1
|
Nguyen NV, Lin JS, Parikh MJ, Cutri RM, Shibata SB. Targeted spiral ganglion neuron degeneration in parvalbumin-Cre neonatal mice. Mol Ther Methods Clin Dev 2025; 33:101440. [PMID: 40206512 PMCID: PMC11979521 DOI: 10.1016/j.omtm.2025.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025]
Abstract
The spiral ganglion neurons (SGNs) are the primary afferent neurons in the cochlea; damage to the SGNs leads to irreversible hearing impairment. Mouse models that allow selective SGN degeneration while sparing other cell types in the cochlea are lacking. Here, we investigated a genetic ablation method of the SGN using a Cre-responsive adeno-associated virus (AAV) vector expressing diphtheria toxin subunit-A (DTA). We microinjected AAV2-retro-FLEX-DTA-mCherry driven by the EF1a or hSYN promoter in neonatal parvalbumin-Cre (PVCre) and wild-type strains via the posterior semicircular canal. Apoptotic markers were observed in the degenerating SGNs as early as 3 days. After 1 week, we assessed the SGN cell density, revealing an average degeneration of 60% for AAV-DTA driven by the EF1a promoter and 61% for that driven by the hSYN promoter. By 1 month, injected ears demonstrated a nearly complete loss of SGN, while hair cell morphology was intact. The auditory brain stem response result showed significantly elevated threshold shifts at 1 month, while the distortion-product otoacoustic emissions function remained intact. Furthermore, we show that our method did not effectively ablate SGN in adult PVCre mice. We generated a neonatal mouse model with primary SGN degeneration in PVCre mice, mimicking auditory neuropathy phenotype using an AAV Cre-dependent expression of DTA.
Collapse
Affiliation(s)
- Nhi V. Nguyen
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Joshua S. Lin
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Miti J. Parikh
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Raffaello M. Cutri
- Department of Otolaryngology-Head and Neck Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Seiji B. Shibata
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Benarroch E. What Are Current Concepts on the Functional Organization of the Globus Pallidus Externus and Its Potential Role in Parkinson Disease? Neurology 2025; 104:e213623. [PMID: 40327827 DOI: 10.1212/wnl.0000000000213623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 05/08/2025] Open
|
3
|
Zhou W, Xia Q, Liu D, Li JY, Gong L. Association between serum sodium and sporadic Parkinson's disease. Front Neurosci 2025; 19:1555831. [PMID: 40201189 PMCID: PMC11975937 DOI: 10.3389/fnins.2025.1555831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Background The correlation between serum sodium and sporadic Parkinson's disease remains unclear currently. This study aimed to assess the association between serum sodium and sporadic Parkinson's disease. Objective The ultimate goal is to gain a deeper understanding of the implications of this relationship between serum sodium and sporadic Parkinson's disease. Methods We conducted a retrospective cross-sectional study involving 1,189 participants in PPMI cohort. Age, sex, education years, race, body mass index, calcium, alanine aminotransferase, aspartate aminotransferase, white blood cell, lymphocytes, neutrophils, monocytes, red blood cell, hemoglobin, platelets, total protein, albumin, serum uric acid, serum sodium, serum potassium, urea nitrogen, creatinine, serum glucose were obtained from all participants. Logistic regression, and smooth curve fitting were utilized to substantiate the research objectives. Results The overall sporadic Parkinson's disease was 77.5% (921/1189); it was 71.9% (143/199), 75.4% (295/391), 76.7% (171/223), and 83% (312/376) for serum sodium quantile1 (Q1, 130-138.9 mmol/L), quantile 2 (Q2, 139-140.9 mmol/L), quantile 3 (Q3, 141-141.9 mmol/L), and quantile 4 (Q4, 142-155 mmol/L), respectively (p = 0.011). Multivariate odds ratio regression adjusted for risk factors demonstrates a 1-unit increment in the serum sodium raises the risk of sporadic Parkinson's disease by 1.11 times, respectively. Smooth splines analysis suggested a linear association between levels of serum sodium and risk of sporadic Parkinson's disease (P nonlinearity = 0.5). An interaction was observed between serum sodium and sex in their influence on sporadic Parkinson's disease (p < 0.05). Further exploratory subgroup analysis within the age and BMI groups showed that there were no significant interactions between the subgroups (all p values for interaction were > 0.05). Additional sensitivity analyses supported the primary findings and indicated the conclusions are robust. Conclusion This study highlights the influence of inappropriate serum sodium on the risk of incident sporadic Parkinson's disease, independent of confounders. The link between serum sodium and sporadic Parkinson's disease is linear.
Collapse
Affiliation(s)
| | | | | | | | - Liang Gong
- Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Ghasemahmad Z, Perumal KD, Sharma B, Panditi R, Wenstrup JJ. Acoustic features of and behavioral responses to emotionally intense mouse vocalizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632636. [PMID: 39868082 PMCID: PMC11761797 DOI: 10.1101/2025.01.12.632636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Social vocalizations contain cues that reflect the motivational state of a vocalizing animal. Once perceived, these cues may in turn affect the internal state and behavioral responses of listening animals. Using the CBA/CAJ mouse model of acoustic communication, this study examined acoustic cues that signal intensity in male-female interactions, then compared behavioral responses to intense mating vocal sequences with those from another intense behavioral context, restraint. Experiment I in this study examined behaviors and vocalizations associated with male-female social interactions. Based on several behaviors, we distinguished more general, courtship-type interactions from mating interactions involving mounting or attempted mounting behaviors. We then compared vocalizations between courtship and mating. The increase in behavioral intensity from courtship to mating was associated with altered syllable composition, more harmonic structure, lower minimum frequency, longer duration, reduced inter-syllable interval, and increased sound intensity. We then used these features to construct highly salient playback stimuli associated with mating. In Experiment II, we compared behavioral responses to playback of these mating sequences with responses to playback of aversive vocal sequences produced by restrained mice, described in previous studies. Subjects were females in estrus and males. We observed a range of behavioral responses. Some (e.g., Attending and Stretch-Attend) showed similar responses across playback type and sex, while others were context dependent (e.g., Flinching, Locomotion). Still other behaviors showed either an effect of sex (e.g., Self-Grooming, Still-and-Alert) or an interaction between playback type and sex (Escape). These results demonstrate both state-dependent features of mouse vocalizations and their effectiveness in evoking a range of behavioral responses, independent of contextual cues provided by other sensory stimuli or behavioral interactions.
Collapse
|
5
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. Eur J Neurosci 2024; 60:6129-6144. [PMID: 38659055 DOI: 10.1111/ejn.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
For decades, the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here, we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity and functional role of the GPe in behaviour. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behaviour.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| |
Collapse
|
6
|
Grumbach P, Kasper J, Hipp JF, Forsyth A, Valk SL, Muthukumaraswamy S, Eickhoff SB, Schilbach L, Dukart J. Local activity alterations in autism spectrum disorder correlate with neurotransmitter properties and ketamine induced brain changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.20.24315801. [PMID: 39502665 PMCID: PMC11537324 DOI: 10.1101/2024.10.20.24315801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with altered resting-state brain function. An increased excitation-inhibition (E/I) ratio is discussed as a potential pathomechanism but in-vivo evidence of disturbed neurotransmission underlying these functional alterations remains scarce. We compared rs-fMRI local activity (LCOR) between ASD (N=405, N=395) and neurotypical controls (N=473, N=474) in two independent cohorts (ABIDE1 and ABIDE2). We then tested how these LCOR alterations co-localize with specific neurotransmitter systems derived from nuclear imaging and compared them with E/I changes induced by GABAergic (midazolam) and glutamatergic medication (ketamine). Across both cohorts, ASD subjects consistently exhibited reduced LCOR, particularly in higher-order default mode network nodes, alongside increases in bilateral temporal regions, the cerebellum, and brainstem. These LCOR alterations negatively co-localized with dopaminergic (D1, D2, DAT), glutamatergic (NMDA, mGluR5), GABAergic (GABAa) and cholinergic neurotransmission (VAChT). The NMDA-antagonist ketamine, but not GABAa-potentiator midazolam, induced LCOR changes which co-localize with D1, NMDA and GABAa receptors, thereby resembling alterations observed in ASD. We find consistent local activity alterations in ASD to be spatially associated with several major neurotransmitter systems. NMDA-antagonist ketamine induced neurochemical changes similar to ASD-related alterations, supporting the notion that pharmacological modulation of the E/I balance in healthy individuals can induce ASD-like functional brain changes. These findings provide novel insights into neurophysiological mechanisms underlying ASD.
Collapse
Affiliation(s)
- Pascal Grumbach
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Bergische Landstraße 2, 40629 Duesseldorf, Germany
| | - Jan Kasper
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Joerg F. Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann–La Roche Ltd.; Basel, Switzerland
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland; 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Sofie L. Valk
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
- Max Planck School of Cognition; Stephanstraße 1A, 04103 Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences; Stephanstraße 1A, 04103 Leipzig, Germany
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland; 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Duesseldorf; Bergische Landstraße 2, 40629 Duesseldorf, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University Munich; Nußbaumstraße 7, 80336 München
| | - Juergen Dukart
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
| |
Collapse
|
7
|
Kleven H, Schlegel U, Groenewegen HJ, Leergaard TB, Bjerke IE. Comparison of basal ganglia regions across murine brain atlases using metadata models and the Waxholm Space. Sci Data 2024; 11:1036. [PMID: 39333155 PMCID: PMC11437236 DOI: 10.1038/s41597-024-03863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
The murine basal ganglia regions are targets for research into complex brain functions such as motor control and habit formation. However, there are several ways to name and annotate these regions, posing challenges for interpretation and comparison of data across studies. Here, we give an overview of basal ganglia terms and boundaries in the literature and reference atlases, and describe the criteria used for annotating these regions in the Waxholm Space rat brain atlas. We go on to compare basal ganglia annotations in stereotaxic rat brain atlases and the Allen Mouse brain Common Coordinate Framework to those in the Waxholm Space rat brain atlas. We demonstrate and describe considerable differences in the terms and boundaries of most basal ganglia regions across atlases and their versions. We also register information about atlases and regions in the openMINDS metadata framework, facilitating integration of data in neuroscience databases. The comparisons of terms and boundaries across rat and mouse atlases support analysis and interpretation of existing and new data from the basal ganglia.
Collapse
Affiliation(s)
- H Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - U Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - H J Groenewegen
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - T B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - I E Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Malovic E, Ealy A, Miller C, Jang A, Hsu PJ, Sarkar S, Rokad D, Goeser C, Hartman AK, Zhu A, Palanisamy B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, He C, Kanthasamy AG. Epitranscriptomic reader YTHDF2 regulates SEK1( MAP2K4)-JNK-cJUN inflammatory signaling in astrocytes during neurotoxic stress. iScience 2024; 27:110619. [PMID: 39252959 PMCID: PMC11382029 DOI: 10.1016/j.isci.2024.110619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
As the most abundant glial cells in the central nervous system (CNS), astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress are many and complex. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stressor, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, the neurotoxic stress-induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechanistically, YTHDF2 RIP-sequencing identified MAP2K4 (MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed that Mn-exposed astrocytes mediate proinflammatory responses by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves as a key upstream 'molecular switch' controlling SEK1(MAP2K4)-JNK-cJUN proinflammatory signaling in astrocytes.
Collapse
Affiliation(s)
- Emir Malovic
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Alyssa Ealy
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Cameron Miller
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Ahyoung Jang
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Phillip J Hsu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Souvarish Sarkar
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Dharmin Rokad
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Cody Goeser
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Aleah Kristen Hartman
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Allen Zhu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Bharathi Palanisamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Ryan MB, Girasole AE, Flores AJ, Twedell EL, McGregor MM, Brakaj R, Paletzki RF, Hnasko TS, Gerfen CR, Nelson AB. Excessive firing of dyskinesia-associated striatal direct pathway neurons is gated by dopamine and excitatory synaptic input. Cell Rep 2024; 43:114483. [PMID: 39024096 DOI: 10.1016/j.celrep.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
The striatum integrates dopaminergic and glutamatergic inputs to select preferred versus alternative actions. However, the precise mechanisms underlying this process remain unclear. One way to study action selection is to understand how it breaks down in pathological states. Here, we explored the cellular and synaptic mechanisms of levodopa-induced dyskinesia (LID), a complication of Parkinson's disease therapy characterized by involuntary movements. We used an activity-dependent tool (FosTRAP) in conjunction with a mouse model of LID to investigate functionally distinct subsets of striatal direct pathway medium spiny neurons (dMSNs). In vivo, levodopa differentially activates dyskinesia-associated (TRAPed) dMSNs compared to other dMSNs. We found this differential activation of TRAPed dMSNs is likely to be driven by higher dopamine receptor expression, dopamine-dependent excitability, and excitatory input from the motor cortex and thalamus. Together, these findings suggest how the intrinsic and synaptic properties of heterogeneous dMSN subpopulations integrate to support action selection.
Collapse
Affiliation(s)
- Michael B Ryan
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Allison E Girasole
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Andrew J Flores
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Emily L Twedell
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew M McGregor
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Rea Brakaj
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Ronald F Paletzki
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Thomas S Hnasko
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
10
|
Jones JA, Peña J, Likhotvorik RI, Garcia-Castañeda BI, Wilson CJ. Comparison of unitary synaptic currents generated by indirect and direct pathway neurons of the mouse striatum. J Neurophysiol 2024; 131:914-936. [PMID: 38596834 PMCID: PMC11381124 DOI: 10.1152/jn.00066.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/11/2024] Open
Abstract
Two subtypes of striatal spiny projection neurons, iSPNs and dSPNs, whose axons form the "indirect" and "direct" pathways of the basal ganglia, respectively, both make synaptic connections in the external globus pallidus (GPe) but are usually found to have different effects on behavior. Activation of the terminal fields of iSPNs or dSPNs generated compound currents in almost all GPe neurons. To determine whether iSPNs and dSPNs have the same or different effects on pallidal neurons, we studied the unitary synaptic currents generated in GPe neurons by action potentials in single striatal neurons. We used optogenetic excitation to elicit repetitive firing in a small number of nearby SPNs, producing sparse barrages of inhibitory postsynaptic currents (IPSCs) in GPe neurons. From these barrages, we isolated sequences of IPSCs with similar time courses and amplitudes, which presumably arose from the same SPN. There was no difference between the amplitudes of unitary IPSCs generated by the indirect and direct pathways. Most unitary IPSCs were small, but a subset from each pathway were much larger. To determine the effects of these unitary synaptic currents on the action potential firing of GPe neurons, we drove SPNs to fire as before and recorded the membrane potential of GPe neurons. Large unitary potentials from iSPNs and dSPNs perturbed the spike timing of GPe neurons in a similar way. Most SPN-GPe neuron pairs are weakly connected, but a subset of pairs in both pathways are strongly connected.NEW & NOTEWORTHY This is the first study to record the synaptic currents generated by single identified direct or indirect pathway striatal neurons on single pallidal neurons. Each GPe neuron receives synaptic inputs from both pathways. Most striatal neurons generate small synaptic currents that become influential when occurring together, but a few are powerful enough to be individually influential.
Collapse
Affiliation(s)
- James A Jones
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Jacob Peña
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| | - Rostislav I Likhotvorik
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| | - Brandon I Garcia-Castañeda
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| | - Charles J Wilson
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| |
Collapse
|
11
|
Assali A, Chenaux G, Cho JY, Berto S, Ehrlich NA, Cowan CW. EphB1 controls long-range cortical axon guidance through a cell non-autonomous role in GABAergic cells. Development 2024; 151:dev201439. [PMID: 38345254 PMCID: PMC10946438 DOI: 10.1242/dev.201439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
EphB1 is required for proper guidance of cortical axon projections during brain development, but how EphB1 regulates this process remains unclear. We show here that EphB1 conditional knockout (cKO) in GABAergic cells (Vgat-Cre), but not in cortical excitatory neurons (Emx1-Cre), reproduced the cortical axon guidance defects observed in global EphB1 KO mice. Interestingly, in EphB1 cKOVgat mice, the misguided axon bundles contained co-mingled striatal GABAergic and somatosensory cortical glutamatergic axons. In wild-type mice, somatosensory axons also co-fasciculated with striatal axons, notably in the globus pallidus, suggesting that a subset of glutamatergic cortical axons normally follows long-range GABAergic axons to reach their targets. Surprisingly, the ectopic axons in EphB1 KO mice were juxtaposed to major blood vessels. However, conditional loss of EphB1 in endothelial cells (Tie2-Cre) did not produce the axon guidance defects, suggesting that EphB1 in GABAergic neurons normally promotes avoidance of these ectopic axons from the developing brain vasculature. Together, our data reveal a new role for EphB1 in GABAergic neurons to influence proper cortical glutamatergic axon guidance during brain development.
Collapse
Affiliation(s)
- Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - George Chenaux
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan A. Ehrlich
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Azizpour Lindi S, Mallet NP, Leblois A. Synaptic Changes in Pallidostriatal Circuits Observed in the Parkinsonian Model Triggers Abnormal Beta Synchrony with Accurate Spatio-temporal Properties across the Basal Ganglia. J Neurosci 2024; 44:e0419232023. [PMID: 38123981 PMCID: PMC10903930 DOI: 10.1523/jneurosci.0419-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Excessive oscillatory activity across basal ganglia (BG) nuclei in the β frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated β oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of β-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal β oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal β oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-β (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-β range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD β oscillations and may thereby guide the future development of therapeutic strategies.
Collapse
Affiliation(s)
- Shiva Azizpour Lindi
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Nicolas P Mallet
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Arthur Leblois
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| |
Collapse
|
13
|
Guilhemsang L, Mallet NP. Arkypallidal neurons in basal ganglia circuits: Unveiling novel pallidostriatal loops? Curr Opin Neurobiol 2024; 84:102814. [PMID: 38016260 DOI: 10.1016/j.conb.2023.102814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
Just over a decade ago, a novel GABAergic input originating from a subpopulation of external globus pallidus neurons known as Arkypallidal and projecting exclusively to the striatum was unveiled. At the single-cell level, these pallidostriatal Arkypallidal projections represent one of the largest extrinsic sources of GABA known to innervate the dorsal striatum. This discovery has sparked new questions regarding their role in striatal information processing, the circuit that recruit these neurons, and their influence on behaviour, especially in the context of action selection vs. inhibition. In this review, we will present the different anatomo-functional organization of Arkypallidal neurons as compared to classic Prototypic neurons, including their unique molecular properties and what is known about their specific input/output synaptic organization. We will further describe recent findings that demonstrate one mode of action of Arkypallidal neurons, which is to convey feedback inhibition to the striatum, and how this mechanism is differentially modulated by both striatal projection pathways. Lastly, we will delve into speculations on their mechanistic contribution to striatal action execution or inhibition.
Collapse
Affiliation(s)
- Lise Guilhemsang
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Nicolas P Mallet
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France.
| |
Collapse
|
14
|
Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, Nam YW, Zhang M. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol 2024; 15:1320086. [PMID: 38348223 PMCID: PMC10859863 DOI: 10.3389/fphys.2024.1320086] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Z. Alwatban
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Noble Chea
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Abdullah M. Alotaibi
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
15
|
Malovic E, Ealy A, Hsu PJ, Sarkar S, Miller C, Rokad D, Goeser C, Hartman AK, Zhu A, Palanisamy B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, He C, Kanthasamy AG. Epitranscriptomic Reader YTHDF2 Regulates SEK1( MAP2K4 )-JNK-cJUN Inflammatory Signaling in Astrocytes during Neurotoxic Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577106. [PMID: 38328119 PMCID: PMC10849634 DOI: 10.1101/2024.01.26.577106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As the most abundant glial cells in the CNS, astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress have remained elusive. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stresser, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, neurotoxic stress induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechnistically, YTHDF2 RIP-sequencing identified MAP2K4 ( MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed Mn-exposed astrocytes mediates proinflammatory response by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves a key upstream 'molecular switch' controlling SEK1( MAP2K4 )-JNK-cJUN proinflammatory signaling in astrocytes.
Collapse
|
16
|
Soghomonian JJ. The cortico-striatal circuitry in autism-spectrum disorders: a balancing act. Front Cell Neurosci 2024; 17:1329095. [PMID: 38273975 PMCID: PMC10808402 DOI: 10.3389/fncel.2023.1329095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The basal ganglia are major targets of cortical inputs and, in turn, modulate cortical function via their projections to the motor and prefrontal cortices. The role of the basal ganglia in motor control and reward is well documented and there is also extensive evidence that they play a key role in social and repetitive behaviors. The basal ganglia influence the activity of the cerebral cortex via two major projections from the striatum to the output nuclei, the globus pallidus internus and the substantia nigra, pars reticulata. This modulation involves a direct projection known as the direct pathway and an indirect projection via the globus pallidus externus and the subthalamic nucleus, known as the indirect pathway. This review discusses the respective contribution of the direct and indirect pathways to social and repetitive behaviors in neurotypical conditions and in autism spectrum disorders.
Collapse
|
17
|
Fang LZ, Creed MC. Updating the striatal-pallidal wiring diagram. Nat Neurosci 2024; 27:15-27. [PMID: 38057614 PMCID: PMC11892008 DOI: 10.1038/s41593-023-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
18
|
Nambu A, Chiken S. External segment of the globus pallidus in health and disease: Its interactions with the striatum and subthalamic nucleus. Neurobiol Dis 2024; 190:106362. [PMID: 37992783 DOI: 10.1016/j.nbd.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus. On the other hand, many studies have so far been performed in monkeys to clarify the functions of the basal ganglia in the healthy and diseased states, but have not paid much attention to such classification and functional differences of GPe neurons. In this minireview, we consider the knowledge on the rodent GPe and discuss its impact on the understanding of the basal ganglia circuitry in monkeys.
Collapse
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
19
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. ARXIV 2023:arXiv:2312.14267v2. [PMID: 38196745 PMCID: PMC10775352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
For decades the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity, and functional role of the GPe in behavior. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behavior.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Catalina Vich
- Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| |
Collapse
|
20
|
Rajan AAN, Asada R, Montpetit B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and to promote Dbp5 mediated tRNA export in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547072. [PMID: 37425677 PMCID: PMC10327206 DOI: 10.1101/2023.06.29.547072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
| | - Ryuta Asada
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Ben Montpetit
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
21
|
Biswas S, Chan CS, Rubenstein JLR, Gan L. The transcription regulator Lmo3 is required for the development of medial ganglionic eminence derived neurons in the external globus pallidus. Dev Biol 2023; 503:10-24. [PMID: 37532091 PMCID: PMC10658356 DOI: 10.1016/j.ydbio.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The external globus pallidus (GPe) is an essential component of the basal ganglia, a group of subcortical nuclei that are involved in control of action. Changes in the firing of GPe neurons are associated with both passive and active body movements. Aberrant activity of GPe neurons has been linked to motor symptoms of a variety of movement disorders, such as Parkinson's Disease, Huntington's disease and dystonia. Recent studies have helped delineate functionally distinct subtypes of GABAergic GPe projection neurons. However, not much is known about specific molecular mechanisms underlying the development of GPe neuronal subtypes. We show that the transcriptional regulator Lmo3 is required for the development of medial ganglionic eminence derived Nkx2.1+ and PV+ GPe neurons, but not lateral ganglionic eminence derived FoxP2+ neurons. As a consequence of the reduction in PV+ neurons, Lmo3-null mice have a reduced GPe input to the subthalamic nucleus.
Collapse
Affiliation(s)
- Shiona Biswas
- The Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA.
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John L R Rubenstein
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California at San Francisco, CA, 94143, USA
| | - Lin Gan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA; Department of Ophthalmology and the Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA
| |
Collapse
|
22
|
Delgado-Zabalza L, Mallet NP, Glangetas C, Dabee G, Garret M, Miguelez C, Baufreton J. Targeting parvalbumin-expressing neurons in the substantia nigra pars reticulata restores motor function in parkinsonian mice. Cell Rep 2023; 42:113287. [PMID: 37843977 DOI: 10.1016/j.celrep.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.
Collapse
Affiliation(s)
- Lorena Delgado-Zabalza
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nicolas P Mallet
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | | - Guillaume Dabee
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Maurice Garret
- University Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jérôme Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
23
|
Labouesse MA, Torres-Herraez A, Chohan MO, Villarin JM, Greenwald J, Sun X, Zahran M, Tang A, Lam S, Veenstra-VanderWeele J, Lacefield CO, Bonaventura J, Michaelides M, Chan CS, Yizhar O, Kellendonk C. A non-canonical striatopallidal Go pathway that supports motor control. Nat Commun 2023; 14:6712. [PMID: 37872145 PMCID: PMC10593790 DOI: 10.1038/s41467-023-42288-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
In the classical model of the basal ganglia, direct pathway striatal projection neurons (dSPNs) send projections to the substantia nigra (SNr) and entopeduncular nucleus to regulate motor function. Recent studies have re-established that dSPNs also possess axon collaterals within the globus pallidus (GPe) (bridging collaterals), yet the significance of these collaterals for behavior is unknown. Here we use in vivo optical and chemogenetic tools combined with deep learning approaches in mice to dissect the roles of dSPN GPe collaterals in motor function. We find that dSPNs projecting to the SNr send synchronous motor-related information to the GPe via axon collaterals. Inhibition of native activity in dSPN GPe terminals impairs motor activity and function via regulation of Npas1 neurons. We propose a model by which dSPN GPe axon collaterals (striatopallidal Go pathway) act in concert with the canonical terminals in the SNr to support motor control by inhibiting Npas1 neurons.
Collapse
Affiliation(s)
- Marie A Labouesse
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Health, Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland.
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Muhammad O Chohan
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Joseph M Villarin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Julia Greenwald
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Xiaoxiao Sun
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mysarah Zahran
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Barnard College, Columbia University, New York, NY, 10027, USA
| | - Alice Tang
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Columbia College, Columbia University, New York, NY, 10027, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Clay O Lacefield
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Courtney CD, Pamukcu A, Chan CS. Cell and circuit complexity of the external globus pallidus. Nat Neurosci 2023; 26:1147-1159. [PMID: 37336974 PMCID: PMC11382492 DOI: 10.1038/s41593-023-01368-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/18/2023] [Indexed: 06/21/2023]
Abstract
The external globus pallidus (GPe) of the basal ganglia has been underappreciated owing to poor understanding of its cells and circuits. It was assumed that the GPe consisted of a homogeneous neuron population primarily serving as a 'relay station' for information flowing through the indirect basal ganglia pathway. However, the advent of advanced tools in rodent models has sparked a resurgence in interest in the GPe. Here, we review recent data that have unveiled the cell and circuit complexity of the GPe. These discoveries have revealed that the GPe does not conform to traditional views of the basal ganglia. In particular, recent evidence confirms that the afferent and efferent connections of the GPe span both the direct and the indirect pathways. Furthermore, the GPe displays broad interconnectivity beyond the basal ganglia, consistent with its emerging multifaceted roles in both motor and non-motor functions. In summary, recent data prompt new proposals for computational rules of the basal ganglia.
Collapse
Affiliation(s)
- Connor D Courtney
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arin Pamukcu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
25
|
Barbieri R, Nizzari M, Zanardi I, Pusch M, Gavazzo P. Voltage-Gated Sodium Channel Dysfunctions in Neurological Disorders. Life (Basel) 2023; 13:life13051191. [PMID: 37240836 DOI: 10.3390/life13051191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The pore-forming subunits (α subunits) of voltage-gated sodium channels (VGSC) are encoded in humans by a family of nine highly conserved genes. Among them, SCN1A, SCN2A, SCN3A, and SCN8A are primarily expressed in the central nervous system. The encoded proteins Nav1.1, Nav1.2, Nav1.3, and Nav1.6, respectively, are important players in the initiation and propagation of action potentials and in turn of the neural network activity. In the context of neurological diseases, mutations in the genes encoding Nav1.1, 1.2, 1.3 and 1.6 are responsible for many forms of genetic epilepsy and for Nav1.1 also of hemiplegic migraine. Several pharmacological therapeutic approaches targeting these channels are used or are under study. Mutations of genes encoding VGSCs are also involved in autism and in different types of even severe intellectual disability (ID). It is conceivable that in these conditions their dysfunction could indirectly cause a certain level of neurodegenerative processes; however, so far, these mechanisms have not been deeply investigated. Conversely, VGSCs seem to have a modulatory role in the most common neurodegenerative diseases such as Alzheimer's, where SCN8A expression has been shown to be negatively correlated with disease severity.
Collapse
Affiliation(s)
| | - Mario Nizzari
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Ilaria Zanardi
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| |
Collapse
|
26
|
Schulz A, Richter F, Richter A. In vivo optogenetic inhibition of striatal parvalbumin-reactive interneurons induced genotype-specific changes in neuronal activity without dystonic signs in male DYT1 knock-in mice. J Neurosci Res 2023; 101:448-463. [PMID: 36546658 DOI: 10.1002/jnr.25157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/30/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The pathophysiology of early-onset torsion dystonia (TOR1A/DYT1) remains unclear. Like 70% of human mutation carriers, rodent models with ΔGAG mutation such as DYT1 knock-in (KI) mice do not show overt dystonia but have subtle sensorimotor deficits and pattern of abnormal synaptic plasticity within the striatal microcircuits. There is evidence that dysfunction of striatal parvalbumin-reactive (Parv+) fast-spiking interneurons (FSIs) can be involved in dystonic signs. To elucidate the relevance of these GABAergic interneurons in the pathophysiology of DYT1 dystonia, we used in vivo optogenetics to specifically inhibit Parv+ and to detect changes in motor behavior and neuronal activity. Optogenetic fibers were bilaterally implanted into the dorsal striatum of male DYT1 KI mice and wild-type (WT) littermates expressing halorhodopsin (eNpHR3.0) in Parv+ interneurons. While stimulations with yellow light pulses for up to 60 min at different pulse durations and interval lengths did not induce abnormal movements, such as dystonic signs, immunohistochemical examinations revealed genotype-dependent differences. In contrast to WT mice, stimulated DYT1 KI showed decreased striatal neuronal activity, that is, less c-Fos reactive neurons, and increased activation of cholinergic interneurons after optogenetic inhibition of Parv+ interneurons. These findings suggest an involvement of Parv+ interneurons in an impaired striatal network in DYT1 KI mice, but at least short-term inhibition of these GABAergic interneurons is not sufficient to trigger a dystonic phenotype, similar to previously shown optogenetic activation of cholinergic interneurons.
Collapse
Affiliation(s)
- Anja Schulz
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,Institute of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Ortone A, Vergani AA, Ahmadipour M, Mannella R, Mazzoni A. Dopamine depletion leads to pathological synchronization of distinct basal ganglia loops in the beta band. PLoS Comput Biol 2023; 19:e1010645. [PMID: 37104542 PMCID: PMC10168586 DOI: 10.1371/journal.pcbi.1010645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/09/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Motor symptoms of Parkinson's Disease (PD) are associated with dopamine deficits and pathological oscillation of basal ganglia (BG) neurons in the β range ([12-30] Hz). However, how dopamine depletion affects the oscillation dynamics of BG nuclei is still unclear. With a spiking neurons model, we here capture the features of BG nuclei interactions leading to oscillations in dopamine-depleted condition. We highlight that both the loop between subthalamic nucleus (STN) and Globus Pallidus pars externa (GPe) and the loop between striatal fast spiking and medium spiny neurons and GPe display resonances in the β range, and synchronize to a common β frequency through interaction. Crucially, the synchronization depends on dopamine depletion: the two loops are largely independent for high levels of dopamine, but progressively synchronize as dopamine is depleted due to the increased strength of the striatal loop. The model is validated against recent experimental reports on the role of cortical inputs, STN and GPe activity in the generation of β oscillations. Our results highlight the role of the interplay between the GPe-STN and the GPe-striatum loop in generating sustained β oscillations in PD subjects, and explain how this interplay depends on the level of dopamine. This paves the way to the design of therapies specifically addressing the onset of pathological β oscillations.
Collapse
Affiliation(s)
- Andrea Ortone
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Alberto Arturo Vergani
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Mahboubeh Ahmadipour
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
28
|
Guarino S, Hagen C, Nguyen Q, Papini MR. Frustrative nonreward and the basal ganglia: Chemogenetic inhibition and excitation of the nucleus accumbens and globus pallidus externus during reward downshift. Neurobiol Learn Mem 2023; 200:107736. [PMID: 36822464 DOI: 10.1016/j.nlm.2023.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Frustrative nonreward contributes to anxiety disorders and addiction, and is included in the Research Domain Criteria initiative as a relevant endophenotype. These experiments explored the role of the basal ganglia in consummatory reward downshift (cRD) using inhibitory and excitatory DREADDs (designer receptors exclusively activated by designer drugs) infused in either the nucleus accumbens (NAc) or one of its downstream targets, the globus pallidus externus (GPe). NAc inhibition did not disrupt consummatory suppression during a 32-to-2% (Experiment 1) or 8-to-2% sucrose downshift (Experiment 2). However, NAc excitation enhanced consummatory suppression during a 32-to-2% sucrose downshift (Experiment 1). GPe inhibition caused a trend toward increased consummatory suppression after a 32-to-2% sucrose downshift, whereas GPe excitation eliminated consummatory suppression after an 8-to-2% sucrose downshift (Experiment 3). Chemogenetic manipulations of NAc and GPe had no detectable effects on open field activity. The effects of DREADD activation via clozapine N-oxide (CNO) administration were compared to controls that carried the DREADDs, but received vehicle injections. There was no evidence that CNO or vehicle injections in virus vector control (VVC) animals affected cRD or OF activity after either CNO or vehicle injections. NAc and GPe excitation led to opposite results in the cRD task, providing evidence that the basal ganglia circuit has a function in frustrative nonreward in the absence of detectable motor effects.
Collapse
Affiliation(s)
- Sara Guarino
- Department of Psychology, Texas Christian University, Fort Worth, TX 76109, USA
| | - Christopher Hagen
- Department of Psychology, Texas Christian University, Fort Worth, TX 76109, USA
| | - Quynh Nguyen
- Department of Psychology, Texas Christian University, Fort Worth, TX 76109, USA
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth, TX 76109, USA.
| |
Collapse
|
29
|
Song J, Lin H, Liu S. Basal ganglia network dynamics and function: Role of direct, indirect and hyper-direct pathways in action selection. NETWORK (BRISTOL, ENGLAND) 2023; 34:84-121. [PMID: 36856435 DOI: 10.1080/0954898x.2023.2173816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Basal ganglia (BG) are a widely recognized neural basis for action selection, but its decision-making mechanism is still a difficult problem for researchers. Therefore, we constructed a spiking neural network inspired by the BG anatomical data. Simulation experiments were based on the principle of dis-inhibition and our functional hypothesis within the BG: the direct pathway, the indirect pathway, and the hyper-direct pathway of the BG jointly implement the initiation execution and termination of motor programs. Firstly, we studied the dynamic process of action selection with the network, which contained intra-group competition and inter-group competition. Secondly, we focused on the effects of the stimulus intensity and the proportion of excitation and inhibition on the GPi/SNr. The results suggested that inhibition and excitation shape action selection. They also explained why the firing rate of GPi/SNr did not continue to increase in the action-selection experiment. Finally, we discussed the experimental results with the functional hypothesis. Uniquely, this paper summarized the decision-making neural mechanism of action selection based on the direct pathway, the indirect pathway, and the hyper-direct pathway within BG.
Collapse
Affiliation(s)
- Jian Song
- School of Mathematics, South China University of Technology, Guangzhou, China
| | - Hui Lin
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Shenquan Liu
- School of Mathematics, South China University of Technology, Guangzhou, China
| |
Collapse
|
30
|
Johansson Y, Ketzef M. Sensory processing in external globus pallidus neurons. Cell Rep 2023; 42:111952. [PMID: 36640317 DOI: 10.1016/j.celrep.2022.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Sensory processing is crucial for execution of appropriate behavior. The external globus pallidus (GPe), a nucleus within the basal ganglia, is highly involved in the control of movement and could potentially integrate sensory-motor information. The GPe comprises prototypic and arkypallidal cells, which receive partially overlapping inputs. It is unclear, however, which inputs convey sensory information to them. Here, we used in vivo whole-cell recordings in the mouse GPe and optogenetic silencing to characterize the pathways that shape the response to whisker stimulation in prototypic and arkypallidal cells. Our results show that sensory integration in prototypic cells is controlled by the subthalamic nucleus and indirect pathway medium spiny neurons (MSNs), whereas in arkypallidal cells, it is primarily shaped by direct pathway MSNs. These results suggest that GPe subpopulations receive sensory information from largely different neural populations, reinforcing that the GPe consists of two parallel pathways, which differ anatomically and functionally.
Collapse
Affiliation(s)
- Yvonne Johansson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Maya Ketzef
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
31
|
Gerfen CR. Segregation of D1 and D2 dopamine receptors in the striatal direct and indirect pathways: An historical perspective. Front Synaptic Neurosci 2023; 14:1002960. [PMID: 36741471 PMCID: PMC9892636 DOI: 10.3389/fnsyn.2022.1002960] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
The direct and indirect striatal pathways form a cornerstone of the circuits of the basal ganglia. Dopamine has opponent affects on the function of these pathways due to the segregation of the D1- and D2-dopamine receptors in the spiny projection neurons giving rise to the direct and indirect pathways. An historical perspective is provided on the discovery of dopamine receptor segregation leading to models of how the direct and indirect affect motor behavior.
Collapse
|
32
|
Chen Z, Feng T. Neural connectome features of procrastination: Current progress and future direction. Brain Cogn 2022; 161:105882. [PMID: 35679698 DOI: 10.1016/j.bandc.2022.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Procrastination refers to an irrationally delay for intended courses of action despite of anticipating a negative consequence due to this delay. Previous studies tried to reveal the neural substrates of procrastination in terms of connectome-based biomarkers. Based on this, we proposed a unified triple brain network model for procrastination and pinpointed out what challenges we are facing in understanding neural mechanism of procrastination. Specifically, based on neuroanatomical features, the unified triple brain network model proposed that connectome-based underpinning of procrastination could be ascribed to the abnormalities of self-control network (i.e., dorsolateral prefrontal cortex, DLPFC), emotion-regulation network (i.e., orbital frontal cortex, OFC), and episodic prospection network (i.e., para-hippocampus cortex, PHC). Moreover, based on the brain functional features, procrastination had been attributed to disruptive neural circuits on FPN (frontoparietal network)-SCN (subcortical network) and FPN-SAN (salience network), which led us to hypothesize the crucial roles of interplay between these networks on procrastination in unified triple brain network model. Despite of these findings, poor interpretability and computational model limited further understanding for procrastination from theoretical and neural perspectives. On balance, the current study provided an overview to show current progress on the connectome-based biomarkers for procrastination, and proposed the integrative neurocognitive model of procrastination.
Collapse
Affiliation(s)
- Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China.
| |
Collapse
|
33
|
Lawler AJ, Ramamurthy E, Brown AR, Shin N, Kim Y, Toong N, Kaplow IM, Wirthlin M, Zhang X, Phan BN, Fox GA, Wade K, He J, Ozturk BE, Byrne LC, Stauffer WR, Fish KN, Pfenning AR. Machine learning sequence prioritization for cell type-specific enhancer design. eLife 2022; 11:e69571. [PMID: 35576146 PMCID: PMC9110026 DOI: 10.7554/elife.69571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Recent discoveries of extreme cellular diversity in the brain warrant rapid development of technologies to access specific cell populations within heterogeneous tissue. Available approaches for engineering-targeted technologies for new neuron subtypes are low yield, involving intensive transgenic strain or virus screening. Here, we present Specific Nuclear-Anchored Independent Labeling (SNAIL), an improved virus-based strategy for cell labeling and nuclear isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other computational approaches to identify DNA sequence features that confer cell type-specific gene activation and then make a probe that drives an affinity purification-compatible reporter gene. As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-expressing (PV+) neurons. Nuclear isolation using SNAIL in wild-type mice is sufficient to capture characteristic open chromatin features of PV+ neurons in the cortex, striatum, and external globus pallidus. The SNAIL framework also has high utility for multispecies cell probe engineering; expression from a mouse PV+ SNAIL enhancer sequence was enriched in PV+ neurons of the macaque cortex. Expansion of this technology has broad applications in cell type-specific observation, manipulation, and therapeutics across species and disease models.
Collapse
Affiliation(s)
- Alyssa J Lawler
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Biological Sciences Department, Mellon College of Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Easwaran Ramamurthy
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Ashley R Brown
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Naomi Shin
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Yeonju Kim
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Noelle Toong
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Irene M Kaplow
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Morgan Wirthlin
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Xiaoyu Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - BaDoi N Phan
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
- Medical Scientist Training Program, University of PittsburghPittsburghUnited States
| | - Grant A Fox
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Kirsten Wade
- Department of Psychiatry, Translational Neuroscience Program, University of PittsburghPittsburghUnited States
| | - Jing He
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of CognitionPittsburghUnited States
| | - Bilge Esin Ozturk
- Department of Ophthalmology, University of PittsburghPittsburghUnited States
| | - Leah C Byrne
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Department of Ophthalmology, University of PittsburghPittsburghUnited States
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - William R Stauffer
- Department of Neurobiology, University of PittsburghPittsburghUnited States
| | - Kenneth N Fish
- Department of Psychiatry, Translational Neuroscience Program, University of PittsburghPittsburghUnited States
| | - Andreas R Pfenning
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
34
|
Adam EM, Brown EN, Kopell N, McCarthy MM. Deep brain stimulation in the subthalamic nucleus for Parkinson's disease can restore dynamics of striatal networks. Proc Natl Acad Sci U S A 2022; 119:e2120808119. [PMID: 35500112 PMCID: PMC9171607 DOI: 10.1073/pnas.2120808119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in alleviating movement disability in patients with Parkinson’s disease (PD). However, its therapeutic mechanism of action is unknown. The healthy striatum exhibits rich dynamics resulting from an interaction of beta, gamma, and theta oscillations. These rhythms are essential to selection and execution of motor programs, and their loss or exaggeration due to dopamine (DA) depletion in PD is a major source of behavioral deficits. Restoring the natural rhythms may then be instrumental in the therapeutic action of DBS. We develop a biophysical networked model of a BG pathway to study how abnormal beta oscillations can emerge throughout the BG in PD and how DBS can restore normal beta, gamma, and theta striatal rhythms. Our model incorporates STN projections to the striatum, long known but understudied, found to preferentially target fast-spiking interneurons (FSI). We find that DBS in STN can normalize striatal medium spiny neuron activity by recruiting FSI dynamics and restoring the inhibitory potency of FSIs observed in normal conditions. We also find that DBS allows the reexpression of gamma and theta rhythms, thought to be dependent on high DA levels and thus lost in PD, through cortical noise control. Our study highlights that DBS effects can go beyond regularizing BG output dynamics to restoring normal internal BG dynamics and the ability to regulate them. It also suggests how gamma and theta oscillations can be leveraged to supplement DBS treatment and enhance its effectiveness.
Collapse
Affiliation(s)
- Elie M. Adam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emery N. Brown
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | | |
Collapse
|
35
|
Callahan JW, Wokosin DL, Bevan MD. Dysregulation of the Basal Ganglia Indirect Pathway in Early Symptomatic Q175 Huntington's Disease Mice. J Neurosci 2022; 42:2080-2102. [PMID: 35058372 PMCID: PMC8916764 DOI: 10.1523/jneurosci.0782-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
The debilitating psychomotor symptoms of Huntington's disease (HD) are linked partly to degeneration of the basal ganglia indirect pathway. At early symptomatic stages, before major cell loss, indirect pathway neurons exhibit numerous cellular and synaptic changes in HD and its models. However, the impact of these alterations on circuit activity remains poorly understood. To address this gap, optogenetic- and reporter-guided electrophysiological interrogation was used in early symptomatic male and female Q175 HD mice. D2 dopamine receptor-expressing striatal projection neurons (D2-SPNs) were hypoactive during synchronous cortical slow-wave activity, consistent with known reductions in dendritic excitability and cortical input strength. Downstream prototypic parvalbumin-expressing external globus pallidus (PV+ GPe) neurons discharged at 2-3 times their normal rate, even during periods of D2-SPN inactivity, arguing that defective striatopallidal inhibition was not the only cause of their hyperactivity. Indeed, PV+ GPe neurons also exhibited abnormally elevated autonomous firing ex vivo Optogenetic inhibition of PV+ GPe neurons in vivo partially and fully ameliorated the abnormal hypoactivity of postsynaptic subthalamic nucleus (STN) and putative PV- GPe neurons, respectively. In contrast to STN neurons whose autonomous firing is impaired in HD mice, putative PV- GPe neuron activity was unaffected ex vivo, implying that excessive inhibition was responsible for their hypoactivity in vivo Together with previous studies, these data demonstrate that (1) indirect pathway nuclei are dysregulated in Q175 mice through changes in presynaptic activity and/or intrinsic cellular and synaptic properties; and (2) prototypic PV+ GPe neuron hyperactivity and excessive target inhibition are prominent features of early HD pathophysiology.SIGNIFICANCE STATEMENT The early symptoms of Huntington's disease (HD) are linked to degenerative changes in the action-suppressing indirect pathway of the basal ganglia. Consistent with this linkage, the intrinsic properties of cells in this pathway exhibit complex alterations in HD and its models. However, the impact of these changes on activity is poorly understood. Using electrophysiological and optogenetic approaches, we demonstrate that the indirect pathway is highly dysregulated in early symptomatic HD mice through changes in upstream activity and/or intrinsic properties. Furthermore, we reveal that hyperactivity of external globus pallidus neurons and excessive inhibition of their targets are key features of early HD pathophysiology. Together, these findings could help to inform the development and targeting of viral-based, gene therapeutic approaches for HD.
Collapse
Affiliation(s)
- Joshua W Callahan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Mark D Bevan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
36
|
Bokulić E, Medenica T, Knezović V, Štajduhar A, Almahariq F, Baković M, Judaš M, Sedmak G. The Stereological Analysis and Spatial Distribution of Neurons in the Human Subthalamic Nucleus. Front Neuroanat 2022; 15:749390. [PMID: 34970124 PMCID: PMC8712451 DOI: 10.3389/fnana.2021.749390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, ovoid structure, and an important site of deep brain stimulation (DBS) for the treatment of Parkinson’s disease. Although the STN is a clinically important structure, there are many unresolved issues with regard to it. These issues are especially related to the anatomical subdivision, neuronal phenotype, neuronal composition, and spatial distribution. In this study, we have examined the expression pattern of 8 neuronal markers [nNOS, NeuN, parvalbumin (PV), calbindin (CB), calretinin (CR), FOXP2, NKX2.1, and PAX6] in the adult human STN. All of the examined markers, except CB, were present in the STN. To determine the neuronal density, we have performed stereological analysis on Nissl-stained and immunohistochemical slides of positive markers. The stereology data were also used to develop a three-dimensional map of the spatial distribution of neurons within the STN. The nNOS population exhibited the largest neuronal density. The estimated total number of nNOS STN neurons is 281,308 ± 38,967 (± 13.85%). The STN neuronal subpopulations can be divided into two groups: one with a neuronal density of approximately 3,300 neurons/mm3 and the other with a neuronal density of approximately 2,200 neurons/mm3. The largest density of STN neurons was observed along the ventromedial border of the STN and the density gradually decreased toward the dorsolateral border. In this study, we have demonstrated the presence of 7 neuronal markers in the STN, three of which were not previously described in the human STN. The human STN is a collection of diverse, intermixed neuronal subpopulations, and our data, as far as the cytoarchitectonics is concerned, did not support the tripartite STN subdivision.
Collapse
Affiliation(s)
- Ema Bokulić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Tila Medenica
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Vinka Knezović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Andrija Štajduhar
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,School of Public Health "Andrija Štampar," University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fadi Almahariq
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Department of Neurosurgery, Clinical Hospital "Dubrava," Zagreb, Croatia
| | - Marija Baković
- Department of Forensic Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
37
|
Yang FC, Vivian JL, Traxler C, Shapiro SM, Stanford JA. MGE-Like Neural Progenitor Cell Survival and Expression of Parvalbumin and Proenkephalin in a Jaundiced Rat Model of Kernicterus. Cell Transplant 2022; 31:9636897221101116. [PMID: 35596532 PMCID: PMC9125107 DOI: 10.1177/09636897221101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/27/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
Kernicterus is a permanent condition caused by brain damage from bilirubin toxicity. Dystonia is one of the most debilitating symptoms of kernicterus and results from damage to the globus pallidus (GP). One potential therapeutic strategy to treat dystonia in kernicterus is to replace lost GP neurons and restore basal ganglia circuits through stem cell transplantation. Toward this end, we differentiated human embryonic stem cells (hESCs) into medial ganglion eminence (MGE; the embryological origin of most of the GP neurons)-like neural precursor cells (NPCs). We determined neurochemical phenotype in cell culture and after transplanting into the GP of jaundiced Gunn rats. We also determined grafted cell survival as well as migration, distribution, and morphology after transplantation. As in the GP, most cultured MGE-like NPCs expressed γ-aminobutyric acid (GABA), with some co-expressing markers for parvalbumin (PV) and others expressing markers for pro-enkephalin (PENK). MGE-like NPCs survived in brains at least 7 weeks after transplantation, with most aggregating near the injection site. Grafted cells expressed GABA and PV or PENK as in the normal GP. Although survival was low and the maturity of grafted cells varied, many cells produced neurite outgrowth. While promising, our results suggest the need to further optimize the differentiation protocol for MGE-like NPC for potential use in treating dystonia in kernicterus.
Collapse
Affiliation(s)
- Fu-Chen Yang
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Jay L. Vivian
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine Traxler
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven M. Shapiro
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, USA
| | - John A. Stanford
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Intellectual and Developmental Disabilities Research Center, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
38
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
39
|
Cui Q, Du X, Chang IYM, Pamukcu A, Lilascharoen V, Berceau BL, García D, Hong D, Chon U, Narayanan A, Kim Y, Lim BK, Chan CS. Striatal Direct Pathway Targets Npas1 + Pallidal Neurons. J Neurosci 2021; 41:3966-3987. [PMID: 33731445 PMCID: PMC8176753 DOI: 10.1523/jneurosci.2306-20.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
The classic basal ganglia circuit model asserts a complete segregation of the two striatal output pathways. Empirical data argue that, in addition to indirect-pathway striatal projection neurons (iSPNs), direct-pathway striatal projection neurons (dSPNs) innervate the external globus pallidus (GPe). However, the functions of the latter were not known. In this study, we interrogated the organization principles of striatopallidal projections and their roles in full-body movement in mice (both males and females). In contrast to the canonical motor-promoting response of dSPNs in the dorsomedial striatum (DMSdSPNs), optogenetic stimulation of dSPNs in the dorsolateral striatum (DLSdSPNs) suppressed locomotion. Circuit analyses revealed that dSPNs selectively target Npas1+ neurons in the GPe. In a chronic 6-hydroxydopamine lesion model of Parkinson's disease, the dSPN-Npas1+ projection was dramatically strengthened. As DLSdSPN-Npas1+ projection suppresses movement, the enhancement of this projection represents a circuit mechanism for the hypokinetic symptoms of Parkinson's disease that has not been previously considered. In sum, our results suggest that dSPN input to the GPe is a critical circuit component that is involved in the regulation of movement in both healthy and parkinsonian states.SIGNIFICANCE STATEMENT In the classic basal ganglia model, the striatum is described as a divergent structure: it controls motor and adaptive functions through two segregated, opposing output streams. However, the experimental results that show the projection from direct-pathway neurons to the external pallidum have been largely ignored. Here, we showed that this striatopallidal subpathway targets a select subset of neurons in the external pallidum and is motor-suppressing. We found that this subpathway undergoes changes in a Parkinson's disease model. In particular, our results suggest that the increase in strength of this subpathway contributes to the slowness or reduced movements observed in Parkinson's disease.
Collapse
Affiliation(s)
- Qiaoling Cui
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Xixun Du
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China, 266071
| | - Isaac Y M Chang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Arin Pamukcu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Varoth Lilascharoen
- Neurobiology Section, Biological Sciences Division, University of California San Diego, La Jolla, California, 92093
| | - Brianna L Berceau
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Daniela García
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Darius Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Uree Chon
- Department of Neural and Behavioral Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania, 16802
| | - Ahana Narayanan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania, 16802
| | - Byung Kook Lim
- Neurobiology Section, Biological Sciences Division, University of California San Diego, La Jolla, California, 92093
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| |
Collapse
|
40
|
Lilascharoen V, Wang EHJ, Do N, Pate SC, Tran AN, Yoon CD, Choi JH, Wang XY, Pribiag H, Park YG, Chung K, Lim BK. Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits. Nat Neurosci 2021; 24:504-515. [PMID: 33723433 PMCID: PMC8907079 DOI: 10.1038/s41593-021-00810-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023]
Abstract
The basal ganglia regulate a wide range of behaviors, including motor control and cognitive functions, and are profoundly affected in Parkinson's disease (PD). However, the functional organization of different basal ganglia nuclei has not been fully elucidated at the circuit level. In this study, we investigated the functional roles of distinct parvalbumin-expressing neuronal populations in the external globus pallidus (GPe-PV) and their contributions to different PD-related behaviors. We demonstrate that substantia nigra pars reticulata (SNr)-projecting GPe-PV neurons and parafascicular thalamus (PF)-projecting GPe-PV neurons are associated with locomotion and reversal learning, respectively. In a mouse model of PD, we found that selective manipulation of the SNr-projecting GPe-PV neurons alleviated locomotor deficit, whereas manipulation of the PF-projecting GPe-PV neurons rescued the impaired reversal learning. Our findings establish the behavioral importance of two distinct GPe-PV neuronal populations and, thereby, provide a new framework for understanding the circuit basis of different behavioral deficits in the Parkinsonian state.
Collapse
Affiliation(s)
- Varoth Lilascharoen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.,Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,These authors contributed equally: Varoth Lilascharoen, Eric Hou-Jen Wang
| | - Eric Hou-Jen Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,These authors contributed equally: Varoth Lilascharoen, Eric Hou-Jen Wang
| | - Nam Do
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Stefan Carl Pate
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Ngoc Tran
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Dabin Yoon
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jun-Hyeok Choi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Xiao-Yun Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Horia Pribiag
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Young-Gyun Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Kwanghun Chung
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.,Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Correspondence and requests for materials should be addressed to B.K.L.,
| |
Collapse
|
41
|
Brodovskaya A, Shiono S, Kapur J. Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain 2021; 144:2074-2091. [PMID: 33730155 DOI: 10.1093/brain/awab119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
There are no detailed descriptions of neuronal circuit active during frontal lobe motor seizures. Using activity reporter mice, local field potential recordings, tissue clearing, viral tracing, and super-resolution microscopy, we found neuronal activation after focal motor to bilateral tonic-clonic seizures in the striatum, globus pallidus externus, subthalamic nucleus, substantia nigra pars reticulata and neurons of the indirect pathway. Seizures preferentially activated dopamine D2 receptor-expressing neurons over D1 in the striatum, which have different projections. Furthermore, the D2 receptor agonist infused into the striatum exerted an anticonvulsant effect. Seizures activate structures via short and long latency loops, and anatomical connections of the seizure focus determine the seizure circuit. These studies, for the first time, show activation of neurons in the striatum, globus pallidus, subthalamic nucleus, and substantia nigra during frontal lobe motor seizures on the cellular level, revealing a complex neuronal activation circuit subject to modulation by the basal ganglia.
Collapse
Affiliation(s)
- Anastasia Brodovskaya
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Shinnosuke Shiono
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
42
|
Dong J, Hawes S, Wu J, Le W, Cai H. Connectivity and Functionality of the Globus Pallidus Externa Under Normal Conditions and Parkinson's Disease. Front Neural Circuits 2021; 15:645287. [PMID: 33737869 PMCID: PMC7960779 DOI: 10.3389/fncir.2021.645287] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
The globus pallidus externa (GPe) functions as a central hub in the basal ganglia for processing motor and non-motor information through the creation of complex connections with the other basal ganglia nuclei and brain regions. Recently, with the adoption of sophisticated genetic tools, substantial advances have been made in understanding the distinct molecular, anatomical, electrophysiological, and functional properties of GPe neurons and non-neuronal cells. Impairments in dopamine transmission in the basal ganglia contribute to Parkinson's disease (PD), the most common movement disorder that severely affects the patients' life quality. Altered GPe neuron activity and synaptic connections have also been found in both PD patients and pre-clinical models. In this review, we will summarize the main findings on the composition, connectivity and functionality of different GPe cell populations and the potential GPe-related mechanisms of PD symptoms to better understand the cell type and circuit-specific roles of GPe in both normal and PD conditions.
Collapse
Affiliation(s)
- Jie Dong
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Sarah Hawes
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Junbing Wu
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases & Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Medical School of University of Electronic Science and Technology of China, Institute of Neurology, Sichuan Provincial Hospital, Sichuan Academy of Medical Science, Chengdu, China
| | - Huaibin Cai
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
43
|
Duarte Azevedo M, Sander S, Jeanneret C, Olfat S, Tenenbaum L. Selective targeting of striatal parvalbumin-expressing interneurons for transgene delivery. J Neurosci Methods 2021; 354:109105. [PMID: 33652020 DOI: 10.1016/j.jneumeth.2021.109105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/17/2023]
Abstract
PVCre mice--> combined with AAV-FLEX vectors allowed efficient and specific targeting of PV+ interneurons in the striatum. However, diffusion of viral particles to the globus pallidus caused massive transduction of PV+ projection neurons and subsequent anterograde transport of the transgene product to the subthalamic nucleus and the substantia nigra pars reticulata. Different AAV serotypes (1 and 9) and promoters (CBA and human synapsin) were evaluated. The combination of AAV1, a moderate expression level (human synapsin promoter) and a precise adjustment of the stereotaxic coordinates in the anterior and dorsolateral part of the striatum were necessary to avoid transduction of PV+ GP projection neurons. Even in the absence of direct transduction due to diffusion of viral particles, GP PV+ projection neurons could be retrogradely transduced via their terminals present in the dorsal striatum. However, in the absence of diffusion, GP-Str PV+ projection neurons were poorly or not transduced suggesting that retrograde transduction did not significantly impair the selective targeting of striatal PV+ neurons. Finally, a prominent reduction of the number of striatal PV+ interneurons (about 50 %) was evidenced in the presence of the Cre recombinase suggesting that functional effects of AAV-mediated transgene expression in PV+ striatal interneurons in PVCre mice should be analyzed with caution.
Collapse
Affiliation(s)
- Marcelo Duarte Azevedo
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland
| | - Sibilla Sander
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland
| | - Cheryl Jeanneret
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland
| | - Soophie Olfat
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland.
| |
Collapse
|
44
|
Liu W, Lao W, Zhang R, Zhu H. Altered expression of voltage gated sodium channel Nav1.1 is involved in motor ability in MPTP-treated mice. Brain Res Bull 2021; 170:187-198. [PMID: 33610724 DOI: 10.1016/j.brainresbull.2021.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a motor disabling disorder owing to the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The mechanisms causing motor deficits remain debated. High synchronized oscillations in the basal ganglia (BG) were proposed to be associated with motor symptoms in PD patients and animal models of PD. Voltage-gated sodium channels play a vital role in the initiation and propagation of action potentials. Here, we investigated the expression patterns of a VGSC subtype Nav1.1 in the BG of a PD animal model induced by MPTP intraperitoneal injection. The results showed that Nav1.1 was significantly reduced in tyrosine hydroxylase (TH) positive dopaminergic neurons of the SN. Moreover, Nav1.1 expression was significantly increased in calcium binding protein parvalbumin (PV) positive neurons of the globus pallidus (GP) in MPTP-treated mice compared to the rarely undetectable expression of Nav1.1 in the control GP. Furthermore, the administration of phenytoin, a VGSCs blocker, can effectively improve motor disabilities and reduce the synchronous oscillations in the BG of MPTP-treated mice. These findings suggested that the alterations of Nav1.1 expression may be associated with the high synchronous oscillations in the BG of PD animals.
Collapse
Affiliation(s)
- Weitang Liu
- School of Life Science, Shanghai University, Shanghai, China
| | - Wenwen Lao
- School of Life Science, Shanghai University, Shanghai, China
| | - Renxing Zhang
- School of Life Science, Shanghai University, Shanghai, China
| | - Hongyan Zhu
- School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
45
|
Goenner L, Maith O, Koulouri I, Baladron J, Hamker FH. A spiking model of basal ganglia dynamics in stopping behavior supported by arkypallidal neurons. Eur J Neurosci 2021; 53:2296-2321. [PMID: 33316152 DOI: 10.1111/ejn.15082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022]
Abstract
The common view that stopping action plans by the basal ganglia is achieved mainly by the subthalamic nucleus alone due to its direct excitatory projection onto the output nuclei of the basal ganglia has been challenged by recent findings. The proposed "pause-then-cancel" model suggests that the subthalamic nucleus provides a rapid stimulus-unspecific "pause" signal, followed by a stop-cue-specific "cancel" signal from striatum-projecting arkypallidal neurons. To determine more precisely the relative contribution of the different basal ganglia nuclei in stopping, we simulated a stop-signal task with a spiking neuron model of the basal ganglia, considering recently discovered connections from the arkypallidal neurons, and cortex-projecting GPe neurons. For the arkypallidal and prototypical GPe neurons, we obtained neuron model parameters by fitting their neuronal responses to published experimental data. Our model replicates findings of stop-signal tasks at neuronal and behavioral levels. We provide evidence for the existence of a stop-related cortical input to the arkypallidal and cortex-projecting GPe neurons such that the stop responses of the subthalamic nucleus, the arkypallidal neurons, and the cortex-projecting GPe neurons complement each other to achieve functional stopping behavior. Particularly, the cortex-projecting GPe neurons may complement the stopping within the basal ganglia caused by the arkypallidal and STN neurons by diminishing cortical go-related processes. Furthermore, we predict effects of lesions on stopping performance and propose that arkypallidal neurons mainly participate in stopping by inhibiting striatal neurons of the indirect rather than the direct pathway.
Collapse
Affiliation(s)
- Lorenz Goenner
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Oliver Maith
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Iliana Koulouri
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Javier Baladron
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Fred H Hamker
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
46
|
Chuhma N. Functional Connectome Analysis of the Striatum with Optogenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:417-428. [PMID: 33398830 DOI: 10.1007/978-981-15-8763-4_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neural circuit function is determined not only by anatomical connections but also by the strength and nature of the connections, that is functional or physiological connectivity. To elucidate functional connectivity, selective stimulation of presynaptic terminals of an identified neuronal population is crucial. However, in the central nervous system, intermingled input fibers make selective electrical stimulation impossible. With optogenetics, this becomes possible, and enables the comprehensive study of functional synaptic connections between an identified population of neurons and defined postsynaptic targets to determine the functional connectome. By stimulating convergent synaptic inputs impinging on individual postsynaptic neurons, low frequency and small amplitude synaptic connections can be detected. Further, the optogenetic approach enables the measurement of cotransmission and its relative strength. Recently, optogenetic methods have been more widely used to study synaptic connectivity and revealed novel synaptic connections and revised connectivity of known projections. In this chapter, I focus on functional synaptic connectivity in the striatum, the main input structure of the basal ganglia, involved in the motivated behavior, cognition, and motor control, and its disruption in a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY, USA. .,Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
47
|
Lawler AJ, Brown AR, Bouchard RS, Toong N, Kim Y, Velraj N, Fox G, Kleyman M, Kang B, Gittis AH, Pfenning AR. Cell Type-Specific Oxidative Stress Genomic Signatures in the Globus Pallidus of Dopamine-Depleted Mice. J Neurosci 2020; 40:9772-9783. [PMID: 33188066 PMCID: PMC7726543 DOI: 10.1523/jneurosci.1634-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
Neuron subtype dysfunction is a key contributor to neurologic disease circuits, but identifying associated gene regulatory pathways is complicated by the molecular complexity of the brain. For example, parvalbumin-expressing (PV+) neurons in the external globus pallidus (GPe) are critically involved in the motor deficits of dopamine-depleted mouse models of Parkinson's disease, where cell type-specific optogenetic stimulation of PV+ neurons over other neuron populations rescues locomotion. Despite the distinct roles these cell types play in the neural circuit, the molecular correlates remain unknown because of the difficulty of isolating rare neuron subtypes. To address this issue, we developed a new viral affinity purification strategy, Cre-Specific Nuclear Anchored Independent Labeling, to isolate Cre recombinase-expressing (Cre+) nuclei from the adult mouse brain. Applying this technology, we performed targeted assessments of the cell type-specific transcriptomic and epigenetic effects of dopamine depletion on PV+ and PV- cells within three brain regions of male and female mice: GPe, striatum, and cortex. We found GPe PV+ neuron-specific gene expression changes that suggested increased hypoxia-inducible factor 2α signaling. Consistent with transcriptomic data, regions of open chromatin affected by dopamine depletion within GPe PV+ neurons were enriched for hypoxia-inducible factor family binding motifs. The gene expression and epigenomic experiments performed on PV+ neurons isolated by Cre-Specific Nuclear Anchored Independent Labeling identified a transcriptional regulatory network mediated by the neuroprotective factor Hif2a as underlying neural circuit differences in response to dopamine depletion.SIGNIFICANCE STATEMENT Cre-Specific Nuclear Anchored Independent Labeling is an enhanced, virus-based approach to isolate nuclei of a specific cell type for transcriptome and epigenome interrogation that decreases dependency on transgenic animals. Applying this technology to GPe parvalbumin-expressing neurons in a mouse model of Parkinson's disease, we discovered evidence for an upregulation of the oxygen homeostasis maintaining pathway involving Hypoxia-inducible factor 2α. These results provide new insight into how neuron subtypes outside the substantia nigra pars compacta may be compensating at a molecular level for differences in the motor production neural circuit during the progression of Parkinson's disease. Furthermore, they emphasize the utility of cell type-specific technologies, such as Cre-Specific Nuclear Anchored Independent Labeling, for isolated assessment of specific neuron subtypes in complex systems.
Collapse
Affiliation(s)
- Alyssa J Lawler
- Computational Biology
- Biological Sciences
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Ashley R Brown
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Rachel S Bouchard
- Biological Sciences
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Noelle Toong
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Yeonju Kim
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Nitinram Velraj
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Grant Fox
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Michael Kleyman
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Byungsoo Kang
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Aryn H Gittis
- Biological Sciences
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Andreas R Pfenning
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
48
|
Ketzef M, Silberberg G. Differential Synaptic Input to External Globus Pallidus Neuronal Subpopulations In Vivo. Neuron 2020; 109:516-529.e4. [PMID: 33248017 DOI: 10.1016/j.neuron.2020.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/25/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
The rodent external globus pallidus (GPe) contains two main neuronal subpopulations, prototypic and arkypallidal cells, which differ in their cellular properties. Their functional synaptic connectivity is largely unknown. Here we studied the membrane properties, synaptic inputs, and sensory responses of these subpopulations in the mouse GPe. We performed in vivo whole-cell recordings in GPe neurons and used optogenetic stimulation to dissect their afferent inputs from the striatum and subthalamic nucleus (STN). Both GPe subpopulations received barrages of excitatory and inhibitory inputs during slow wave activity and responded to sensory stimulation with distinct multiphasic patterns. Prototypic cells synaptically inhibited arkypallidal and prototypic cells. Both GPe subpopulations received synaptic input from STN and striatal medium spiny neurons (MSNs). Although STN and indirect pathway MSNs strongly targeted prototypic cells, direct pathway MSNs selectively inhibited arkypallidal cells. We show that GPe subtypes have distinct connectivity patterns that underlie their respective functional roles.
Collapse
Affiliation(s)
- Maya Ketzef
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
49
|
Adler AF, Cardoso T, Nolbrant S, Mattsson B, Hoban DB, Jarl U, Wahlestedt JN, Grealish S, Björklund A, Parmar M. hESC-Derived Dopaminergic Transplants Integrate into Basal Ganglia Circuitry in a Preclinical Model of Parkinson's Disease. Cell Rep 2020; 28:3462-3473.e5. [PMID: 31553914 PMCID: PMC6899556 DOI: 10.1016/j.celrep.2019.08.058] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Cell replacement is currently being explored as a therapeutic approach for neurodegenerative disease. Using stem cells as a source, transplantable progenitors can now be generated under conditions compliant with clinical application in patients. In this study, we elucidate factors controlling target-appropriate innervation and circuitry integration of human embryonic stem cell (hESC)-derived grafts after transplantation to the adult brain. We show that cell-intrinsic factors determine graft-derived axonal innervation, whereas synaptic inputs from host neurons primarily reflect the graft location. Furthermore, we provide evidence that hESC-derived dopaminergic grafts transplanted in a long-term preclinical rat model of Parkinson’s disease (PD) receive synaptic input from subtypes of host cortical, striatal, and pallidal neurons that are known to regulate the function of endogenous nigral dopamine neurons. This refined understanding of how graft neurons integrate with host circuitry will be important for the design of clinical stem-cell-based replacement therapies for PD, as well as for other neurodegenerative diseases. Pattern of graft-derived innervation is determined by phenotype of grafted cells Synaptic inputs from host-to-graft depend on location of graft Intrastriatal dopaminergic grafts receive correct excitatory and inhibitory host inputs Individual host neurons provide inputs to both dopaminergic grafts and the host nigra
Collapse
Affiliation(s)
- Andrew F Adler
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Tiago Cardoso
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Bengt Mattsson
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Deirdre B Hoban
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Ulla Jarl
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Jenny Nelander Wahlestedt
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Shane Grealish
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
50
|
The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death. J Neurosci 2020; 40:8652-8668. [PMID: 33060174 DOI: 10.1523/jneurosci.1636-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins (Pcdhgs) from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of Pcdhgs from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in Pcdhg mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain.SIGNIFICANCE STATEMENT A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the Pcdhgs in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.
Collapse
|