1
|
Scott NE, Wash E, Zajac C, Erayil SE, Kline SE, Selmecki A. Heterogeneity of Candida bloodstream isolates in an academic medical center and affiliated hospitals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636768. [PMID: 39975022 PMCID: PMC11839140 DOI: 10.1101/2025.02.05.636768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Invasive Candida bloodstream infections (candidemia) are a deadly global health threat. Rare Candida species are increasingly important causes of candidemia and phenotypic data, including patterns of antifungal drug resistance, is limited. There is geographic variation in the distribution of Candida species and frequency of antifungal drug resistance, which means that collecting and reporting regional data can have significant clinical value. Here, we report the first survey of species distribution, frequency of antifungal drug resistance, and phenotypic variability of Candida bloodstream isolates from an academic medical center and 5 affiliated hospitals in the Minneapolis-Saint Paul region of Minnesota, collected during an 18-month period from 2019 to 2021. We collected 288 isolates spanning 11 species from 119 patients. C. albicans was the most frequently recovered species, followed by C. glabrata and C. parapsilosis, with 10% of cases representing additional, rare species. We performed antifungal drug susceptibility for the three major drug classes and, concerningly, we identified fluconazole, micafungin and multidrug resistance rates in C. glabrata that were ~ 2 times higher than that reported in other regions of the United States. We report some of the first phenotypic data in rare non-albicans Candida species. Through analysis of serial isolates from individual patients, we identified clinically relevant within-patient differences of MIC values in multiple drug classes. Our results provide valuable clinical data relevant to antifungal stewardship efforts and highlight important areas of future research, including within-patient dynamics of infection and the mechanisms of drug resistance in rare Candida species.
Collapse
Affiliation(s)
- Nancy E. Scott
- University of Minnesota, Bioinformatics and Computational Biology Program
- University of Minnesota, Department of Microbiology and Immunology
| | - Elizabeth Wash
- University of Minnesota, Department of Microbiology and Immunology
- University of Minnesota, Molecular, Cellular, Developmental Biology and Genetics Program
| | | | - Serin E. Erayil
- University of Minnesota, Department of Medicine, Division of Infectious Diseases and International Medicine
| | - Susan E. Kline
- University of Minnesota, Department of Medicine, Division of Infectious Diseases and International Medicine
| | - Anna Selmecki
- University of Minnesota, Bioinformatics and Computational Biology Program
- University of Minnesota, Department of Microbiology and Immunology
- University of Minnesota, Molecular, Cellular, Developmental Biology and Genetics Program
| |
Collapse
|
2
|
Ergon MC, Gürbüz ED, Arslan N, Alp S, Dereli MD, Özkütük AA. Investigation of clonal relationship in hospital-associated Candida parapsilosis isolates. Eur J Clin Microbiol Infect Dis 2025; 44:311-322. [PMID: 39612138 DOI: 10.1007/s10096-024-04998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE We aimed to investigate the clonal relationship and antifungal susceptibility of C. parapsilosis isolated from hospitalized patients and to determine whether it is due to transmission or not and the spread status of resistant isolates. METHODS Between January 2017 and June 2019, totally 277 C parapsilosis isolated from blood, urine and catheter samples of adult or pediatric in-patient (intensive care and service) who applied to Mycology laboratory in our hospital were included in the study. All isolates were identified using conventional methods, API 20 C AUX (Biomerieux, France) semi-automated system and confirmed by MALDI-TOF MS Biotyper Smart (Bruker Daltonik GmbH, Germany). Randomly amplified polymorphic DNA (RAPD) PCR method was used for molecular genotyping of isolates. MIC values for fluconazole, anidulafungin and amphotericin B were determined according to the M27-A3 CLSI broth microdilution reference method guideline. RESULTS Seven different band patterns (A-G) were detected in 277 isolates by RAPD PCR method. According to the rank order of the isolates, 170 (61.37%) C, 65 (23.47%) A, 18 (6.50%) G, 11 (3.97%) B, six (2.17%) E, two (0.72%) F and one (0.36%) D patterns were determined. When the band patterns of the isolates were evaluated according to the years, it was detected that C pattern continued between 2017 and 2019 and that all isolates continued to spread only as C pattern in 2019. While 211 (76.17%) of the isolates were resistant to fluconazole (≥ 8 µg/ml), two (0.72%) were resistant to amphotericin B (≥ 2 µg/ml) and two (0.72%) were intermediate to anidulafungin. CONCLUSIONS It is noteworthy that the spread of the C pattern in C. parapsilosis strains has increased over the years and is the main pattern isolated from the whole hospital. The detection of high fluconazole resistance in C. parapsilosis isolates in our hospital may also be related to the dominant pattern.
Collapse
Affiliation(s)
- Mahmut Cem Ergon
- Faculty of Medicine, Department of Medical Microbiology, Dokuz Eylül University, İnciraltı, İzmir, 35340, Turkey.
| | - Ebru Demiray Gürbüz
- Faculty of Medicine, Department of Medical Microbiology, Dokuz Eylül University, İnciraltı, İzmir, 35340, Turkey
| | - Nazlı Arslan
- Faculty of Medicine, Department of Medical Microbiology, Dokuz Eylül University, İnciraltı, İzmir, 35340, Turkey
| | - Sema Alp
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Dokuz Eylül University, İnciraltı, İzmir, 35340, Turkey
| | - Mine Doluca Dereli
- Faculty of Medicine, Department of Medical Microbiology, Dokuz Eylül University, İnciraltı, İzmir, 35340, Turkey
| | - Ayşe Aydan Özkütük
- Faculty of Medicine, Department of Medical Microbiology, Dokuz Eylül University, İnciraltı, İzmir, 35340, Turkey
| |
Collapse
|
3
|
Asogan M, Kim HY, Kidd S, Alastruey-Izquierdo A, Govender NP, Dao A, Shin JH, Heim J, Ford NP, Gigante V, Sati H, Morrissey CO, Alffenaar JW, Beardsley J. Candida parapsilosis: A systematic review to inform the World Health Organization fungal priority pathogens list. Med Mycol 2024; 62:myad131. [PMID: 38935912 PMCID: PMC11210616 DOI: 10.1093/mmy/myad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 06/29/2024] Open
Abstract
Candida parapsilosis is globally distributed and recognised for causing an increasing proportion of invasive Candida infections. It is associated with high crude mortality in all age groups. It has been particularly associated with nosocomial outbreaks, particularly in association with the use of invasive medical devices such as central venous catheters. Candida parapsilosis is one of the pathogens considered in the WHO priority pathogens list, and this review was conducted to inform the ranking of the pathogen in the list. In this systematic review, we searched PubMed and Web of Science to find studies between 2011 and 2021 reporting on the following criteria for C. parapsilosis infections: mortality, morbidity (hospitalisation and disability), drug resistance, preventability, yearly incidence, and distribution/emergence. We identified 336 potentially relevant papers, of which 51 were included in the analyses. The included studies confirmed high mortality rates, ranging from 17.5% to 46.8%. Data on disability and sequelae were sparse. Many reports highlighted concerns with azole resistance, with resistance rates of >10% described in some regions. Annual incidence rates were relatively poorly described, although there was clear evidence that the proportion of candidaemia cases caused by C. parapsilosis increased over time. While this review summarises current data on C.parapsilosis, there remains an urgent need for ongoing research and surveillance to fully understand and manage this increasingly important pathogen.
Collapse
Affiliation(s)
- Mrudhula Asogan
- Prince of Wales Hospital, South-Eastern Sydney LHD, Sydney, Australia
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Yejin Kim
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Nelesh P Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Aiken Dao
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research and Children’s Hospital at Westmead, Western Sydney LHD, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, Sydney, Australia
| | - Jong-Hee Shin
- Department of Laboratory Medicine, Chonnam National University School of Medicine, Gwangju, South Korea
| | - Jutta Heim
- Helmholtz Association, Helmholtz Centre for Infection Research, Germany
| | - Nathan Paul Ford
- Department of HIV, Viral Hepatitis and STIs, World Health Organization, Geneva, Switzerland
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva, Switzerland
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
- Monash University, Department of Infectious Diseases, Melbourne, Victoria, Australia
| | - Jan-Willem Alffenaar
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, Sydney, Australia
| | - Justin Beardsley
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, Sydney, Australia
| |
Collapse
|
4
|
Benahmed A, Seghir A, Boucherit-Otmani Z, Tani ZZBAK, Aissaoui M, Kendil W, Merabet DH, Lakhal H, Boucherit K. In vitro evaluation of biofilm formation by Candida parapsilosis and Enterobacter cloacae. Scanning electron microscopy and efficacy of antimicrobial combinations study. Diagn Microbiol Infect Dis 2023; 107:116003. [PMID: 37423195 DOI: 10.1016/j.diagmicrobio.2023.116003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/08/2023] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Fungal-bacterial infections are being increasingly recognized in clinical settings, and the interaction between these species in polymicrobial biofilms often lead to infections that are highly resistant to treatment. In this in vitro study, we analyzed the formation of mixed biofilms using clinically isolated Candida parapsilosis and Enterobacter cloacae. Additionally, we assessed the potential of conventional antimicrobials, both alone and in combination, for treating polymicrobial biofilms built by these human pathogens. Our results demonstrate that C. parapsilosis and E. cloacae are capable of forming mixed biofilms, as confirmed by scanning electron microscopy. Interestingly, we found that colistin alone or in combination with antifungal drugs was highly effective reducing up to 80% of the total biomass of polymicrobial biofilms.
Collapse
Affiliation(s)
- Abdeselem Benahmed
- Tlemcen University, Algeria; Laboratory Antibiotics Antifungals, Physico-Chemical, Synthesis and Biological Activities, Tlemcen University, Algeria.
| | - Abdelfettah Seghir
- Tlemcen University, Algeria; Laboratory Antibiotics Antifungals, Physico-Chemical, Synthesis and Biological Activities, Tlemcen University, Algeria
| | - Zahia Boucherit-Otmani
- Tlemcen University, Algeria; Laboratory Antibiotics Antifungals, Physico-Chemical, Synthesis and Biological Activities, Tlemcen University, Algeria
| | - Zahira Zakia Baba Ahmed-Kazi Tani
- Tlemcen University, Algeria; Laboratory Antibiotics Antifungals, Physico-Chemical, Synthesis and Biological Activities, Tlemcen University, Algeria
| | - Mohammed Aissaoui
- Department of Biology, Faculty of Sciences and Technology, University of Tamanghasset, Tamanghasset, Algeria
| | - Wafaa Kendil
- Tlemcen University, Algeria; Laboratory Antibiotics Antifungals, Physico-Chemical, Synthesis and Biological Activities, Tlemcen University, Algeria
| | | | - Hafsa Lakhal
- Tlemcen University, Algeria; Laboratory Antibiotics Antifungals, Physico-Chemical, Synthesis and Biological Activities, Tlemcen University, Algeria
| | - Kebir Boucherit
- Tlemcen University, Algeria; Laboratory Antibiotics Antifungals, Physico-Chemical, Synthesis and Biological Activities, Tlemcen University, Algeria
| |
Collapse
|
5
|
Echinocandins Susceptibility Patterns of 2,787 Yeast Isolates: Importance of the Thresholds for the Detection of FKS Mutations. Antimicrob Agents Chemother 2022; 66:e0172521. [PMID: 35412354 DOI: 10.1128/aac.01725-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since echinocandins are recommended as first line therapy for invasive candidiasis, detection of resistance, mainly due to alteration in FKS protein, is of main interest. EUCAST AFST recommends testing both MIC of anidulafungin and micafungin, and breakpoints (BPs) have been proposed to detect echinocandin-resistant isolates. We analyzed MIC distribution for all three available echinocandins of 2,787 clinical yeast isolates corresponding to 5 common and 16 rare yeast species, using the standardized EUCAST method for anidulafungin and modified for caspofungin and micafungin (AM3-MIC). In our database, 64 isolates of common pathogenic species were resistant to anidulafungin, according to the EUCAST BP, and/or to caspofungin, using our previously published threshold (AM3-MIC ≥ 0.5 mg/L). Among these 64 isolates, 50 exhibited 21 different FKS mutations. We analyzed the capacity of caspofungin AM3-MIC and anidulafungin MIC determination in detecting isolates with FKS mutation. They were always identified using caspofungin AM3-MIC and the local threshold while some isolates were misclassified using anidulafungin MIC and EUCAST threshold. However, both methods misclassified four wild-type C. glabrata as resistant. Based on a large data set from a single center, the use of AM3-MIC testing for caspofungin looks promising in identifying non-wild-type C. albicans, C. tropicalis and P. kudiravzevii isolates, but additional multicenter comparison is mandatory to conclude on the possible superiority of AM3-MIC testing compared to the EUCAST method.
Collapse
|
6
|
A Pragmatic Approach to Susceptibility Classification of Yeasts without EUCAST Clinical Breakpoints. J Fungi (Basel) 2022; 8:jof8020141. [PMID: 35205895 PMCID: PMC8877802 DOI: 10.3390/jof8020141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022] Open
Abstract
EUCAST has established clinical breakpoints for the six most common Candida species and Cryptococcus neoformans but not for less common yeasts because sufficient evidence is lacking. Consequently, the question “How to interpret the MIC?” for other yeasts often arises. We propose a pragmatic classification for amphotericin B, anidulafungin, fluconazole, and voriconazole MICs against 30 different rare yeasts. This classification takes advantage of MIC data for more than 4000 isolates generated in the EUCAST Development Laboratory for Fungi validated by alignment to published EUCAST MIC data. The classification relies on the following two important assumptions: first, that when isolates are genetically related, pathogenicity and intrinsic susceptibility patterns may be similar; and second, that even if species are not phylogenetically related, the rare yeasts will likely respond to therapy, provided the MIC is comparable to that against wild-type isolates of more prevalent susceptible species because rare yeasts are most likely “rare” due to a lower pathogenicity. In addition, the treatment recommendations available in the current guidelines based on the in vivo efficacy data and clinical experience are taken into consideration. Needless to say, it is of utmost importance (a) to ascertain that the species identification is correct (using MALDI-TOF or sequencing), and (b) to re-test the isolate once or twice to confirm that the MIC is representative for the isolate (because of the inherent variability in MIC determinations). We hope this pragmatic guidance is helpful until evidence-based EUCAST breakpoints can be formally established.
Collapse
|
7
|
Mete B, Zerdali EY, Aygun G, Saltoglu N, Balkan II, Karaali R, Kaya SY, Karaismailoglu B, Kaya A, Urkmez S, Can G, Tabak F, Ozturk R. Change in species distribution and antifungal susceptibility of candidemias in an intensive care unit of a university hospital (10-year experience). Eur J Clin Microbiol Infect Dis 2021; 40:325-333. [PMID: 32935158 DOI: 10.1007/s10096-020-03994-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Candidemia is a nosocomial infection mostly found in critically ill patients. Our objectives were to evaluate the change in distribution and resistance profile of Candida spp. isolated from candidemic patients in our intensive care unit over two 5-year periods spanning 15 years and to evaluate the risk factors. Records from the microbiology laboratory were obtained, from January 2004 to December 2008 and from January 2013 to December 2017, retrospectively. Antifungal susceptibility was performed by E-test and evaluated according to EUCAST breakpoints. A total of 210 candidemia cases occurred; 238 Candida spp. were isolated in 197 patients (58.8% male; mean age, 59.2 ± 19.6 years). The most predominant risk factor was central venous catheter use. Species distribution rates were 32%, 28%, 17%, and 11% for C. albicans (n = 76), C. parapsilosis (n = 67), C. glabrata (n = 40), and C. tropicalis (n = 27), respectively. Resistance rate to anidulafungin was high in C. parapsilosis over both periods and increased to 73% in the second period. Fluconazole showed a remarkable decrease for susceptibility in C. parapsilosis (94 to 49%). The prevalence of MDR C. parapsilosis (6%/33%) and C. glabrata (0%/44%) increased in the second period. We observed a predominance of non-albicans Candida spp., with C. parapsilosis being the most frequent and C. glabrata infections presenting with the highest mortality. High level of echinocandin resistance in C. parapsilosis and increasing prevalences of MDR C. parapsilosis and C. glabrata seem emerging challenges in our institution.
Collapse
Affiliation(s)
- Bilgul Mete
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Esra Yerlikaya Zerdali
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Haseki Research and Training Hospital, Istanbul, Turkey
| | - Gokhan Aygun
- Department of Medical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nese Saltoglu
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ilker Inanc Balkan
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ridvan Karaali
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sibel Yildiz Kaya
- Department of Infectious Diseases and Clinical Microbiology, Sungurlu State Hospital, Corum, Turkey
| | - Berna Karaismailoglu
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Abdurrahman Kaya
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Seval Urkmez
- Department of Anesthesiology and Reanimation, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gunay Can
- Department of Public Health, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fehmi Tabak
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Recep Ozturk
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
8
|
Khodavaisy S, Badali H, Meis JF, Modiri M, Mahmoudi S, Abtahi H, Salehi M, Dehghan Manshadi SA, Aala F, Agha Kuchak Afshari S, Lotfali E, Ahangarkani F, Rezaie S. Comparative in vitro activities of seven antifungal drugs against clinical isolates of Candida parapsilosis complex. J Mycol Med 2020; 30:100968. [PMID: 32386800 DOI: 10.1016/j.mycmed.2020.100968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/15/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Candida parapsilosis species complex, an important set of non-albicans Candida species, is known to cause candidaemia particularly in neonates and infants. However, the incidence has increased in recent years, owing to higher numbers of at individuals at risk for these infections. Our objective was to evaluate the in vitro susceptibility of clinical isolates of C. parapsilosis complex isolates from Iran to seven antifungal drugs. MATERIAL AND METHODS One hundred-one clinical isolates of C. parapsilosis species complex cultured from humans were included. Species identification had been previously confirmed by combined phenotypic characteristics, matrix-assisted laser desorption ionization-time of flight mass spectrometry-based assay and reconfirmed by DNA sequence analysis of the ITS rDNA region and D1/D2 gene. Minimum inhibitory concentrations (MICs) for amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, micafungin and anidulafungin were determined against well-characterized isolates by broth microdilution susceptibility testing according to the CLSI M27-A3 guideline. RESULTS Species identifications were performed on 101 isolates, of which 88 (87.2%) C. parapsilosis sensu stricto and 13 (12.8%) C. orthopsilosis. Amphotericin B and posaconazole were the most active drugs with 100% of isolates being wild-type (WT). Voriconazole and micafungin, 99% of isolates were WT. The low activity was recorded for fluconazole and itraconazole with 93.1% and 89.1% of isolates being WT, respectively. At the species level, all Candida parapsilosis sensu stricto isolates were WT to amphotericin B and posaconazole and all Candida orthopsilosis isolates were WT to amphotericin B, voriconazole, posaconazole, anidulafungin and micafungin. In contrast, the highest rate of non-WT was observed in C. orthopsilosis to itraconazole (4 of 13, 30.8%). CONCLUSIONS Although almost all of the tested drugs demonstrated potent activity against C. parapsilosis species complex, it seems that more especially C. orthopsilosis isolates had decreased susceptibility to itraconazole. Further studies are needed to determine how these findings may switch into in vivo efficacy.
Collapse
Affiliation(s)
- S Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - H Badali
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands; Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - M Modiri
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - S Mahmoudi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - H Abtahi
- Department of Pulmonary and Critical Care, Advanced Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - M Salehi
- Department of Infectious Diseases and tropical medicines, School of Medicine, Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Tehran, Iran
| | - S A Dehghan Manshadi
- Department of Infectious Diseases and tropical medicines, School of Medicine, Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Tehran, Iran
| | - F Aala
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - S Agha Kuchak Afshari
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - E Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Ahangarkani
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - S Rezaie
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Modiri M, Hashemi SJ, GhazvinI RD, Khodavaisy S, Ahmadi A, Ghaffari M, Rezaie S. Antifungal susceptibility pattern and biofilm-related genes expression in planktonic and biofilm cells of Candida parapsilosis species complex. Curr Med Mycol 2020; 5:35-42. [PMID: 32104742 PMCID: PMC7034785 DOI: 10.18502/cmm.5.4.1950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background and Purpose: Candida parapsilosis complex isolates are mainly responsible for nosocomial catheter-related infection in immunocompromised patients. Biofilm formation is regarded as one of the most pertinent key virulence factors in the development of these emerging infections. The present study aimed to compare in vitro antifungal susceptibility patterns and biofilm-related genes expression ratio in planktonic and biofilm’s cells of clinically C. parapsilosis complex isolates. Materials and Methods: The current study was conducted on a number of 17 clinical C. parapsilosis complex (10 C. parapsilosis sensu stricto, 5 C. orthopsilosis, and 2 C. metapsilosis). The antifungal susceptibility patterns of amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, and caspofungin in planktonic and biofilm forms were closely examined using CLSI M27-A3 broth microdilution method. The expression levels of biofilm-related genes (BCR1, EFG1, and FKS1) were evaluated in planktonic and biofilm’s cells using Real-time polymerase chain reaction (PCR) technique. Results: The obtained results indicated that all C. parapsilosis complex isolates were able to produce high and moderate amounts of biofilm forms. In addition, the sessile minimum inhibitory concentrations were reported to be high for fluconazole (≥ 64 µg/ml), itraconazole, voriconazole, and posaconazole (≥ 16 µg/ml), as compared to planktonic minimum inhibitory concentrations. Moreover, a significant difference was observed between antifungal susceptibility patterns for all azole antifungal agents (P<0.05). Furthermore, the BCR1 overexpression was considered significant in biofilms with regard to planktonic cells in C. parapsilosis species complex (P=0.002). Conclusion: C. parapsilosis complex isolates were found susceptible to most of the tested antifungal drugs, while biofilms demonstrated a noticeable resistant to azoles. The marked discrepancy noted in antifungal susceptibility patterns among these species should be highlighted to achieve effective therapeutic treatment.
Collapse
Affiliation(s)
- Mona Modiri
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamal Hashemi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Daie GhazvinI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Ghaffari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Varamin-Pishva, Iran
| | - Sassan Rezaie
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Gandra RM, Silva LN, Souto XM, Sangenito LS, Cruz LPS, Braga-Silva LA, Gonçalves DS, Seabra SH, Branquinha MH, Santos ALS. The serine peptidase inhibitor TPCK induces several morphophysiological changes in the opportunistic fungal pathogen Candida parapsilosis sensu stricto. Med Mycol 2020; 57:1024-1037. [PMID: 30753649 DOI: 10.1093/mmy/myz008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/11/2018] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Candida parapsilosis sensu stricto (C. parapsilosis) has emerged as the second/third commonest Candida species isolated from hospitals worldwide. Candida spp. possess numerous virulence attributes, including peptidases that play multiple roles in both physiological and pathological events. So, fungal peptidases are valid targets for new drugs development. With this premise in mind, we have evaluated the effect of serine peptidase inhibitors (SPIs) on both cell biology and virulence aspects of C. parapsilosis. First, five different SPIs, phenylmethylsulfonyl fluoride, benzamidine, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, N-α-tosyl-L-lysine chloromethyl ketone hydrochloride, and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) were tested, and TPCK showed the best efficacy to arrest fungal growth. Subsequently, the ability of TPCK to modulate physiopathological processes was investigated. Overall, TPCK was able to (i) inhibit the cell-associated serine peptidase activities, (ii) promote morphometric and ultrastructural alterations, (iii) induce an increase in the intracellular oxidation level, which culminates in a vigorous lipid peroxidation and accumulation of neutral lipids in cytoplasmic inclusions, (iv) modulate the expression/exposition of surface structures, such as mannose/glucose-rich glycoconjugates, N-acetylglucosamine-containing molecules, chitin, polypeptides and surface aspartic peptidases, (v) reduce the adhesion to either polystyrene or glass surfaces as well as to partially disarticulate the mature biofilm, (vi) block the fungal interaction with macrophages, and (vii) protect Galleria mellonella from fungal infection, enhancing larvae survivability. Altogether, these results demonstrated that TPCK induced several changes over fungal biology besides the interference with aspects associated to C. parapsilosis virulence and pathogenesis, which indicates that SPIs could be novel promising therapeutic agents in dealing with candidiasis.
Collapse
Affiliation(s)
- Rafael M Gandra
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura N Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xênia M Souto
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas P S Cruz
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lys A Braga-Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego S Gonçalves
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio H Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Identification of Cryptic Species of Four Candida Complexes in a Culture Collection. J Fungi (Basel) 2019; 5:jof5040117. [PMID: 31861048 PMCID: PMC6958398 DOI: 10.3390/jof5040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/11/2023] Open
Abstract
Candida spp. are one of the most common causes of fungal infections worldwide. The taxonomy of Candida is controversial and has undergone recent changes due to novel genetically related species. Therefore, some complexes of cryptic species have been proposed. In clinical settings, the correct identification of Candida species is relevant since some species are associated with high resistance to antifungal drugs and increased virulence. This study aimed to identify the species of four Candida complexes (C. albicans, C. glabrata, C. parapsilosis, and C. haemulonii) by molecular methods. This is the first report of six cryptic Candida species in Honduras: C. dubliniensis, C. africana, C. duobushaemulonii, C. orthopsilosis, and C. metapsilosis, and it is also the first report of the allele hwp1-2 of C. albicans sensu stricto. It was not possible to demonstrate the existence of C. auris among the isolates of the C. haemulonii complex. We also propose a simple method based on PCR-RFLP for the discrimination of the multi-resistant pathogen C. auris within the C. haemulonii complex.
Collapse
|
12
|
Arastehfar A, Khodavaisy S, Daneshnia F, Najafzadeh MJ, Mahmoudi S, Charsizadeh A, Salehi MR, Zarrinfar H, Raeisabadi A, Dolatabadi S, Zare Shahrabadi Z, Zomorodian K, Pan W, Hagen F, Boekhout T. Molecular Identification, Genotypic Diversity, Antifungal Susceptibility, and Clinical Outcomes of Infections Caused by Clinically Underrated Yeasts, Candida orthopsilosis, and Candida metapsilosis: An Iranian Multicenter Study (2014-2019). Front Cell Infect Microbiol 2019; 9:264. [PMID: 31417877 PMCID: PMC6682699 DOI: 10.3389/fcimb.2019.00264] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023] Open
Abstract
Despite the increasing occurrence of Candida orthopsilosis and Candida metapsilosis in clinical settings, little is known about their microbiological and clinical properties. Herein, we conducted a national retrospective study (2014–2019) from multiple centers in Iran. Among the 1,770 Candida isolates collected, we identified 600 Candida parapsilosis species complex isolates. Isolate identification was performed by 9-plex PCR, matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS), and rDNA sequencing, and antifungal susceptibility testing (AFST) followed CLSI M27-A3/S4; genotyping was performed by amplified fragment length polymorphism (AFLP) analysis; and clinical information was mined. Thirty-one isolates of C. orthopsilosis from various clinical sources, one mixed sample (blood) concurrently containing C. orthopsilosis and C. parapsilosis and one isolate of C. metapsilosis from a nail sample were identified. Although both 9-plex PCR and MALDI-TOF successfully identified all isolates, only 9-plex PCR could identify the agents in a mixed sample. For the C. orthopsilosis isolates, resistance (non-wild type) was noted only for itraconazole (n = 4; 12.5%). Anidulafungin and fluconazole showed the highest and voriconazole had the lowest geometric mean values. AFLP analysis showed three main and four minor genotypes. Interestingly, 90% of nail isolates clustered with 80% of the blood isolates within two clusters, and four blood isolates recovered from four patients admitted to a hospital clustered into two genotypes and showed a high degree of similarity (>99.2%), which suggests that C. orthopsilosis disseminates horizontally. Supported by our data and published case studies, C. orthopsilosis and C. metapsilosis can be linked to challenging clinical failures, and successful outcomes are not always mirrored by in vitro susceptibility. Accordingly, conducting nationwide studies may provide more comprehensive data, which is required for a better prognosis and clinical management of patients.
Collapse
Affiliation(s)
- Amir Arastehfar
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Sadegh Khodavaisy
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Daneshnia
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Mohammad-Javad Najafzadeh
- Department of Medical Mycology and Parasitology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahram Mahmoudi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Charsizadeh
- Immunology, Asthma, and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Salehi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Raeisabadi
- Department of Medical Mycology and Parasitology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Dolatabadi
- Faculty of Engineering, Sabzevar University of New Technology, Sabzevar, Iran
| | - Zahra Zare Shahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Weihua Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Teun Boekhout
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Mares M, Minea B, Nastasa V, Rosca I, Bostanaru AC, Marincu I, Toma V, Cristea VC, Murariu C, Pinteala M. In vitro activity of echinocandins against 562 clinical yeast isolates from a Romanian multicentre study. Med Mycol 2019; 56:442-451. [PMID: 28992116 DOI: 10.1093/mmy/myx059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022] Open
Abstract
The study presents the echinocandin susceptibility profile of a multi-centre collection of pathogenic yeast isolates from Romanian tertiary hospitals. The 562 isolates were identified using ID32C strips, MALDI-TOF MS and DNA sequencing. Minimal inhibitory concentrations (MICs) of caspofungin (CAS), micafungin (MCA), and anidulafungin (ANI) were assessed and interpreted according to EUCAST guidelines. Minimal fungicidal concentrations (MFC) were determined by plating content from the clear MIC wells. The activity was considered fungicidal at MFC/MIC ≤ 4. The three echinocandins had strongly correlated MICs and high percentages of MIC essential agreement. Most often, MCA had the lowest MICs, followed by CAS and ANI. Against C. parapsilosis and C. kefyr, CAS had the lowest MIC values. The MIC50 values were between 0.03 and 0.25 mg/l, except C. parapsilosis. The MIC90 values were usually one dilution higher. MFCs and MICs were weakly correlated. ANI and MCA had the lowest MFC values. The MFC50 values were between 0.06 and 0.5 mg/l, except C. parapsilosis, C. guilliermondii, and C. dubliniensis. The MFC90 values were usually two dilutions higher. Based on EUCAST breakpoints, 47 isolates (8.4%) were resistant to at least one echinocandin, most often ANI. Most resistant isolates were of C. albicans, C. glabrata, and C. krusei. There were 17 isolates (3%) resistant to echinocandins and fluconazole and most belonged to the same three species. MCA and ANI had the highest rates of fungicidal activity. The high rates of echinocandin resistance and significant multidrug resistance make prophylaxis and empiric therapy difficult.
Collapse
Affiliation(s)
- Mihai Mares
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, 700489 Iasi, Romania.,Romanian Society of Medical Mycology and Mycotoxicology, Romanian Study Group for Antifungals, 700063, Iasi
| | - Bogdan Minea
- "Gr. T. Popa" University of Medicine and Pharmacy, Faculty of Dental Medicine, Surgical Department, 700115 Iasi, Romania
| | - Valentin Nastasa
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, 700489 Iasi, Romania
| | - Irina Rosca
- Institute of Macromolecular Chemistry "Petru Poni", Advanced Research Centre for Bionanoconjugates and Biopolymers, 700487 Iasi, Romania
| | - Andra-Cristina Bostanaru
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, 700489 Iasi, Romania
| | - Iosif Marincu
- "Victor Babes" University of Medicine and Pharmacy, Department of Infectious Diseases, 300041 Timisoara, Romania
| | - Vasilica Toma
- "Gr. T. Popa" University of Medicine and Pharmacy, Faculty of Dental Medicine, Surgical Department, 700115 Iasi, Romania
| | - Violeta Corina Cristea
- Synevo Central Reference Laboratory, 077040 Chiajna, Romania.,"Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carmen Murariu
- "Marie S. Curie" Clinical Emergency Hospital for Children, 041451 Bucharest, Romania
| | - Mariana Pinteala
- Institute of Macromolecular Chemistry "Petru Poni", Advanced Research Centre for Bionanoconjugates and Biopolymers, 700487 Iasi, Romania
| |
Collapse
|
14
|
Genetic Diversity and Antifungal Susceptibility of Candida parapsilosis Sensu Stricto Isolated from Bloodstream Infections in Turkish Patients. Mycopathologia 2018; 183:701-708. [PMID: 29725811 DOI: 10.1007/s11046-018-0261-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Candida parapsilosis sensu stricto is an emerging cause of hospital-acquired Candida infections, predominantly in southern Europe, South America, and Asia. We investigated the genetic diversity and antifungal susceptibility profile of 170 independent C. parapsilosis sensu stricto strains obtained from patients with candidemia who were treated at the Ege University Hospital in Izmir, Turkey, between 2006 and 2014. The identity of each strain was confirmed via PCR amplification and digestion of the secondary alcohol dehydrogenase-encoding gene. The 24-h geometric mean minimum inhibitory concentrations of the antifungal agents, in increasing order, were as follows: posaconazole, 0.10 µg/mL; voriconazole, 0.21 µg/mL; caspofungin, 0.38 µg/mL; amphotericin B, 0.61 µg/mL; anidulafungin, 0.68 µg/mL; and fluconazole, 2.95 µg/mL. Microsatellite genotyping of the isolates (using fluorescently labeled primers and a panel of four different short-nucleotide repeat fragments) identified 25, 17, 17, and 8 different allelic genotypes at the CP6, B5, CP4, and CP1 locus, respectively. Posaconazole, caspofungin, and amphotericin B showed the greatest in vitro activity of the tested systemic azole, echinocandin, and polyene agents, respectively, and the observed antifungal susceptibility of the isolates was shown to be independent of their isolation source. We obtained a combined discriminatory power of 0.99 with a total of 130 genotypes for 170 isolates tested. Finally, microsatellite profiling analysis confirmed the presence of identical genotype between separate isolates, supporting that effective surveillance and infection-prevention programs are essential to limit the impact of C. parapsilosis sensu stricto on hospitalized patients' health.
Collapse
|
15
|
Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights D, Gale CA. Development of the Human Mycobiome over the First Month of Life and across Body Sites. mSystems 2018; 3:e00140-17. [PMID: 29546248 PMCID: PMC5840654 DOI: 10.1128/msystems.00140-17] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
With the advent of next-generation sequencing and microbial community characterization, we are beginning to understand the key factors that shape early-life microbial colonization and associated health outcomes. Studies characterizing infant microbial colonization have focused mostly on bacteria in the microbiome and have largely neglected fungi (the mycobiome), despite their relevance to mucosal infections in healthy infants. In this pilot study, we characterized the skin, oral, and anal mycobiomes of infants over the first month of life (n = 17) and the anal and vaginal mycobiomes of mothers (n = 16) by internal transcribed spacer 2 (ITS2) amplicon sequencing. We found that infant mycobiomes differed by body site, with the infant mycobiomes at the anal sites being different from those at the skin and oral sites. The relative abundances of body site-specific taxa differed by birth mode, with significantly more Candida albicans fungi present on the skin of vaginally born infants on day 30 and significantly more Candida orthopsilosis fungi present in the oral cavity of caesarean section-born infants throughout the first month of life. We found the mycobiomes within individual infants to be variable over the first month of life, and vaginal birth did not result in infant mycobiomes that were more similar to the mother's vaginal mycobiome. Therefore, although vertical transmission of specific fungal isolates from mother to infant has been reported, it is likely that other sources (environment, other caregivers) also contribute to early-life mycobiome establishment. Thus, future longitudinal studies of mycobiome and bacterial microbiome codevelopment, with dense sampling from birth to beyond the first month of life, are warranted. IMPORTANCE Humans are colonized by diverse fungi (mycobiome), which have received much less study to date than colonizing bacteria. We know very little about the succession of fungal colonization in early life and whether it may relate to long-term health. To better understand fungal colonization and its sources, we studied the skin, oral, and anal mycobiomes of healthy term infants and the vaginal and anal mycobiomes of their mothers. Generally, infants were colonized by few fungal taxa, and fungal alpha diversity did not increase over the first month of life. There was no clear community maturation over the first month of life, regardless of body site. Key body-site-specific taxa, but not overall fungal community structures, were impacted by birth mode. Thus, additional studies to characterize mycobiome acquisition and succession throughout early life are needed to form a foundation for research into the relationship between mycobiome development and human disease.
Collapse
Affiliation(s)
- Tonya L. Ward
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Maria Gloria Dominguez-Bello
- Departments of Biochemistry and Microbiology and Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| | - Tim Heisel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gabriel Al-Ghalith
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dan Knights
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Cordeiro RDA, Sales JA, Castelo-Branco DDSCM, Brilhante RSN, Ponte YBD, dos Santos Araújo G, Mendes PBL, Pereira VS, Alencar LPD, Pinheiro ADQ, Sidrim JJC, Rocha MFG. Candida parapsilosis complex in veterinary practice: A historical overview, biology, virulence attributes and antifungal susceptibility traits. Vet Microbiol 2017; 212:22-30. [DOI: 10.1016/j.vetmic.2017.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/27/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022]
|
17
|
Pharkjaksu S, Chongtrakool P, Suwannakarn K, Ngamskulrungroj P. Species distribution, virulence factors, and antifungal susceptibility among Candida parapsilosis complex isolates from clinical specimens at Siriraj Hospital, Thailand, from 2011 to 2015. Med Mycol 2017; 56:426-433. [DOI: 10.1093/mmy/myx058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/14/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand 10700
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand 10700
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand 10700
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand 10700
| |
Collapse
|
18
|
Lovero G, Giglio OD, Rutigliano S, Diella G, Caggiano G, Montagna MT. Invitro antifungal susceptibilities of Candida species to liposomal amphotericin B, determined using CLSI broth microdilution, and amphotericin B deoxycholate, measured using the Etest. J Med Microbiol 2017; 66:213-216. [PMID: 27959780 PMCID: PMC5797943 DOI: 10.1099/jmm.0.000402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The antifungal susceptibilities of 598 isolates of Candida spp. (bloodstream and other sterile sites) to liposomal amphotericin B (L-AmB) versus amphotericin B (AmB) were determined. MICs were calculated using the Clinical and Laboratory Standards Institute broth microdilution (M27-A3) method for L-AmB and the Etest method for AmB. The MIC50/MIC90 (µg ml−1) values for L-AmB broth microdilution and AmB Etest were 0.25/1 and 0.19/0.5, respectively. The overall essential agreement (±2 dilutions) was 91.5 %, ranging from 37.5 % (Candida lusitaniae) to 100 % (Candida glabrata and Candida krusei). Categorical agreement between the two methods was categorized based on a previously published breakpoint (susceptible/resistant MIC cut-off of 1 µg ml−1). The overall categorical agreement at the 48 h reading was 97.3 %, ranging from 72.7 % (C. krusei) to 100 % (Candida albicans). Major and very major discrepancies occurred in 2.3 and 0.3 %, respectively. Spearman’s ρ was 0.48 (P<0.0001). These results demonstrate the utility of the AmB Etest as a surrogate marker to predict the sensibility and resistance of Candida spp. to L-AmB and thus to support its use in antifungal treatment.
Collapse
Affiliation(s)
- Grazia Lovero
- Department of Biomedical Science and Human Oncology, Hygiene Section, Università degli Studi of Bari 'Aldo Moro', Bari, Italy
| | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, Hygiene Section, Università degli Studi of Bari 'Aldo Moro', Bari, Italy
| | - Serafina Rutigliano
- Department of Biomedical Science and Human Oncology, Hygiene Section, Università degli Studi of Bari 'Aldo Moro', Bari, Italy
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, Hygiene Section, Università degli Studi of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppina Caggiano
- Department of Biomedical Science and Human Oncology, Hygiene Section, Università degli Studi of Bari 'Aldo Moro', Bari, Italy
| | - Maria Teresa Montagna
- Department of Biomedical Science and Human Oncology, Hygiene Section, Università degli Studi of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
19
|
Almeida-Paes R, Figueiredo-Carvalho MHG, Brito-Santos F, Almeida-Silva F, Oliveira MME, Zancopé-Oliveira RM. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine. PLoS One 2016; 11:e0152796. [PMID: 27031728 PMCID: PMC4816517 DOI: 10.1371/journal.pone.0152796] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/18/2016] [Indexed: 01/18/2023] Open
Abstract
Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- * E-mail:
| | | | - Fábio Brito-Santos
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|