1
|
Chen K, Wu J, Zhang Y, Liu W, Chen X, Zhang W, Huang Z. Cebpa is required for haematopoietic stem and progenitor cell generation and maintenance in zebrafish. Open Biol 2024; 14:240215. [PMID: 39500381 PMCID: PMC11537755 DOI: 10.1098/rsob.240215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
The CCAAT enhancer binding protein alpha (CEBPA) is crucial for myeloid differentiation and the balance of haematopoietic stem and progenitor cell (HSPC) quiescence and self-renewal, and its dysfunction can drive leukemogenesis. However, its role in HSPC generation has not been fully elucidated. Here, we utilized various zebrafish cebpa mutants to investigate the function of Cebpa in the HSPC compartment. Co-localization analysis showed that cebpa expression is enriched in nascent HSPCs. Complete loss of Cebpa function resulted in a significant reduction in early HSPC generation and the overall HSPC pool during embryonic haematopoiesis. Interestingly, while myeloid differentiation was impaired in cebpa N-terminal mutants expressing the truncated zP30 protein, the number of HSPCs was not affected, indicating a redundant role of Cebpa P42 and P30 isoforms in HSPC development. Additionally, epistasis experiments confirmed that Cebpa functions downstream of Runx1 to regulate HSPC emergence. Our findings uncover a novel role of Cebpa isoforms in HSPC generation and maintenance, and provide new insights into HSPC development.
Collapse
Affiliation(s)
- Kemin Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Jieyi Wu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Yuxian Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Xiaohui Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, People’s Republic of China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| |
Collapse
|
2
|
Kim S, Chen J, Ou F, Liu TT, Jo S, Gillanders WE, Murphy TL, Murphy KM. Transcription factor C/EBPα is required for the development of Ly6C hi monocytes but not Ly6C lo monocytes. Proc Natl Acad Sci U S A 2024; 121:e2315659121. [PMID: 38564635 PMCID: PMC11009651 DOI: 10.1073/pnas.2315659121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Monocytes comprise two major subsets, Ly6Chi classical monocytes and Ly6Clo nonclassical monocytes. Notch2 signaling in Ly6Chi monocytes triggers transition to Ly6Clo monocytes, which require Nr4a1, Bcl6, Irf2, and Cebpb. By comparison, less is known about transcriptional requirements for Ly6Chi monocytes. We find transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) is highly expressed in Ly6Chi monocytes, but down-regulated in Ly6Clo monocytes. A few previous studies described the requirement of C/EBPα in the development of neutrophils and eosinophils. However, the role of C/EBPα for in vivo monocyte development has not been understood. We deleted the Cebpa +37 kb enhancer in mice, eliminating hematopoietic expression of C/EBPα, reproducing the expected neutrophil defect. Surprisingly, we also found a severe and selective loss of Ly6Chi monocytes, while preserving Ly6Clo monocytes. We find that BM progenitors from Cebpa +37-/- mice rapidly progress through the monocyte progenitor stage to develop directly into Ly6Clo monocytes even in the absence of Notch2 signaling. These results identify a previously unrecognized role for C/EBPα in maintaining Ly6Chi monocyte identity.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - William E. Gillanders
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. G3 (BETHESDA, MD.) 2024; 14:jkad269. [PMID: 38124496 PMCID: PMC11090500 DOI: 10.1093/g3journal/jkad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023]
Abstract
During gene regulation, DNA accessibility is thought to limit the availability of transcription factor (TF) binding sites, while TFs can increase DNA accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events in the modulation of gene expression remain unknown for the vast majority of genes. We utilized deeply sequenced ATAC-Seq data and site-specific knock-in reporter genes to investigate the relationship between the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of Cebpa during macrophage-neutrophil differentiation. While the enhancers upregulate reporter expression during the earliest stages of differentiation, there is little corresponding increase in their total accessibility. Conversely, total accessibility peaks during the last stages of differentiation without any increase in enhancer activity. The accessibility of positions neighboring C/EBP-family TF binding sites, which indicates TF occupancy, does increase significantly during early differentiation, showing that the early upregulation of enhancer activity is driven by TF binding. These results imply that a generalized increase in DNA accessibility is not sufficient, and binding by enhancer-specific TFs is necessary, for the upregulation of gene expression. Additionally, high-coverage ATAC-Seq combined with time-series expression data can infer the sequence of regulatory events at binding-site resolution.
Collapse
Affiliation(s)
- Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| |
Collapse
|
4
|
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529579. [PMID: 37090616 PMCID: PMC10120690 DOI: 10.1101/2023.02.22.529579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The upregulation of gene expression by enhancers depends upon the interplay between the binding of sequence-specific transcription factors (TFs) and DNA accessibility. DNA accessibility is thought to limit the ability of TFs to bind to their sites, while TFs can increase accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events underlying the modulation of gene expression during cellular differentiation remain unknown for the vast majority of genes. We investigated the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of an important neutrophil gene, Cebpa, during macrophage-neutrophil differentiation. Reporter genes were integrated in a site-specific manner in PUER cells, which are progenitors that can be differentiated into neutrophils or macrophages in vitro by activating the pan-leukocyte TF PU.1. Time series data show that two enhancers upregulate reporter expression during the first 48 hours of neutrophil differentiation. Surprisingly, there is little or no increase in the total accessibility, measured by ATAC-Seq, of the enhancers during the same time period. Conversely, total accessibility peaks 96 hrs after PU.1 activation-consistent with its role as a pioneer-but the enhancers do not upregulate gene expression. Combining deeply sequenced ATAC-Seq data with a new bias-correction method allowed the profiling of accessibility at single-nucleotide resolution and revealed protected regions in the enhancers that match all previously characterized TF binding sites and ChIP-Seq data. Although the accessibility of most positions does not change during early differentiation, that of positions neighboring TF binding sites, an indicator of TF occupancy, did increase significantly. The localized accessibility changes are limited to nucleotides neighboring C/EBP-family TF binding sites, showing that the upregulation of enhancer activity during early differentiation is driven by C/EBP-family TF binding. These results show that increasing the total accessibility of enhancers is not sufficient for upregulating their activity and other events such as TF binding are necessary for upregulation. Also, TF binding can cause upregulation without a perceptible increase in total accessibility. Finally, this study demonstrates the feasibility of comprehensively mapping individual TF binding sites as footprints using high coverage ATAC-Seq and inferring the sequence of events in gene regulation by combining with time-series gene expression data.
Collapse
Affiliation(s)
- Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| |
Collapse
|
5
|
Lenaerts A, Kucinski I, Deboutte W, Derecka M, Cauchy P, Manke T, Göttgens B, Grosschedl R. EBF1 primes B-lymphoid enhancers and limits the myeloid bias in murine multipotent progenitors. J Exp Med 2022; 219:e20212437. [PMID: 36048017 PMCID: PMC9437269 DOI: 10.1084/jem.20212437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) generate all cells of the blood system. Despite their multipotency, MPPs display poorly understood lineage bias. Here, we examine whether lineage-specifying transcription factors, such as the B-lineage determinant EBF1, regulate lineage preference in early progenitors. We detect low-level EBF1 expression in myeloid-biased MPP3 and lymphoid-biased MPP4 cells, coinciding with expression of the myeloid determinant C/EBPα. Hematopoietic deletion of Ebf1 results in enhanced myelopoiesis and reduced HSC repopulation capacity. Ebf1-deficient MPP3 and MPP4 cells exhibit an augmented myeloid differentiation potential and a transcriptome with an enriched C/EBPα signature. Correspondingly, EBF1 binds the Cebpa enhancer, and the deficiency and overexpression of Ebf1 in MPP3 and MPP4 cells lead to an up- and downregulation of Cebpa expression, respectively. In addition, EBF1 primes the chromatin of B-lymphoid enhancers specifically in MPP3 cells. Thus, our study implicates EBF1 in regulating myeloid/lymphoid fate bias in MPPs by constraining C/EBPα-driven myelopoiesis and priming the B-lymphoid fate.
Collapse
Affiliation(s)
- Aurelie Lenaerts
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ward Deboutte
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marta Derecka
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
6
|
Avellino R, Mulet-Lazaro R, Havermans M, Hoogenboezem R, Smeenk L, Salomonis N, Schneider RK, Rombouts E, Bindels E, Grimes L, Delwel R. Induced cell-autonomous neutropenia systemically perturbs hematopoiesis in Cebpa enhancer-null mice. Blood Adv 2022; 6:1406-1419. [PMID: 34814180 PMCID: PMC8905702 DOI: 10.1182/bloodadvances.2021005851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
The transcription factor C/EBPa initiates the neutrophil gene expression program in the bone marrow (BM). Knockouts of the Cebpa gene or its +37kb enhancer in mice show 2 major findings: (1) neutropenia in BM and blood; (2) decrease in long-term hematopoietic stem cell (LT-HSC) numbers. Whether the latter finding is cell-autonomous (intrinsic) to the LT-HSCs or an extrinsic event exerted on the stem cell compartment remained an open question. Flow cytometric analysis of the Cebpa +37kb enhancer knockout model revealed that the reduction in LT-HSC numbers observed was proportional to the degree of neutropenia. Single-cell transcriptomics of wild-type (WT) mouse BM showed that Cebpa is predominantly expressed in early myeloid-biased progenitors but not in LT-HSCs. These observations suggest that the negative effect on LT-HSCs is an extrinsic event caused by neutropenia. We transplanted whole BMs from +37kb enhancer-deleted mice and found that 40% of the recipient mice acquired full-blown neutropenia with severe dysplasia and a significant reduction in the total LT-HSC population. The other 60% showed initial signs of myeloid differentiation defects and dysplasia when they were sacrificed, suggesting they were in an early stage of the same pathological process. This phenotype was not seen in mice transplanted with WT BM. Altogether, these results indicate that Cebpa enhancer deletion causes cell-autonomous neutropenia, which reprograms and disturbs the quiescence of HSCs, leading to a systemic impairment of the hematopoietic process.
Collapse
Affiliation(s)
- Roberto Avellino
- Department of Hematology, and
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Weizmann Institute, Rehovot 7610001, Israel
| | - Roger Mulet-Lazaro
- Department of Hematology, and
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marije Havermans
- Department of Hematology, and
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Leonie Smeenk
- Department of Hematology, and
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nathan Salomonis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Rebekka K. Schneider
- Department of Hematology, and
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Developmental Biology, Erasmus MC, Rotterdam, The Netherlands; and
- Institute for Biomedical Engineering, Department of Cell Biology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | | | | | - Lee Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Ruud Delwel
- Department of Hematology, and
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
The transcription factors GFI1 and GFI1B as modulators of the innate and acquired immune response. Adv Immunol 2021; 149:35-94. [PMID: 33993920 DOI: 10.1016/bs.ai.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GFI1 and GFI1B are small nuclear proteins of 45 and 37kDa, respectively, that have a simple two-domain structure: The first consists of a group of six c-terminal C2H2 zinc finger motifs that are almost identical in sequence and bind to very similar, specific DNA sites. The second is an N-terminal 20 amino acid SNAG domain that can bind to the pocket of the histone demethylase KDM1A (LSD1) near its active site. When bound to DNA, both proteins act as bridging factors that bring LSD1 and associated proteins into the vicinity of methylated substrates, in particular histone H3 or TP53. GFI1 can also bring methyl transferases such as PRMT1 together with its substrates that include the DNA repair proteins MRE11 and 53BP1, thereby enabling their methylation and activation. While GFI1B is expressed almost exclusively in the erythroid and megakaryocytic lineage, GFI1 has clear biological roles in the development and differentiation of lymphoid and myeloid immune cells. GFI1 is required for lymphoid/myeloid and monocyte/granulocyte lineage decision as well as the correct nuclear interpretation of a number of important immune-signaling pathways that are initiated by NOTCH1, interleukins such as IL2, IL4, IL5 or IL7, by the pre TCR or -BCR receptors during early lymphoid differentiation or by T and B cell receptors during activation of lymphoid cells. Myeloid cells also depend on GFI1 at both stages of early differentiation as well as later stages in the process of activation of macrophages through Toll-like receptors in response to pathogen-associated molecular patterns. The knowledge gathered on these factors over the last decades puts GFI1 and GFI1B at the center of many biological processes that are critical for both the innate and acquired immune system.
Collapse
|
8
|
C/EBPα induces Ebf1 gene expression in common lymphoid progenitors. PLoS One 2020; 15:e0244161. [PMID: 33332417 PMCID: PMC7746190 DOI: 10.1371/journal.pone.0244161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
C/EBPα is required for formation of granulocyte-monocyte progenitors (GMP) and also participates in B lymphopoiesis. The common lymphoid progenitor (CLP) and preproB populations but not proB cells express Cebpa, and pan-hematopoietic deletion of the +37 kb Cebpa enhancer using Mx1-Cre leads not only to reduced GMP but also to 2-fold reduced marrow preproB and >15-fold reduced proB and preB cells. We now show that IL7Rα-Cre-mediated deletion of the +37 kb Cebpa enhancer, which occurs in 89% of Ly6D+ and 65% of upstream Ly6D- CLP, leads to a 2-fold reduction of both preproB and proB cells, and a 3-fold reduction in preB cells, with no impact on GMP numbers. These data support a direct role for C/EBPα during B lineage development, with reduced enhancer deletion in Ly6D- CLP mediated by IL7Rα-Cre diminishing the effect on B lymphopoiesis compared to that seen with Mx1-Cre. Amongst mRNAs encoding key transcriptional regulators that initiate B lymphoid specification (PU.1, E2A, IKAROS, EBF1, FOXO1, and BACH2), only Ebf1 levels are altered in CLP upon Mx1-Cre-mediated Cebpa enhancer deletion, with Ebf1 reduced ~40-fold in Flt3+Sca-1intc-kitintIL7Rα+ CLP. In addition, Cebpa and Ebf1 RNAs were 4- and 14-fold higher in hCD4+ versus hCD4- CLP from Cebpa-hCD4 transgenic mice. Histone modification ChIP-Seq data for CLP indicate the presence of active, intronic Ebf1 enhancers located 270 and 280 kb upstream of the transcription start sites. We identified a cis element in this region that strongly binds C/EBPα using the electrophoretic mobility shift assay. Mutation of this C/EBPα-binding site in an Ebf1 enhancer-TK-luciferase reporter leads to a 4-fold reduction in C/EBPα-mediated trans-activation. These findings support a model of B lymphopoiesis in which induction of Ebf1 by C/EBPα in a subset of CLP contributes to initiation of B lymphopoiesis.
Collapse
|
9
|
Kimura Y, Iwanaga E, Iwanaga K, Endo S, Inoue Y, Tokunaga K, Nagahata Y, Masuda K, Kawamoto H, Matsuoka M. A regulatory element in the 3'-untranslated region of CEBPA is associated with myeloid/NK/T-cell leukemia. Eur J Haematol 2020; 106:327-339. [PMID: 33197296 DOI: 10.1111/ejh.13551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES CCAAT/enhancer-binding protein α (CEBPA) is an essential transcription factor for myeloid differentiation. Not only mutation of the CEBPA gene, but also promoter methylation, which results in silencing of CEBPA, contributes to the pathogenesis of acute myeloid leukemia (AML). We sought for another differentially methylated region (DMR) that associates with the CEBPA silencing and disease phenotype. METHODS Using databases, we identified a conserved DMR in the CEBPA 3'-untranslated region (UTR). RESULTS Methylation-specific PCR analysis of 231 AML cases showed that hypermethylation of the 3'-UTR was associated with AML that had a myeloid/NK/T-cell phenotype and downregulated CEBPA. Most of these cases were of an immature phenotype with CD7/CD56 positivity. These cases were significantly associated with lower hemoglobin levels than the others. Furthermore, we discovered that the CEBPA 3'-UTR DMR can enhance transcription from the CEBPA native promoter. In vitro experiments identified IKZF1-binding sites in the 3'-UTR that are responsible for this increased transcription of CEBPA. CONCLUSIONS These results indicate that the CEBPA 3'-UTR DMR is a novel regulatory element of CEBPA related to myeloid/NK/T-cell lineage leukemogenesis. Transcriptional regulation of CEBPA by IKZF1 may provide a clue for understanding the fate determination of myeloid vs. NK/T-lymphoid progenitors.
Collapse
Affiliation(s)
- Yukiko Kimura
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Eisaku Iwanaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Kouta Iwanaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Shinya Endo
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Inoue
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Kenji Tokunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Yousuke Nagahata
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Kyoko Masuda
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan.,Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Pundhir S, Bratt Lauridsen FK, Schuster MB, Jakobsen JS, Ge Y, Schoof EM, Rapin N, Waage J, Hasemann MS, Porse BT. Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors. Cell Rep 2019; 23:2744-2757. [PMID: 29847803 DOI: 10.1016/j.celrep.2018.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation.
Collapse
Affiliation(s)
- Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felicia Kathrine Bratt Lauridsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus Schou Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin Marten Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Waage
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Sigurd Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Thoms JAI, Beck D, Pimanda JE. Transcriptional networks in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:859-874. [PMID: 31369171 DOI: 10.1002/gcc.22794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease characterized by a diverse range of recurrent molecular aberrations that occur in many different combinations. Components of transcriptional networks are a common target of these aberrations, leading to network-wide changes and deployment of novel or developmentally inappropriate transcriptional programs. Genome-wide techniques are beginning to reveal the full complexity of normal hematopoietic stem cell transcriptional networks and the extent to which they are deregulated in AML, and new understandings of the mechanisms by which AML cells maintain self-renewal and block differentiation are starting to emerge. The hope is that increased understanding of the network architecture in AML will lead to identification of key oncogenic dependencies that are downstream of multiple network aberrations, and that this knowledge will be translated into new therapies that target these dependencies. Here, we review the current state of knowledge of network perturbation in AML with a focus on major mechanisms of transcription factor dysregulation, including mutation, translocation, and transcriptional dysregulation, and discuss how these perturbations propagate across transcriptional networks. We will also review emerging mechanisms of network disruption, and briefly discuss how increased knowledge of network disruption is already being used to develop new therapies.
Collapse
Affiliation(s)
- Julie A I Thoms
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Repele A, Krueger S, Bhattacharyya T, Tuineau MY. The regulatory control of Cebpa enhancers and silencers in the myeloid and red-blood cell lineages. PLoS One 2019; 14:e0217580. [PMID: 31181110 PMCID: PMC6557489 DOI: 10.1371/journal.pone.0217580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Cebpa encodes a transcription factor (TF) that plays an instructive role in the development of multiple myeloid lineages. The expression of Cebpa itself is finely modulated, as Cebpa is expressed at high and intermediate levels in neutrophils and macrophages respectively and downregulated in non-myeloid lineages. The cis-regulatory logic underlying the lineage-specific modulation of Cebpa's expression level is yet to be fully characterized. Previously, we had identified 6 new cis-regulatory modules (CRMs) in a 78kb region surrounding Cebpa. We had also inferred the TFs that regulate each CRM by fitting a sequence-based thermodynamic model to a comprehensive reporter activity dataset. Here, we report the cis-regulatory logic of Cebpa CRMs at the resolution of individual binding sites. We tested the binding sites and functional roles of inferred TFs by designing and constructing mutated CRMs and comparing theoretical predictions of their activity against empirical measurements in a myeloid cell line. The enhancers were confirmed to be activated by combinations of PU.1, C/EBP family TFs, Egr1, and Gfi1 as predicted by the model. We show that silencers repress the activity of the proximal promoter in a dominant manner in G1ME cells, which are derived from the red-blood cell lineage. Dominant repression in G1ME cells can be traced to binding sites for GATA and Myb, a motif shared by all of the silencers. Finally, we demonstrate that GATA and Myb act redundantly to silence the proximal promoter. These results indicate that dominant repression is a novel mechanism for resolving hematopoietic lineages. Furthermore, Cebpa has a fail-safe cis-regulatory architecture, featuring several functionally similar CRMs, each of which contains redundant binding sites for multiple TFs. Lastly, by experimentally demonstrating the predictive ability of our sequence-based thermodynamic model, this work highlights the utility of this computational approach for understanding mammalian gene regulation.
Collapse
Affiliation(s)
- Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Michelle Y Tuineau
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| |
Collapse
|
13
|
Peng L, Guo H, Ma P, Sun Y, Dennison L, Aplan PD, Hess JL, Friedman AD. HoxA9 binds and represses the Cebpa +8 kb enhancer. PLoS One 2019; 14:e0217604. [PMID: 31120998 PMCID: PMC6532930 DOI: 10.1371/journal.pone.0217604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/14/2019] [Indexed: 12/05/2022] Open
Abstract
C/EBPα plays a key role in specifying myeloid lineage development. HoxA9 is expressed in myeloid progenitors, with its level diminishing during myeloid maturation, and HOXA9 is over-expressed in a majority of acute myeloid leukemia cases, including those expressing NUP98-HOXD13. The objective of this study was to determine whether HoxA9 directly represses Cebpa gene expression. We find 4-fold increased HoxA9 and 5-fold reduced Cebpa in marrow common myeloid and LSK progenitors from Vav-NUP98-HOXD13 transgenic mice. Conversely, HoxA9 decreases 5-fold while Cebpa increases during granulocytic differentiation of 32Dcl3 myeloid cells. Activation of exogenous HoxA9-ER in 32Dcl3 cells reduces Cebpa mRNA even in the presence of cycloheximide, suggesting direct repression. Cebpa transcription in murine myeloid cells is regulated by a hematopoietic-specific +37 kb enhancer and by a more widely active +8 kb enhancer. ChIP-Seq analysis of primary myeloid progenitor cells expressing exogenous HoxA9 or HoxA9-ER demonstrates that HoxA9 localizes to both the +8 kb and +37 kb Cebpa enhancers. Gel shift analysis demonstrates HoxA9 binding to three consensus sites in the +8 kb enhancer, but no affinity for the single near-consensus site present in the +37 kb enhancer. Activity of a Cebpa +8 kb enhancer/promoter-luciferase reporter in 32Dcl3 or MOLM14 myeloid cells is increased ~2-fold by mutation of its three HOXA9-binding sites, suggesting that endogenous HoxA9 represses +8 kb Cebpa enhancer activity. In contrast, mutation of five C/EBPα-binding sites in the +8 kb enhancer reduces activity 3-fold. Finally, expression of a +37 kb enhancer/promoter-hCD4 transgene reporter is reduced ~2-fold in marrow common myeloid progenitors when the Vav-NUP98-HOXD13 transgene is introduced. Overall, these data support the conclusion that HoxA9 represses Cebpa expression, at least in part via inhibition of its +8 kb enhancer, potentially allowing normal myeloid progenitors to maintain immaturity and contributing to the pathogenesis of acute myeloid leukemia associated with increased HOXA9.
Collapse
Affiliation(s)
- Lei Peng
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hong Guo
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Peilin Ma
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United Sates of America
| | - Yuqing Sun
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United Sates of America
| | - Lauren Dennison
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
| | - Jay L. Hess
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United Sates of America
| | - Alan D. Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Guo H, Barberi T, Suresh R, Friedman AD. Progression from the Common Lymphoid Progenitor to B/Myeloid PreproB and ProB Precursors during B Lymphopoiesis Requires C/EBPα. THE JOURNAL OF IMMUNOLOGY 2018; 201:1692-1704. [PMID: 30061199 DOI: 10.4049/jimmunol.1800244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
The C/EBPα transcription factor is required for myelopoiesis, with prior observations suggesting additional contributions to B lymphopoiesis. Cebpa expression is evident in common lymphoid progenitor (CLP) and preproB cells but is absent in proB and preB cells. We previously observed that marrow lacking the Cebpa +37 kb enhancer is impaired in producing B cells upon competitive transplantation. Additionally, a Cebpa enhancer/promoter-hCD4 transgene is expressed in B/myeloid CFU. Extending these findings, pan-hematopoietic murine Cebpa enhancer deletion using Mx1-Cre leads to expanded CLP, fewer preproB cells, markedly reduced proB and preB cells, and reduced mature B cells, without affecting T cell numbers. In contrast, enhancer deletion at the proB stage using Mb1-Cre does not impair B cell maturation. Further evaluation of CLP reveals that the Cebpa transgene is expressed almost exclusively in Flt3+ multipotent CLP versus B cell-restricted Flt3- CLP. In vitro, hCD4+ preproB cells produce both B and myeloid cells, whereas hCD4- preproB cells only produce B cells. Additionally, a subset of hCD4- preproB cells express high levels of RAG1-GFP, as seen also in proB cells. Global gene expression analysis indicates that hCD4+ preproB cells express proliferative pathways, whereas B cell development and signal transduction pathways predominate in hCD4- preproB cells. Consistent with these changes, Cebpa enhancer-deleted preproB cells downmodulate cell cycle pathways while upregulating B cell signaling pathways. Collectively, these findings indicate that C/EBPα is required for Flt3+ CLP maturation into preproB cells and then for proliferative Cebpaint B/myeloid preproB cells to progress to Cebpalo B cell-restricted preproB cells and finally to Cebpaneg proB cells.
Collapse
Affiliation(s)
- Hong Guo
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Theresa Barberi
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Rahul Suresh
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
15
|
Benetatos L, Vartholomatos G. Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes. Cell Mol Life Sci 2018; 75:1999-2009. [PMID: 29484447 PMCID: PMC11105366 DOI: 10.1007/s00018-018-2783-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation (CpG methylation) exerts an important role in normal differentiation and proliferation of hematopoietic stem cells and their differentiated progeny, while it has also the ability to regulate myeloid versus lymphoid fate. Mutations of the epigenetic machinery are observed in hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) resulting in hyper- or hypo-methylation affecting several different pathways. Enhancers are cis-regulatory elements which promote transcription activation and are characterized by histone marks including H3K27ac and H3K4me1/2. These gene subunits are target gene expression 'fine-tuners', are differentially used during the hematopoietic differentiation, and, in contrast to promoters, are not shared by the different hematopoietic cell types. Although the interaction between gene promoters and DNA methylation has extensively been studied, much less is known about the interplay between enhancers and DNA methylation. In hematopoiesis, DNA methylation at enhancers has the potential to discriminate between fetal and adult erythropoiesis, and also is a regulatory mechanism in granulopoiesis through repression of neutrophil-specific enhancers in progenitor cells during maturation. The interplay between DNA methylation at enhancers is disrupted in AML and MDS and mainly hyper-methylation at enhancers raising early during myeloid lineage commitment is acquired during malignant transformation. Interactions between mutated epigenetic drivers and other oncogenic mutations also affect enhancers' activity with final result, myeloid differentiation block. In this review, we have assembled recent data regarding DNA methylation and enhancers' activity in normal and mainly myeloid malignancies.
Collapse
|
16
|
Abstract
Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site-specific genome editing and has revolutionized biomedical research due to its superior efficiency and flexibility. Recent studies have greatly diversified CRISPR technologies by coupling it with various DNA repair mechanisms and targeting strategies. These new advances have significantly expanded the generation of genetically modified animal models, either by including species in which targeted genetic modification could not be achieved previously, or through introducing complex genetic modifications that take multiple steps and cost years to achieve using traditional methods. Herein, we review the recent developments and applications of CRISPR-based technology in generating various animal models, and discuss the everlasting impact of this new progress on biomedical research.
Collapse
Affiliation(s)
- Xun Ma
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Avery Sum-Yu Wong
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Hei-Yin Tam
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Samuel Yung-Kin Tsui
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Dittman Lai-Shun Chung
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Bo Feng
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Guangdong 510530, China.,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen Guangdong 518057, China
| |
Collapse
|
17
|
CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control. Mamm Genome 2018; 29:205-228. [PMID: 29196861 PMCID: PMC9881389 DOI: 10.1007/s00335-017-9727-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023]
Abstract
The development of high-throughput methods has enabled the genome-wide identification of putative regulatory elements in a wide variety of mammalian cells at an unprecedented resolution. Extensive genomic studies have revealed the important role of regulatory elements and genetic variation therein in disease formation and risk. In most cases, there is only correlative evidence for the roles of these elements and non-coding changes within these elements in pathogenesis. With the advent of genome- and epigenome-editing tools based on the CRISPR technology, it is now possible to test the functional relevance of the regulatory elements and alterations on a genomic scale. Here, we review the various CRISPR-based strategies that have been developed to functionally validate the candidate regulatory elements in mammals as well as the non-coding genetic variants found to be associated with human disease. We also discuss how these synthetic biology tools have helped to elucidate the role of three-dimensional nuclear architecture and higher-order chromatin organization in shaping functional genome and controlling gene expression.
Collapse
|
18
|
Gonzalez D, Luyten A, Bartholdy B, Zhou Q, Kardosova M, Ebralidze A, Swanson KD, Radomska HS, Zhang P, Kobayashi SS, Welner RS, Levantini E, Steidl U, Chong G, Collombet S, Choi MH, Friedman AD, Scott LM, Alberich-Jorda M, Tenen DG. ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPα. J Biol Chem 2017; 292:18924-18936. [PMID: 28900037 PMCID: PMC5704476 DOI: 10.1074/jbc.m117.811109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
The transcription factor C/EBPα is essential for myeloid differentiation and is frequently dysregulated in acute myeloid leukemia. Although studied extensively, the precise regulation of its gene by upstream factors has remained largely elusive. Here, we investigated its transcriptional activation during myeloid differentiation. We identified an evolutionarily conserved octameric sequence, CCCAGCAG, ∼100 bases upstream of the CEBPA transcription start site, and demonstrated through mutational analysis that this sequence is crucial for C/EBPα expression. This sequence is present in the genes encoding C/EBPα in humans, rodents, chickens, and frogs and is also present in the promoters of other C/EBP family members. We identified that ZNF143, the human homolog of the Xenopus transcriptional activator STAF, specifically binds to this 8-bp sequence to activate C/EBPα expression in myeloid cells through a mechanism that is distinct from that observed in liver cells and adipocytes. Altogether, our data suggest that ZNF143 plays an important role in the expression of C/EBPα in myeloid cells.
Collapse
Affiliation(s)
- David Gonzalez
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Annouck Luyten
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Boris Bartholdy
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Qiling Zhou
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Miroslava Kardosova
- the Institute of Molecular Genetics of the ASCR, Prague 142 20, Czech Republic
- the Childhood Leukaemia Investigation Prague, Second Faculty of Medicine Charles University, University Hospital Motol, Prague 150 06, Czech Republic
| | - Alex Ebralidze
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Kenneth D Swanson
- the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Hanna S Radomska
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio 43210, and
| | - Pu Zhang
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Susumu S Kobayashi
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert S Welner
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Hematology/Oncology Department, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Elena Levantini
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Institute of Biomedical Technologies, National Research Council, 56124 Pisa, Italy
| | - Ulrich Steidl
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Department of Cell Biology, and Department of Medicine (Oncology), Albert Einstein College of Medicine, New York, New York 10461
| | - Gilbert Chong
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Samuel Collombet
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Min Hee Choi
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | | | - Linda M Scott
- the The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Meritxell Alberich-Jorda
- the Institute of Molecular Genetics of the ASCR, Prague 142 20, Czech Republic,
- the Childhood Leukaemia Investigation Prague, Second Faculty of Medicine Charles University, University Hospital Motol, Prague 150 06, Czech Republic
| | - Daniel G Tenen
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore,
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
19
|
Expression and regulation of C/EBPα in normal myelopoiesis and in malignant transformation. Blood 2017; 129:2083-2091. [PMID: 28179278 DOI: 10.1182/blood-2016-09-687822] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
One of the most studied transcription factors in hematopoiesis is the leucine zipper CCAAT-enhancer binding protein α (C/EBPα), which is mainly involved in cell fate decisions for myeloid differentiation. Its involvement in acute myeloid leukemia (AML) is diverse, with patients frequently exhibiting mutations, deregulation of gene expression, or alterations in the function of C/EBPα. In this review, we emphasize the importance of C/EBPα for neutrophil maturation, its role in myeloid priming of hematopoietic stem and progenitor cells, and its indispensable requirement for AML development. We discuss that mutations in the open reading frame of CEBPA lead to an altered C/EBPα function, affecting the expression of downstream genes and consequently deregulating myelopoiesis. The emerging transcriptional mechanisms of CEBPA are discussed based on recent studies. Novel insights on how these mechanisms may be deregulated by oncoproteins or mutations/variants in CEBPA enhancers are suggested in principal to reveal novel mechanisms of how CEBPA is deregulated at the transcriptional level.
Collapse
|
20
|
RUNX1 and CBFβ Mutations and Activities of Their Wild-Type Alleles in AML. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:265-282. [DOI: 10.1007/978-981-10-3233-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
The role of the transcriptional repressor growth factor independent 1 in the formation of myeloid cells. Curr Opin Hematol 2017; 24:32-37. [DOI: 10.1097/moh.0000000000000295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms. Proc Natl Acad Sci U S A 2016; 114:E327-E336. [PMID: 28031487 DOI: 10.1073/pnas.1619052114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genetic variants affecting hematopoiesis can influence commonly measured blood cell traits. To identify factors that affect hematopoiesis, we performed association studies for blood cell traits in the population-based Estonian Biobank using high-coverage whole-genome sequencing (WGS) in 2,284 samples and SNP genotyping in an additional 14,904 samples. Using up to 7,134 samples with available phenotype data, our analyses identified 17 associations across 14 blood cell traits. Integration of WGS-based fine-mapping and complementary epigenomic datasets provided evidence for causal mechanisms at several loci, including at a previously undiscovered basophil count-associated locus near the master hematopoietic transcription factor CEBPA The fine-mapped variant at this basophil count association near CEBPA overlapped an enhancer active in common myeloid progenitors and influenced its activity. In situ perturbation of this enhancer by CRISPR/Cas9 mutagenesis in hematopoietic stem and progenitor cells demonstrated that it is necessary for and specifically regulates CEBPA expression during basophil differentiation. We additionally identified basophil count-associated variation at another more pleiotropic myeloid enhancer near GATA2, highlighting regulatory mechanisms for ordered expression of master hematopoietic regulators during lineage specification. Our study illustrates how population-based genetic studies can provide key insights into poorly understood cell differentiation processes of considerable physiologic relevance.
Collapse
|