonization and various phenotypes in relation to genotype are complex and remain not well understood.
Collapse
Affiliation(s)
- Nathan Peroutka-Bigus
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Daniel W. Nielsen
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Julian Trachsel
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Kathy T. Mou
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Vijay K. Sharma
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Indira T. Kudva
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| |
Collapse
|
2
|
Liu B, Qian C, Wu P, Li X, Liu Y, Mu H, Huang M, Zhang Y, Jia T, Wang Y, Wang L, Zhang X, Huang D, Yang B, Feng L, Wang L. Attachment of Enterohemorrhagic Escherichia coli to Host Cells Reduces O Antigen Chain Length at the Infection Site That Promotes Infection. mBio 2021; 12:e0269221. [PMID: 34903041 PMCID: PMC8669466 DOI: 10.1128/mbio.02692-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Many enteropathogenic bacteria express a needle-like type III secretion system (T3SS) that translocates effectors into host cells promoting infection. O antigen (OAg) constitutes the outer layer of Gram-negative bacteria protecting bacteria from host immune responses. Shigella constitutively shortens the OAg molecule in its three-dimensional conformation by glucosylation, leading to enhanced T3SS function. However, whether and how other enteropathogenic bacteria shorten the OAg molecule that probably facilitates infection remain unknown. For the first time, we report a smart mechanism by which enterohemorrhagic Escherichia coli specifically reduces the size of the OAg molecule at the infection site upon sensing mechanical signals of intestinal epithelial cell attachment via the membrane protein YgjI. YgjI represses expression of the OAg chain length regulator gene fepE via the global regulator H-NS, leading to shortened OAg chains and injection of more T3SS effectors into host cells. However, bacteria express long-chain OAg in the intestinal lumen benefiting their survival. Animal experiments show that blocking this regulatory pathway significantly attenuates bacterial virulence. This finding enhances our understanding of interactions between the surfaces of bacterial and host cells and the way this interaction enhances bacterial pathogenesis. IMPORTANCE Little is known about the regulation of cell wall structure of enteropathogenic bacteria within the host. Here, we report that enterohemorrhagic Escherichia coli regulates its cell wall structure during the infection process, which balances its survival in the intestinal lumen and infection of intestinal epithelial cells. In the intestinal lumen, bacteria express long-chain OAg, which is located in the outer part of the cell wall, leading to enhanced resistance to antimicrobial peptides. However, upon epithelial cell attachment, bacteria sense this mechanical signal via a membrane protein and reduce the OAg chain length, resulting in enhanced injection into epithelial cells of T3SS effectors that mediate host cell infection. Similar regulation mechanisms of cell wall structure in response to host cell attachment may be widespread in pathogenic bacteria and closely related with bacterial pathogenesis.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Institute of Translational Medicine Research, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Chengqian Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Xiaodan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Huiqian Mu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yang Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Tianyuan Jia
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yuanyuan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Lu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Xiao Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Lu Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Institute of Translational Medicine Research, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
3
|
Elpers L, Hensel M. Expression and Functional Characterization of Various Chaperon-Usher Fimbriae, Curli Fimbriae, and Type 4 Pili of Enterohemorrhagic Escherichia coli O157:H7 Sakai. Front Microbiol 2020; 11:378. [PMID: 32265855 PMCID: PMC7098969 DOI: 10.3389/fmicb.2020.00378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/20/2020] [Indexed: 11/25/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a highly pathogenic strain leading to hemorrhagic colitis and to the hemolytic-uremic syndrome (HUS) in humans. The mechanisms by which pathogenic E. coli infect and colonize humans leading to the typical disease pattern are in focus of many investigations. The adhesion of EHEC to epithelial cells by the coordinated translocation of receptor Tir and surface expression of corresponding adhesin intimin is a key event in host–pathogen-interaction. However, less is known about other adhesins encoded by EHEC, especially about the complex set of fimbrial adhesins varying among various serotypes. Here, we investigate EHEC serotype O157:H7 strain Sakai possessing at least 16 putative fimbrial gene clusters. Using a synthetic heterologous expression system in a non-pathogenic E. coli strain, a subset of 6 gene clusters for fimbrial adhesins was analyzed. We were able to visualize surface expression of two γ1 class fimbriae (Fim and Ycb), two γ4 class fimbriae (Yad and Yeh), and two fimbrial adhesins which are assembled by the nucleation/precipitation pathway (Curli fimbriae), and by a type 2 secretion system (type 4 pili). Further, we elucidated the impact of these fimbrial adhesins in adhesion to various epithelial cells lines (HeLa, MDCK, and CaCo2), and the contribution on biofilm formation. We demonstrate the ultrastructure of Fim fimbriae and Yad fimbriae of EHEC Sakai, and Yeh fimbriae of E. coli in general. The involvement of Fim fimbriae of EHEC Sakai to adhesion to various epithelial cell lines, and contribution to biofilm formation is reported here. Our approach provides first ultrastructural and functional data for novel EHEC adhesins, and enables further understanding of the involvement of fimbrial adhesins in pathogenesis of EHEC Sakai.
Collapse
Affiliation(s)
- Laura Elpers
- Abteilung Mikrobiologie, Osnabrück University, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Osnabrück University, Osnabrück, Germany.,CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
4
|
Schaut RG, Boggiatto PM, Loving CL, Sharma VK. Cellular and Mucosal Immune Responses Following Vaccination with Inactivated Mutant of Escherichia coli O157:H7. Sci Rep 2019; 9:6401. [PMID: 31024031 PMCID: PMC6483982 DOI: 10.1038/s41598-019-42861-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Shiga toxin-producing Escherichia coli O157:H7 (O157) can cause mild to severe gastrointestinal disease in humans. Cattle are the primary reservoir for O157, which colonizes the intestinal tract without inducing any overt clinical symptoms. Parenteral vaccination can reduce O157 shedding in cattle after challenge and limit zoonotic transmission to humans, although the impact of vaccination and vaccine formulation on cellular and mucosal immune responses are undetermined. To better characterize the cattle immune response to O157 vaccination, cattle were vaccinated with either water-in-oil-adjuvanted, formalin-inactivated hha deletion mutant of Shiga toxin 2 negative (stx2-) O157 (Adj-Vac); non-adjuvanted (NoAdj-Vac); or non-vaccinated (NoAdj-NoVac) and peripheral T cell and mucosal antibody responses assessed. Cattle in Adj-Vac group had a higher percentage of O157-specific IFNγ producing CD4+ and γδ+ T cells in recall assays compared to the NoAdj-Vac group. Furthermore, O157-specific IgA levels detected in feces of the Adj-Vac group were significantly lower in NoAdj-Vac group. Extracts prepared only from Adj-Vac group feces blocked O157 adherence to epithelial cells. Taken together, these data suggest parenteral administration of adjuvanted, inactivated whole-cell vaccines for O157 can induce O157-specific cellular and mucosal immune responses that may be an important consideration for a successful vaccination scheme.
Collapse
Affiliation(s)
- Robert G Schaut
- USDA-ARS, National Animal Disease Center, Ames, IA, USA.,Food Safety and Enteric Pathogens Research Unit, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, USA
| | - Paola M Boggiatto
- USDA-ARS, National Animal Disease Center, Ames, IA, USA.,Infectious Bacterial Diseases Research Unit, Ames, IA, USA
| | - Crystal L Loving
- USDA-ARS, National Animal Disease Center, Ames, IA, USA.,Food Safety and Enteric Pathogens Research Unit, Ames, IA, USA
| | - Vijay K Sharma
- USDA-ARS, National Animal Disease Center, Ames, IA, USA. .,Food Safety and Enteric Pathogens Research Unit, Ames, IA, USA.
| |
Collapse
|
5
|
Biofilm Formation by Shiga Toxin-Producing Escherichia coli on Stainless Steel Coupons as Affected by Temperature and Incubation Time. Microorganisms 2019; 7:microorganisms7040095. [PMID: 30935149 PMCID: PMC6518284 DOI: 10.3390/microorganisms7040095] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
Forming biofilm is a strategy utilized by Shiga toxin-producing Escherichia coli (STEC) to survive and persist in food processing environments. We investigated the biofilm-forming potential of STEC strains from 10 clinically important serogroups on stainless steel at 22 °C or 13 °C after 24, 48, and 72 h of incubation. Results from crystal violet staining, plate counts, and scanning electron microscopy (SEM) identified a single isolate from each of the O113, O145, O91, O157, and O121 serogroups that was capable of forming strong or moderate biofilms on stainless steel at 22 °C. However, the biofilm-forming strength of these five strains was reduced when incubation time progressed. Moreover, we found that these strains formed a dense pellicle at the air-liquid interface on stainless steel, which suggests that oxygen was conducive to biofilm formation. At 13 °C, biofilm formation by these strains decreased (P < 0.05), but gradually increased over time. Overall, STEC biofilm formation was most prominent at 22 °C up to 24 h. The findings in this study identify the environmental conditions that may promote STEC biofilm formation in food processing facilities and suggest that the ability of specific strains to form biofilms contributes to their persistence within these environments.
Collapse
|
6
|
Sharma VK, Akavaram S, Schaut RG, Bayles DO. Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7. BMC Genomics 2019; 20:196. [PMID: 30849935 PMCID: PMC6408774 DOI: 10.1186/s12864-019-5568-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Escherichia coli O157:H7 (O157) has been linked to numerous foodborne disease outbreaks. The ability to rapidly sequence and analyze genomes is important for understanding epidemiology, virulence, survival, and evolution of outbreak strains. In the current study, we performed comparative genomics to determine structural and functional features of the genome of a foodborne O157 isolate NADC 6564 and infer its evolutionary relationship to other O157 strains. Results The chromosome of NADC 6564 contained 5466 kb compared to reference strains Sakai (5498 kb) and EDL933 (5547 kb) and shared 41 of its 43 Linear Conserved Blocks (LCB) with the reference strains. However, 18 of 41 LCB had inverse orientation in NADC 6564 compared to the reference strains. NADC 6564 shared 18 of 19 bacteriophages with reference strains except that the chromosomal positioning of some of the phages differed among these strains. The additional phage (P19) of NADC 6564 was located on a 39-kb insertion element (IE) encoding several hypothetical proteins, an integrase, transposases, transcriptional regulators, an adhesin, and a phosphoethanolamine transferase (PEA). The complete homologs of the 39-kb IE were found in E. coli PCN061 of porcine origin. The IE-encoded PEA showed low homology (32–33%) to four other PEA in NADC 6564 and PEA linked to mobilizable colistin resistance in E. coli but was highly homologous (95%) to a PEA of uropathogenic, avian pathogenic, and enteroaggregative E. coli. NADC 6564 showed slightly higher minimum inhibitory concentration of colistin compared to the reference strains. The 39-kb IE also contained dndBCDE and dptFGH operons encoding DNA S-modification and a restriction pathway, linked to oxidative stress tolerance and self-defense against foreign DNA, respectively. Evolutionary tree analysis grouped NADC 6564 with lineage I O157 strains. Conclusions These results indicated that differential phage counts and different chromosomal positioning of many bacteriophages and genomic islands might have resulted in recombination events causing altered chromosomal organization in NADC 6564. Evolutionary analysis grouped NADC 6564 with lineage I strains and suggested its earlier divergence from these strains. The ability to perform S-DNA modification might affect tolerance of NADC 6564 to various stressors. Electronic supplementary material The online version of this article (10.1186/s12864-019-5568-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijay K Sharma
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA.
| | - Suryatej Akavaram
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA
| | - Robert G Schaut
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA.,Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, MS 36, P.O. Box 117, Oak Ridge, TN, 37831, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, Iowa, USA
| |
Collapse
|
7
|
Da Silva WM, Bei J, Amigo N, Valacco MP, Amadio A, Zhang Q, Wu X, Yu T, Larzabal M, Chen Z, Cataldi A. Quantification of enterohemorrhagic Escherichia coli O157:H7 protein abundance by high-throughput proteome. PLoS One 2018; 13:e0208520. [PMID: 30596662 PMCID: PMC6312284 DOI: 10.1371/journal.pone.0208520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen responsible for diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). To promote a comprehensive insight into the molecular basis of EHEC O157:H7 physiology and pathogenesis, the combined proteome of EHEC O157:H7 strains, Clade 8 and Clade 6 isolated from cattle in Argentina, and the standard EDL933 (clade 3) strain has been analyzed. From shotgun proteomic analysis a total of 2,644 non-redundant proteins of EHEC O157:H7 were identified, which correspond approximately 47% of the predicted proteome of this pathogen. Normalized spectrum abundance factor analysis was performed to estimate the protein abundance. According this analysis, 50 proteins were detected as the most abundant of EHEC O157:H7 proteome. COG analysis showed that the majority of the most abundant proteins are associated with translation processes. A KEGG enrichment analysis revealed that Glycolysis / Gluconeogenesis was the most significant pathway. On the other hand, the less abundant detected proteins are those related to DNA processes, cell respiration and prophage. Among the proteins that composed the Type III Secretion System, the most abundant protein was EspA. Altogether, the results show a subset of important proteins that contribute to physiology and pathogenicity of EHEC O157:H7.
Collapse
Affiliation(s)
- Wanderson Marques Da Silva
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Jinlong Bei
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Natalia Amigo
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - María Pía Valacco
- CEQUIBIEM (Mass Spectrometry Facility), Faculty of Exact and Natural Sciences, University of Buenos Aires and CONICET (National Research Council), Buenos Aires, Argentina
| | - Ariel Amadio
- Rafaela Experimental Station, National Institute of Agricultural Technology, Rafaela, Santa Fe, Argentina
| | - Qi Zhang
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Xiuju Wu
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Ting Yu
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Mariano Larzabal
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Zhuang Chen
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Angel Cataldi
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
8
|
Andreozzi E, Gunther NW, Reichenberger ER, Rotundo L, Cottrell BJ, Nuñez A, Uhlich GA. Pch Genes Control Biofilm and Cell Adhesion in a Clinical Serotype O157:H7 Isolate. Front Microbiol 2018; 9:2829. [PMID: 30532745 PMCID: PMC6265319 DOI: 10.3389/fmicb.2018.02829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
In a previous study, induction of the Escherichia coli serotype O157:H7 SOS response decreased csgD expression in the clinical isolate PA20 at 30°C but strongly induced genes in the horizontally transferred-DNA regions (HTR), including many known virulence regulators. To determine the role of HTR regulators in the control of csgD and curli, specific regulators were plasmid-expressed in the wild-type and mutant strains of PA20 and its biofilm-forming derivative, 20R2R. At 30°C, plasmid over-expression of the O157:H7 group 3 perC homolog, pchE, strongly repressed PA20 csgD transcription (>7-fold) while the group 1 homologs, pchA and pchB, resulted in smaller reductions (<2.5-fold). However, SOS induction decreased rather than increased pchE expression (>6-fold) making group 1 pch, which are enhanced by the SOS response, the likely SOS-induced csgD repressors. Plasmid-based pchE over-expression also reduced 20R2R biofilm formation (>6-fold) and the curli-dependent, Congo red affinity of both PA20 and 20R2R. However, to properly appreciate the regulatory direction, expression patterns, and environmental consequences of these and other CsgD-controlled functions, a better understanding of natural pchE regulation will be required. The effects of HTR regulators on PA20 and 20R2R adhesion to HEp-2 cell at host temperature were also studied. Under conditions where prophage genes were not induced, curli, rather than espA, contributed to host cell adhesion in strain 20R2R. High levels of pchE expression in trans reduced curli-dependent cell adherence (>2-fold) to both 20R2R and the clinical isolate PA20, providing a host-adapting adhesion control mechanism. Expression of pchE was also repressed by induction of the SOS response at 37°C, providing a mechanism by which curli expression might complement EspA-dependent intimate adhesion initiated by the group1 pch homologs. This study has increased our understanding of the O157 pch genes at both host and environment temperatures, identifying pchE as a strong regulator of csgD and CsgD-dependent properties.
Collapse
Affiliation(s)
- Elisa Andreozzi
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Nereus W Gunther
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Erin R Reichenberger
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Luca Rotundo
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Bryan J Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Alberto Nuñez
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Gaylen A Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|
9
|
Nickerson KP, Faherty CS. Bile Salt-induced Biofilm Formation in Enteric Pathogens: Techniques for Identification and Quantification. J Vis Exp 2018. [PMID: 29781989 DOI: 10.3791/57322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biofilm formation is a dynamic, multistage process that occurs in bacteria under harsh environmental conditions or times of stress. For enteric pathogens, a significant stress response is induced during gastrointestinal transit and upon bile exposure, a normal component of human digestion. To overcome the bactericidal effects of bile, many enteric pathogens form a biofilm hypothesized to permit survival when transiting through the small intestine. Here we present methodologies to define biofilm formation through solid-phase adherence assays as well as extracellular polymeric substance (EPS) matrix detection and visualization. Furthermore, biofilm dispersion assessment is presented to mimic the analysis of events triggering release of bacteria during the infection process. Crystal violet staining is used to detect adherent bacteria in a high-throughput 96-well plate adherence assay. EPS production assessment is determined by two assays, namely microscopy staining of the EPS matrix and semi-quantitative analysis with a fluorescently-conjugated polysaccharide binding lectin. Finally, biofilm dispersion is measured through colony counts and plating. Positive data from multiple assays support the characterization of biofilms and can be utilized to identify bile salt-induced biofilm formation in other bacterial strains.
Collapse
Affiliation(s)
- Kourtney P Nickerson
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School
| | - Christina S Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School;
| |
Collapse
|
10
|
Lodato PB, Thuraisamy T, Richards J, Belasco JG. Effect of RNase E deficiency on translocon protein synthesis in an RNase E-inducible strain of enterohemorrhagic Escherichia coli O157:H7. FEMS Microbiol Lett 2017; 364:3871349. [PMID: 28854682 PMCID: PMC5827626 DOI: 10.1093/femsle/fnx131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/19/2017] [Indexed: 11/12/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that assembles a type III secretion system (T3SS) on its surface. The last portion of the T3SS, called the 'translocon', is composed of a filament and a pore complex that is inserted into the membrane of intestinal epithelial cells. The genes encoding the translocon (espADB) are part of the LEE4 operon. Their expression is regulated by a complex post-transcriptional mechanism that involves the processing of LEE4 mRNA by the essential endoribonuclease RNase E. Here, we report the construction of an EHEC strain (TEA028-rne) in which RNase E can be induced by adding IPTG to the culture medium. EHEC cells deficient in RNase E displayed an abnormal morphology and slower growth, in agreement with published observations in E. coli K-12. Under those conditions, EspA and EspB were produced at higher concentrations, and protein secretion still occurred. These results indicate that RNase E negatively regulates translocon protein synthesis and demonstrate the utility of E. coli strain TEA028-rne as a tool for investigating the influence of this ribonuclease on EHEC gene expression in vitro.
Collapse
Affiliation(s)
- Patricia B. Lodato
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8006, USA
| | - Thujitha Thuraisamy
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8006, USA
| | - Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, NY 10016-6402, USA
| | - Joel G. Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, NY 10016-6402, USA
| |
Collapse
|
11
|
González MJ, Robino L, Iribarnegaray V, Zunino P, Scavone P. Effect of different antibiotics on biofilm produced by uropathogenic Escherichia coli isolated from children with urinary tract infection. Pathog Dis 2017; 75:3821168. [PMID: 28505288 DOI: 10.1093/femspd/ftx053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/08/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- María José González
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay
| | - Luciana Robino
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
| | - Victoria Iribarnegaray
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay
| | - Pablo Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay
| | - Paola Scavone
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay
| |
Collapse
|
12
|
Rossi E, Cimdins A, Lüthje P, Brauner A, Sjöling Å, Landini P, Römling U. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 2017; 44:1-30. [PMID: 28485690 DOI: 10.1080/1040841x.2017.1303660] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract.
Collapse
Affiliation(s)
- Elio Rossi
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy.,b Novo Nordisk Center for Biosustainabiliy , Technical University of Denmark , Kgs. Lyngby , Denmark
| | - Annika Cimdins
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,d Institute of Hygiene, University of Münster , Münster , Germany
| | - Petra Lüthje
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,e Division of Clinical Microbiology, Department of Laboratory Medicine , Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Annelie Brauner
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Åsa Sjöling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Paolo Landini
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy
| | - Ute Römling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
13
|
Sharma VK, Bayles DO, Alt DP, Looft T, Brunelle BW, Stasko JA. Disruption of rcsB by a duplicated sequence in a curli-producing Escherichia coli O157:H7 results in differential gene expression in relation to biofilm formation, stress responses and metabolism. BMC Microbiol 2017; 17:56. [PMID: 28274217 PMCID: PMC5343319 DOI: 10.1186/s12866-017-0966-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Background Escherichia coli O157:H7 (O157) strain 86–24, linked to a 1986 disease outbreak, displays curli- and biofilm-negative phenotypes that are correlated with the lack of Congo red (CR) binding and formation of white colonies (CR−) on a CR-containing medium. However, on a CR medium this strain produces red isolates (CR+) capable of producing curli fimbriae and biofilms. Results To identify genes controlling differential expression of curli fimbriae and biofilm formation, the RNA-Seq profile of a CR+ isolate was compared to the CR− parental isolate. Of the 242 genes expressed differentially in the CR+ isolate, 201 genes encoded proteins of known functions while the remaining 41 encoded hypothetical proteins. Among the genes with known functions, 149 were down- and 52 were up-regulated. Some of the upregulated genes were linked to biofilm formation through biosynthesis of curli fimbriae and flagella. The genes encoding transcriptional regulators, such as CsgD, QseB, YkgK, YdeH, Bdm, CspD, BssR and FlhDC, which modulate biofilm formation, were significantly altered in their expression. Several genes of the envelope stress (cpxP), heat shock (rpoH, htpX, degP), oxidative stress (ahpC, katE), nutrient limitation stress (phoB-phoR and pst) response pathways, and amino acid metabolism were downregulated in the CR+ isolate. Many genes mediating acid resistance and colanic acid biosynthesis, which influence biofilm formation directly or indirectly, were also down-regulated. Comparative genomics of CR+ and CR− isolates revealed the presence of a short duplicated sequence in the rcsB gene of the CR+ isolate. The alignment of the amino acid sequences of RcsB of the two isolates showed truncation of RcsB in the CR+ isolate at the insertion site of the duplicated sequence. Complementation of CR+ isolate with rcsB of the CR− parent restored parental phenotypes to the CR+ isolate. Conclusions The results of this study indicate that RcsB is a global regulator affecting bacterial survival in growth-restrictive environments through upregulation of genes promoting biofilm formation while downregulating certain metabolic functions. Understanding whether rcsB inactivation enhances persistence and survival of O157 in carrier animals and the environment would be important in developing strategies for controlling this bacterial pathogen in these niches.
Collapse
Affiliation(s)
- V K Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA.
| | - D O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - D P Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - T Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - B W Brunelle
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - J A Stasko
- Microscopy Services Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| |
Collapse
|
14
|
Amigo N, Zhang Q, Amadio A, Zhang Q, Silva WM, Cui B, Chen Z, Larzabal M, Bei J, Cataldi A. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain. PLoS One 2016; 11:e0166883. [PMID: 27880834 PMCID: PMC5120812 DOI: 10.1371/journal.pone.0166883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Natalia Amigo
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Qi Zhang
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Ariel Amadio
- Rafaela Experimental Station, National Institute of Agricultural Technology. Rafaela, Santa Fe, Argentina
| | - Qunjie Zhang
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Wanderson M. Silva
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Baiyuan Cui
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Zhongjian Chen
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Mariano Larzabal
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Jinlong Bei
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
- * E-mail:
| | - Angel Cataldi
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| |
Collapse
|