1
|
Rimayanti R, Khairullah AR, Lestari TD, Hernawati T, Mulyati S, Utama S, Damayanti R, Moses IB, Yanestria SM, Kusala MKJ, Raissa R, Fauziah I, Wibowo S, Prasetyo A, Awwanah M, Fauzia KA. Porcine reproductive and respiratory syndrome developments: An in-depth review of recent findings. Open Vet J 2024; 14:2138-2152. [PMID: 39553781 PMCID: PMC11563630 DOI: 10.5455/ovj.2024.v14.i9.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) belonging to the Arteriviridae family is the cause of PRRS disease. After being discovered for the first time in the United States in 1987, this illness quickly expanded to Canada. The disease was initially discovered in late 1990 in Germany, from where it quickly spread throughout Europe. The consequences of PRRSV lead to a number of epidemiological issues, including a sickness with a delayed immune response that permits extended viremia, which facilitates viral transmission. The virus penetrates the nasal epithelium, tonsils, lung macrophages, and uterine endometrium through the oronasal and genital pathways. Abortions performed late in pregnancy and premature or delayed deliveries resulting in dead and mummified fetuses, stillborn pigs, and weakly born piglets are indicative of reproductive syndrome. In the meanwhile, dyspnea, fever, anorexia, and lethargic behavior are signs of respiratory syndrome. The virus can be isolated from the tissue or serum of animals that have been infected to confirm the diagnosis. Pig movements and potential airborne dissemination are two ways that the virus can enter new herds and propagate through nose-to-nose contact or aerosols. Various supportive therapies may enhance infant survival, and antibiotics may or may not lessen the impact of secondary bacterial infections. The absence of simple diagnostic tests, the virus's airborne transmission, the occurrence of subclinical infections, and the virus's persistence in infected populations have all contributed to the failure of control efforts for PRRS.
Collapse
Affiliation(s)
- Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Agung Prasetyo
- Research Center for Estate Crops, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mo Awwanah
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
2
|
Horváth DG, Abonyi-Tóth Z, Papp M, Szász AM, Rümenapf T, Knecht C, Kreutzmann H, Ladinig A, Balka G. Quantitative Analysis of Inflammatory Uterine Lesions of Pregnant Gilts with Digital Image Analysis Following Experimental PRRSV-1 Infection. Animals (Basel) 2023; 13:ani13050830. [PMID: 36899686 PMCID: PMC10000175 DOI: 10.3390/ani13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Reproductive disorders caused by porcine reproductive and respiratory syndrome virus-1 are not yet fully characterized. We report QuPath-based digital image analysis to count inflammatory cells in 141 routinely, and 35 CD163 immunohistochemically stained endometrial slides of vaccinated or unvaccinated pregnant gilts inoculated with a high or low virulent PRRSV-1 strain. To illustrate the superior statistical feasibility of the numerical data determined by digital cell counting, we defined the association between the number of these cells and endometrial, placental, and fetal features. There was strong concordance between the two manual scorers. Distributions of total cell counts and endometrial and placental qPCR results differed significantly between examiner1's endometritis grades. Total counts' distribution differed significantly between groups, except for the two unvaccinated. Higher vasculitis scores were associated with higher endometritis scores, and higher total cell counts were expected with high vasculitis/endometritis scores. Cell number thresholds of endometritis grades were determined. A significant correlation between fetal weights and total counts was shown in unvaccinated groups, and a significant positive correlation was found between these counts and endometrial qPCR results. We revealed significant negative correlations between CD163+ counts and qPCR results of the unvaccinated group infected with the highly virulent strain. Digital image analysis was efficiently applied to assess endometrial inflammation objectively.
Collapse
Affiliation(s)
- Dávid G. Horváth
- Department of Pathology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary
| | - Zsolt Abonyi-Tóth
- Department of Biostatistics, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary
| | - Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary
| | - Attila Marcell Szász
- Department of Internal Medicine and Oncology, Semmelweis University, Korányi Sándor u. 2/a, 1083 Budapest, Hungary
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Heinrich Kreutzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary
- Correspondence:
| |
Collapse
|
3
|
Rodriguez AL, Fowler VL, Huether M, Reddick D, Tait-Burkard C, O’Shea M, Perkins S, Dias N, Buterbaugh R, Benchaoui HA. Effects of a water-soluble formulation of tylvalosin on disease caused by porcine reproductive and respiratory syndrome virus alone in sows or in combination with Mycoplasma hyopneumoniae in piglets. BMC Vet Res 2023; 19:31. [PMID: 36726139 PMCID: PMC9890818 DOI: 10.1186/s12917-023-03571-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The effect of a water-soluble formulation of tylvalosin (Aivlosin® 625 mg/g granules) on disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (Mhyop) was investigated in two animal studies. In a PRRSV challenge model in pregnant sows (n = 18), six sows received water medicated at target dose of 5 mg tylvalosin/kg body weight/day from 3 days prior to challenge until the end of gestation. Six sows were left untreated, with a third group remaining untreated and unchallenged. Sows were challenged with PRRSV-2 at approximately 85 days of gestation. Cytokines, viremia, viral shedding, sow reproductive parameters and piglet performance to weaning were evaluated. In a dual infection study (n = 16), piglets were challenged with Mhyop on days 0, 1 and 2, and with PRRSV-1 on day 14 and euthanized on day 24. From day 10 to 20, eight piglets received water medicated at target dose of 20 mg tylvalosin/kg body weight/day and eight piglets were left untreated. Cytokines, viremia, bacteriology and lung lesions were evaluated. RESULTS In the PRRSV challenge study in pregnant sows, tylvalosin significantly reduced the levels of serum IL-8 (P < 0.001), IL-12 (P = 0.032), TNFα (P < 0.001) and GM-CSF (P = 0.001). IL-8 (P = 0.100) tended to be lower in uterus of tylvalosin sows. All piglets from tylvalosin sows surviving to weaning were PRRSV negative in faecal swabs at weaning compared to 33.3% PRRSV positive piglets from untreated sows (P = 0.08). In the dual challenge study in piglet, tylvalosin reduced serum IL1β, IL-4, IL-6, IL-8, IL-10, IL-12, IL-1α, IL-13, IL-17A, IL-18, GM-CSF, TGFβ1, TNFα, CCL3L1, MIG, PEPCAM-1 (P < 0.001) and increased serum IFNα, IL-1ra and MIP-1b (P < 0.001). In the lungs, tylvalosin reduced IL-8, IL-10 and IL-12 compared to untreated pigs (P < 0.001) and tended to reduce TNFα (P = 0.082). Lung lavage samples from all tylvalosin treated piglets were negative for Mhyop (0 cfu/mL) compared to the untreated piglets which had mean Mhyop counts of 2.68 × 104 cfu/mL (P = 0.023). CONCLUSION Overall, tylvalosin reduced both local and systemic proinflammatory cytokines after challenge with respiratory pathogens in sows and in piglets. Tylvalosin was effective in reducing Mhyop recovery from the lungs and may reduce virus shedding in piglets following transplacental PRRSV infection in sows.
Collapse
Affiliation(s)
| | | | | | - David Reddick
- Moredun Scientific Ltd, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ UK
| | - Christine Tait-Burkard
- grid.4305.20000 0004 1936 7988The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Marie O’Shea
- grid.4305.20000 0004 1936 7988The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | | | - Nirosh Dias
- grid.505215.6RTI, LLC, 801 32nd Ave, Brookings, SD 57006 USA
| | | | | |
Collapse
|
4
|
Barrera-Zarate J, Detmer SE, Pasternak JA, Hamonic G, MacPhee DJ, Harding JC. Detection of PRRSV-2 alone and co-localized with CD163 positive macrophages in porcine placental areolae. Vet Immunol Immunopathol 2022; 250:110457. [DOI: 10.1016/j.vetimm.2022.110457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
|
5
|
Barrera-Zarate JA, Detmer SE, Pasternak JA, Hamonic G, MacPhee DJ, Harding JCS. Effect of porcine reproductive and respiratory syndrome virus 2 on angiogenesis and cell proliferation at the maternal-fetal interface. Vet Pathol 2022; 59:940-949. [PMID: 35723036 PMCID: PMC9530517 DOI: 10.1177/03009858221105053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Angiogenesis and cell proliferation in reproductive tissues are essential events
for the maintenance of pregnancy, and alterations can lead to compromised fetal
development and survival. Porcine reproductive and respiratory syndrome virus 2
(PRRSV-2) induces reproductive disease with negative financial and production
impact on the swine industry. PRRSV-2 infection alters placental physiology
through inflammatory and apoptotic pathways, yet fetal susceptibility varies.
This study aimed to evaluate angiogenesis and cell proliferation in the porcine
maternal-fetal interface (MFI) and determine if these physiological processes
were altered by PRRSV-2 infection. Thirty-one pregnant gilts were inoculated
with PRRSV-2 at gestation day 86 ± 0.4 (mean ± SD). Seven control gilts were
sham-inoculated. All gilts were euthanized at 12 days postinoculation.
Angiogenesis and cell proliferation were determined through the detection of
vascular endothelial growth factor (VEGF) and Ki-67, respectively, using
immunofluorescence of the MFI from 4 fetal resilience groups: uninfected (UNIF),
high viral load–viable (HVL-VIA), and HVL-meconium-stained (MEC) from
PRRSV-infected gilts, as well from sham-inoculated (CON) gilts. VEGF
immunolabeling in the uterine submucosa was significantly lower in MEC compared
with UNIF and HVL-VIA groups. Significantly greater Ki67 immunolabeling was
detected in the trophoblasts of CON fetuses versus all other groups, and in
uterine epithelium of CON and UNIF fetuses versus HVL-VIA and MEC. These results
suggest that fetal resilience may be related to greater cell proliferation in
uterine epithelium, and fetal compromise with reduced uterine submucosal
angiogenesis, except fetuses with intrauterine growth restriction, in which
inherently lower submucosal angiogenesis may be protective against PRRSV
infection.
Collapse
|
6
|
Kreutzmann H, Stadler J, Knecht C, Sassu EL, Ruczizka U, Zablotski Y, Vatzia E, Balka G, Zaruba M, Chen HW, Riedel C, Rümenapf T, Ladinig A. Phenotypic Characterization of a Virulent PRRSV-1 Isolate in a Reproductive Model With and Without Prior Heterologous Modified Live PRRSV-1 Vaccination. Front Vet Sci 2022; 9:820233. [PMID: 35464363 PMCID: PMC9022457 DOI: 10.3389/fvets.2022.820233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Reproductive disorders induced by porcine reproductive and respiratory syndrome virus (PRRSV) cause high economic losses in the pig industry worldwide. In this study, we aimed to phenotypically characterize a virulent PRRSV-1 subtype 1 isolate (AUT15-33) in a reproductive model. Furthermore, the protective effect of a heterologous modified live virus vaccine (ReproCyc® PRRS EU) was evaluated. In addition, PRRSV AUT15-33 was genotypically compared to other well-characterized isolates. Sixteen gilts were equally divided into four groups: a vaccinated and infected group (V–I), a vaccinated and non-infected group (V–NI), a non-vaccinated and infected group (NV–I), and a non-vaccinated and non-infected (NV–NI) group. After PRRSV infection on gestation day 84, all gilts were clinically examined on a daily basis, and blood samples were taken at five timepoints. Necropsy was performed 3 weeks after infection. The fetal preservation status was assessed, and PRRSV RNA concentrations were measured in the blood and tissue samples from all gilts and fetuses. After infection, all four gilts in the NV–I group were viremic throughout 17 days post-infection (dpi), whereas two gilts in the V–I group were viremic at only one timepoint at 6 dpi. The viral load was significantly higher in gilt serum, tracheobronchial lymph nodes, uterine lymph nodes, maternal endometrium, and fetal placenta of NV–I gilts compared to the V–I ones (p < 0.05). Moreover, the preservation status of the fetuses derived from NV–I gilts was significantly impaired (55.9% of viable fetuses) compared to the other groups (p < 0.001). Upon comparison with other known isolates, the phylogenetic analyses revealed the closest relation to a well-characterized PRRSV-1 subtype 1 field isolate from Belgium. In conclusion, the high virulence of AUT15-33 was phenotypically confirmed in an experimental reproductive model. The vaccination of the gilts showed promising results in reducing viremia, fetal damage, and transplacental transmission of the PRRSV-1 strain characterized in this study.
Collapse
Affiliation(s)
- Heinrich Kreutzmann
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Heinrich Kreutzmann
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Christian Knecht
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elena L. Sassu
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ursula Ruczizka
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yury Zablotski
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Eleni Vatzia
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Marianne Zaruba
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hann-Wei Chen
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Riedel
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Till Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Ladinig
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
7
|
Rukarcheep D, Lothong M, Wattanaphansak S, Deachapunya C, Poonyachoti S. Porcine reproductive and respiratory syndrome virus induces tight junction barrier dysfunction and cell death in porcine glandular endometrial epithelial cells. Theriogenology 2022; 185:34-42. [DOI: 10.1016/j.theriogenology.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
|
8
|
Jeong CG, Nazki S, Kim SC, Khatun A, Noh YH, Lee DU, Kang SC, Seo BJ, Yang MS, Lee SI, Yoon IJ, Kim B, Kim WI. Comparison of the pathogenicity of porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 in pregnant sows. Arch Virol 2022; 167:425-439. [PMID: 35079900 DOI: 10.1007/s00705-021-05303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
To date, few studies related to the evaluation of the pathogenicity of different PRRSV isolates using a reproductive model have been undertaken, and the main focus has remained on respiratory models using young pigs. This study aimed to evaluate the pathogenicity of two PRRSV-1 isolates (D40 and CBNU0495) and two PRRSV-2 isolates (K07-2273 and K08-1054) in a reproductive model. Pregnant sows were experimentally infected with PRRSV at gestational day 93 or used as an uninfected negative control. Sera were collected at 0, 3, 7, 14, and 19 days post-challenge (dpc) for virological and serological assays. At 19 dpc, all sows were euthanized, and their fetuses were recovered by performing cesarean section and immediately euthanized for sample collection. Here, compared to the other isolates, the CBNU0495 isolate replicated most efficiently in the pregnant sows, and K07-2273 produced the highest rate of reproductive failure even though it did not replicate as efficiently as the other isolates in sows and fetuses, indicating that vertical transmission and reproductive failure due to PRRSV infection do not have any significant correlation with the viral loads in samples from sows and fetuses. Similarly, the viral loads and the histopathological lesions did not show any correlation with each other, as the PRRSV-2-infected groups displayed more prominent and frequent histopathological lesions with lower viral loads than the PRRSV-1-infected groups. However, viral loads in the myometrium/endometrium might be related to the spreading of PRRSV in the fetuses, which affected the birth weight of live fetuses. This study contributes to a better understanding of the pathogenicity of the most prevalent Korean PRRSVs in a reproductive model.
Collapse
Affiliation(s)
- Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.,The Pirbright Institute, Pirbright, UK
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.,Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Yun-Hee Noh
- ChoongAng Vaccine Laboratory, Daejeon, 34055, Republic of Korea
| | - Dong-Uk Lee
- ChoongAng Vaccine Laboratory, Daejeon, 34055, Republic of Korea
| | | | - Byoung-Joo Seo
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Myeon-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - In-Joong Yoon
- ChoongAng Vaccine Laboratory, Daejeon, 34055, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
9
|
Phenotypic effect of a single nucleotide polymorphism on SSC7 on fetal outcomes in PRRSV-2 infected gilts. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Malgarin CM, Moser F, Pasternak JA, Hamonic G, Detmer SE, MacPhee DJ, Harding JCS. Fetal hypoxia and apoptosis following maternal porcine reproductive and respiratory syndrome virus (PRRSV) infection. BMC Vet Res 2021; 17:182. [PMID: 33933084 PMCID: PMC8088663 DOI: 10.1186/s12917-021-02883-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Background Mechanisms of fetal death following maternal PRRSV2 infection remain uncharacterized, although hypoxia from umbilical cord lesions and/or placental detachment due to apoptosis are hypothesized. We performed two experiments examining hypoxia and apoptosis in PRRSV-infected and non-infected, third-trimester fetuses to elucidate possible associations with fetal death. Fetuses were selected based on four phenotypic infection groups: fetuses from non-challenged control gilts (CTRL); low viral load fetuses (LVL; Exp 1) or uninfected fetuses (UNINF; Exp 2) from inoculated gilts; viable high viral load fetuses (HVL-VIA); and HVL meconium-stained fetuses (HVL-MEC). Results In experiment 1, paraffin embedded fetal tissues collected 21 days post maternal infection (DPI) were examined for DNA fragmentation associated with apoptosis. Positively stained foci were larger and more numerous (P < 0.05) in heart, liver, and thymus of HVL-VIA and HVL-MEC compared to CTRL and LVL fetuses. In experiment 2, group differences in gene expression within the hypoxia (HIF1a, IDO1, VEGFa, LDHA, NOS2, NOX1) and apoptosis (CASP3, CASP7, CASP8, CASP9, RIPK1, RIPK3) pathways were assessed by RT-qPCR in fetal tissues collected at 12 DPI. High viral load fetuses showed differential expression relative to the CTRL and UNINF (P < 0.05 for all). Brain tissue from HVL-VIA and HVL-MEC fetuses presented increased expression of CASP7, CASP8, RIPK3, HIF1a and IDO1. Fetal heart showed increased expression of CASP8, HIF1a, IDO and NOX1 and a decrease in NOS2 expression in infected groups. CASP7, CASP9, RIPK1 and RIPK3 were only increased in the heart of HVL-VIA while VEGFa was only increased for HVL-MEC fetuses. Thymus from HVL-MEC had decreased expression of CASP9 and there was increased IDO1 in all infected fetuses. Conclusions There is strong evidence of apoptosis occurring in the heart, liver and thymus of highly viral load fetuses at 21 DPI. Furthermore, there was clear upregulation of apoptotic genes in the heart of high viral load infected fetuses and less prominent upregulation in the brain of PRRSV-infected fetuses, whereas thymus appears to be spared at 12 DPI. There was no strong evidence of hypoxia at 12 DPI in brain and thymus but some indication of hypoxia occurring in fetal heart. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02883-0.
Collapse
Affiliation(s)
- Carolina M Malgarin
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Fiona Moser
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - J Alex Pasternak
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada.,Department of Animal Science, Purdue University, West Lafayette, USA
| | - Glenn Hamonic
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Susan E Detmer
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Daniel J MacPhee
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - John C S Harding
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
11
|
Malgarin CM, Zarate JB, Novakovic P, Detmer SE, MacPhee DJ, Harding JCS. Samples sizes required to accurately quantify viral load and histologic lesion severity at the maternal-fetal interface of PRRSV-inoculated pregnant gilts. J Vet Diagn Invest 2021; 33:322-330. [PMID: 33446091 PMCID: PMC7944433 DOI: 10.1177/1040638720985825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is transmitted vertically, causing fetal death in late gestation. Spatiotemporal distribution of virus at the maternal-fetal interface (MFI) is variable, and accurate assessment of viral concentration and lesions is thus subject to sampling error. Our objectives were: 1) to assess whether viral load and lesion severity in a single sample of endometrium (END) and placenta (PLC), collected near the base of the umbilical cord (the current standard), are representative of the entire organ; and 2) to compare sampling strategies and evaluate if spatial variation in viral load can be overcome by pooling of like-tissues. Spatially distinct pieces of END and PLC of 24 fetuses from PRRSV-2-infected dams were collected. PRRSV RNA quantified by RT-qPCR was compared in 5 individual pieces per fetus and in respective pools of tissue and extracted RNA. Three distinct pieces of MFI were assessed for histologic severity. Concordance correlation and kappa inter-rater agreement were used to characterize agreement among individual samples and pools. The viral load of individual samples and pools of END had greater concordance to a referent standard than did samples of PLC. Larger pool sizes had greater concordance than smaller pool sizes. Average viral load and lesion severity did not differ by location sampled, and no technical advantages of pooling tissues versus RNA extracts were found. We conclude that multiple pieces of MFI tissues must be evaluated to accurately assess lesion severity and viral load. Three pieces per fetus provided a reasonable balance of cost and logistic feasibility.
Collapse
Affiliation(s)
- Carolina M. Malgarin
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Javier B. Zarate
- Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Predrag Novakovic
- Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susan E. Detmer
- Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C. S. Harding
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Malgarin CM, MacPhee DJ, Harding JCS. Fetal Metabolomic Alterations Following Porcine Reproductive and Respiratory Syndrome Virus Infection. Front Mol Biosci 2020; 7:559688. [PMID: 33363202 PMCID: PMC7759636 DOI: 10.3389/fmolb.2020.559688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
PRRSV infection in third-trimester pregnant sows can lead to fetal death and abortions, although the mechanisms triggering these effects are not well understood. Since resistant and susceptible fetuses can coexist in the same litter, we propose that there may be differential mechanisms used by some fetuses to evade infection and/or disease progression. Our objectives were to investigate possible differences in the metabolome of PRRSV-infected and non-infected fetuses, as well as the interaction of altered intrauterine growth development and PRRSV infection to elucidate possible causes of fetal death following PRRSV infection. Near-term serum samples collected from fetuses on gestation day 106, 21 days post PRRSV-2 infection, were processed by direct flow injection mass spectrometry (DI-MS) and nuclear magnetic resonance (NMR) techniques. Experiment one investigated disease progression with 24 fetuses selected from each of four phenotypic groups: fetuses from non-inoculated gilts (CTRL); fetuses from inoculated gilts that escaped infection (UNINF); infected high viral load viable fetuses (INF); and infected high viral load meconium-stained fetuses (MEC). Experiment two investigated the interaction of intrauterine growth retardation (IUGR) and PRRSV infection by analyzing differences among: non-infected normal development (CON-N); CON-IUGR; PRRS infected normal development (PRRS-N); and PRRS-IUGR. Univariate and multivariate (PCA, PLS-DA) statistics determined group differences among various contrasts, and the most important metabolites associated with disease progression and fetal development. Significant differences in the metabolome were observed, especially between PRRSV-negative fetuses (CTRL and UNINF) and MEC fetuses, while INF fetuses appear to span both groups. The two metabolites with highest variable importance in projection (VIP) scores related to disease progression were alpha-aminoadipic acid (alpha-AAA) and kynurenine (KYN), having the highest concentration in MEC and INF fetuses, respectively, compared to CTRL and UNINF. In experiment two, non-IUGR fetuses were found to have increased levels of lysoPCs, PCs and amino acids compared to IUGR fetuses, while the near complete absence of lysoPCs and PCs in IUGR fetuses, even during infection, indicate a distinctive response to infection compared to non-growth retarded fetuses. Possible markers of PRRSV fetal susceptibility, such as alpha-AAA, kynurenine and lysoPCs, are presented and discussed.
Collapse
Affiliation(s)
- Carolina M. Malgarin
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Pasternak JA, MacPhee DJ, Harding JCS. Maternal and fetal thyroid dysfunction following porcine reproductive and respiratory syndrome virus2 infection. Vet Res 2020; 51:47. [PMID: 32228691 PMCID: PMC7106657 DOI: 10.1186/s13567-020-00772-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
To better understand the host response to porcine reproductive and respiratory virus-2 (PRRSV2) we evaluated circulating thyroid hormone and associated gene expression in a late gestation challenge model. Pregnant gilts were inoculated at gestation day 85 and fetal samples collected at either 12 or 21 days post-infection (dpi). A subset of fetuses was selected for analysis based on viability and viral load categorized as either uninfected-viable (UNIF), high viral load viable (HV-VIA) or high viral load meconium stained (HV-MEC) and were compared with gestational age matched controls (CON). In dams, circulating levels of total T3 and T4 decreased in the acute period following infection and rebounded by 21 dpi. A similar effect was observed in fetuses, but was largely restricted to HV-VIA and HV-MEC, with minimal decrease noted in UNIF relative to CON at 21 dpi. Gene expression in fetal heart at 12 dpi showed significant decompensatory transcription of thyroid hormone transporters (SLC16A2) and deiodinases (DIO2, DIO3), which was not observed in brain. Correspondingly, genes associated with cell cycle progression (CDK1,2,4) were downregulated in only the heart of highly infected fetuses, while expression of their inhibitor (CDKN1A) was upregulated in both tissues. Finally, expression of genes associated with cardiac stress including CAMKD and AGT were upregulated in the hearts of highly infected fetuses, and a shift in expression of MYH6 to MYH7 was observed in HV-MEC fetuses specifically. Collectively, the results suggest PRRSV2 infection causes a hypothyroid state that disproportionally impacts the fetal heart over the brain.
Collapse
Affiliation(s)
- J Alex Pasternak
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada. .,Department of Animal Sciences, Purdue University, 270 S. Russell St, West Lafayette, IN, 47907, USA.
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
14
|
Wang G, Yu Y, Cai X, Zhou EM, Zimmerman JJ. Effects of PRRSV Infection on the Porcine Thymus. Trends Microbiol 2019; 28:212-223. [PMID: 31744664 DOI: 10.1016/j.tim.2019.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) dramatically affects the thymus and its ability to carry out its normal functions. In particular, infection incapacitates PRRSV-susceptible CD14pos antigen-presenting cells (APCs) in the thymus and throughout the body. PRRSV-induced autophagy in thymic epithelial cells modulates the development of T cells, and PRRSV-induced apoptosis in CD4posCD8pos thymocytes modulates cellular immunity against PRRSV and other pathogens. Pigs are less able to resist and/or eliminate secondary infectious agents due the effect of PRRSV on the thymus, and this susceptibility phenomenon is long recognized as a primary characteristic of PRRSV infection.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Ying Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
15
|
Alex Pasternak J, MacPhee DJ, Harding JCS. Fetal cytokine response to porcine reproductive and respiratory syndrome virus-2 infection. Cytokine 2019; 126:154883. [PMID: 31629108 DOI: 10.1016/j.cyto.2019.154883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
To understand the fetal immune response to porcine reproductive and respiratory virus-2 (PRRSV) and to evaluate the association with fetal viability, pregnant gilts were challenged on gestation day 85 and euthanized 21 days post infection. Based on preservation status and viral load in serum and thymus, fetuses were classified as either uninfected-viable (UNIF), high viral load viable (HV-VIA), or high viral load meconium stained (HV-MEC) and were compared with age matched control (CON) fetuses derived from mock infected gilts. Gene expression of IFNB, IFNG, CCL2, CCL5, CXCL10 and IL10, were all found to be significantly upregulated in the thymus and spleen of both high viral load groups. UNIF fetuses remained largely unaffected, with only small upregulations in IFNA and IL10 in the thymus, and IFNA, CCL5 and CXCL10 in the spleen. Regarding fetal viability, expression of CCL5 was significantly elevated in the thymus and spleen of HV-MEC compared to HV-VIA fetuses. The concentrations of IFNα, IFNγ, TNFα and CCL2 were elevated in the sera of all infected fetuses, whereas IFNβ was below the detection limit in all fetal sera. Additional gene expression analysis in the thymus showed significant downregulation of CDK1, CDK2 and CDK4, and upregulation of the inhibitor CDKN1A, suggesting altered regulation of cell cycle progression. Collectively, these results show near complete compartmentalization of the fetal immune response to infected fetuses and suggest this immune response is not a major contributor to fetal death.
Collapse
Affiliation(s)
- J Alex Pasternak
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Dr., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Dr., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Dr., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
16
|
Suleman M, Novakovic P, Malgarin CM, Detmer SE, Harding JCS, MacPhee DJ. Spatiotemporal immunofluorescent evaluation of porcine reproductive and respiratory syndrome virus transmission across the maternal-fetal interface. Pathog Dis 2019; 76:5050373. [PMID: 29986005 DOI: 10.1093/femspd/fty060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe reproductive failure characterized by high fetal morbidity and mortality leading to substantial economic losses to the swine industry. Evaluation of spatiotemporal transmission of PRRSV at the maternal-fetal interface (MFI) is critical for understanding fetal infection. Localization of PRRSV-2 strain NVSL 97-7895 at different regions of the MFI in 20 pregnant gilts at 2, 5, 8, 12 and 14 days post-inoculation (dpi) were analyzed by immunofluorescence (IF). Samples of MFI were collected from 15 inoculated and 5 control gilts and transplacental PRRSV transmission assessed in randomly selected fetuses from each litter. Localization of NVSL 97-7895 antigen immunoreactivity in the MFI was focused in three major areas: endometrial connective tissues (ENDO), the feto-maternal junction (FMJ) and fetal placenta (PLC). NVSL 97-7895 was detected at the FMJ by 2 dpi. At 2, 5 and 8 dpi, NVSL 97-7895 was localized within the ENDO and FMJ, whereas at 12 and 14 dpi, it was mainly localized in the PLC. Using a novel IF strategy for counting and size sorting NVSL 97-7895 viral antigen in situ, results of this study indicate that non-cell-associated mechanisms are involved in PRRSV transmission across the MFI.
Collapse
Affiliation(s)
- M Suleman
- Department of Large Animal Clinical Sciences
| | - P Novakovic
- Department of Large Animal Clinical Sciences
| | | | | | | | - D J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Dr, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
17
|
Malgarin CM, Nosach R, Novakovic P, Suleman M, Ladinig A, Detmer SE, MacPhee DJ, Harding JCS. Classification of fetal resilience to porcine reproductive and respiratory syndrome (PRRS) based on temporal viral load in late gestation maternal tissues and fetuses. Virus Res 2018; 260:151-162. [PMID: 30529234 DOI: 10.1016/j.virusres.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/27/2022]
Abstract
Although porcine reproductive and respiratory syndrome virus (PRRSV) readily crosses the maternal fetal interface (MFI) in third trimester, fetal resilience varies within litters. The aim of this study was to characterize PRRSV-2 concentration in MFI and fetuses at five time points after experimental inoculation of late gestation gilts and use this information to classify potentially resistant, resilient and susceptible fetuses. The secondary objective was to verify the relationship between PRRS viral load and intrauterine growth retardation (IUGR). Three PRRSV-inoculated pregnant gilts and 1 sham-inoculated control were euthanized at five time points in days post infection (DPI; 2, 5, 8, 12, 14). The preservation status of each fetus was determined and MFI samples adjacent to the umbilical stump of each fetus, as well as serum, thymus, umbilical cord and amniotic fluid were collected. Viral load was quantified using probe-based reverse-transcriptase quantitative PCR (RT-qPCR) targeting PRRSV NVSL 97-7895 ORF7. Our result show the MFI was largely PRRSV infected by 2 DPI and virus was first detected in fetal sera and umbilical cord by 5 DPI, and in fetal thymus and amniotic fluid by 8 DPI. This indicates that PRRSV-2 quickly crossed the placenta and traveled toward the fetus via umbilical circulation within one week of the dam's inoculation. Fetal compromise was first observed on 8 DPI and increased progressively through to 14 DPI. However, several factors were associated with fetal resilience. The random forest model identified that 'viral load in fetal thymus' and duration of infection ('DPI') as the most important factors predicting fetal resilience and resistance. Moreover, IUGR fetuses had lower viral load and were less frequently compromised or dead compared to non-IUGR and average cohorts. Understanding the mechanisms of fetal resilience to PRRSV will improve selection strategies for replacement gilts.
Collapse
Affiliation(s)
- Carolina M Malgarin
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Roman Nosach
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Predrag Novakovic
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Muhammad Suleman
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Andrea Ladinig
- University of Veterinary Medicine, 1210, Vienna, Austria.
| | - Susan E Detmer
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Daniel J MacPhee
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - John C S Harding
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
18
|
Mak CK, Yang C, Jeng CR, Pang VF, Yeh KS. Reproductive failure associated with coinfection of porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2018; 59:525-530. [PMID: 29904207 PMCID: PMC5901855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An outbreak of reproductive failure in a pig farm in Taiwan was investigated. Coinfection with porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) was diagnosed in a stillborn pig by histopathology, polymerase chain reaction, and immunohistochemistry, and should be considered as a cause of reproductive failure.
Collapse
Affiliation(s)
- Chun Kuen Mak
- Department of Veterinary Medicine (Mak, Yang, Yeh) and Institute of Molecular and Comparative Pathobiology (Jeng, Pang), School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; National Taiwan University Veterinary Hospital, Taipei, Taiwan (Yeh)
| | - Ching Yang
- Department of Veterinary Medicine (Mak, Yang, Yeh) and Institute of Molecular and Comparative Pathobiology (Jeng, Pang), School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; National Taiwan University Veterinary Hospital, Taipei, Taiwan (Yeh)
| | - Chian-Ren Jeng
- Department of Veterinary Medicine (Mak, Yang, Yeh) and Institute of Molecular and Comparative Pathobiology (Jeng, Pang), School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; National Taiwan University Veterinary Hospital, Taipei, Taiwan (Yeh)
| | - Victor Fei Pang
- Department of Veterinary Medicine (Mak, Yang, Yeh) and Institute of Molecular and Comparative Pathobiology (Jeng, Pang), School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; National Taiwan University Veterinary Hospital, Taipei, Taiwan (Yeh)
| | - Kuang-Sheng Yeh
- Department of Veterinary Medicine (Mak, Yang, Yeh) and Institute of Molecular and Comparative Pathobiology (Jeng, Pang), School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; National Taiwan University Veterinary Hospital, Taipei, Taiwan (Yeh)
| |
Collapse
|
19
|
Novakovic P, Detmer SE, Suleman M, Malgarin CM, MacPhee DJ, Harding JCS. Histologic Changes Associated With Placental Separation in Gilts Infected with Porcine Reproductive and Respiratory Syndrome Virus. Vet Pathol 2018; 55:521-530. [DOI: 10.1177/0300985818765067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The placenta is a vital organ providing the developing fetus with nutrient and gas exchange, thermoregulation, and waste elimination necessary for fetal development, as well as producing hormones to maintain pregnancy. It is hypothesized that fetal pig death in porcine reproductive and respiratory syndrome may be attributed to pathology of the maternal-fetal interface leading to premature placental separation. This study was designed to evaluate the chronologic progression of porcine reproductive and respiratory syndrome virus (PRRSV)–induced lesions at the maternal-fetal interface, with particular focus on placental separation in experimentally challenged third-trimester gilts. Fifteen gilts were inoculated with a virulent strain of PRRSV-2 on gestation day 86 ± 0.4. On multiple days postinoculation, 3 gilts along with 1 sham-inoculated control per time point were euthanized, and uterine and fetal placental tissues corresponding to each fetus were collected for histopathologic evaluation. The presence of any fetal lesion was 23 times more likely in compromised (meconium-stained and decomposed) compared with viable fetuses ( P < .001). In PRRSV-infected gilts, endometritis was more severe than placentitis, and the severity of endometrial inflammation and vasculitis increased progressively from 2 to 14 days postinoculation. Neither placental vasculitis nor a chronologic progression in the severity of placental detachment was observed. Severe placental detachment was more frequently present in PRRSV-infected compared with noninfected samples and was most significantly associated with placental inflammation, compared with other uterine lesions, viral load, or termination day. The results of this study suggest that placental separation by itself is not sufficient to significantly compromise fetal viability in reproductive porcine reproductive and respiratory syndrome.
Collapse
Affiliation(s)
- Predrag Novakovic
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susan E. Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Muhammad Suleman
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carol M. Malgarin
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
20
|
Balasuriya UB, Carossino M. Reproductive effects of arteriviruses: equine arteritis virus and porcine reproductive and respiratory syndrome virus infections. Curr Opin Virol 2017; 27:57-70. [PMID: 29172072 DOI: 10.1016/j.coviro.2017.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/29/2022]
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are the most economically important members of the family Arteriviridae. EAV and PRRSV cause reproductive and respiratory disease in equids and swine, respectively and constitute a significant economic burden to equine and swine industries around the world. Furthermore, they both cause abortion in pregnant animals and establish persistent infection in their natural hosts, which fosters viral shedding in semen leading to sexual transmission. The primary focus of this article is to provide an update on the effects of these two viruses on the reproductive tract of their natural hosts and provide a comparative analysis of clinical signs, virus-host interactions, mechanisms of viral pathogenesis and viral persistence.
Collapse
Affiliation(s)
- Udeni Br Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Mariano Carossino
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Harding JC, Ladinig A, Novakovic P, Detmer SE, Wilkinson JM, Yang T, Lunney JK, Plastow GS. Novel insights into host responses and reproductive pathophysiology of porcine reproductive and respiratory syndrome caused by PRRSV-2. Vet Microbiol 2017; 209:114-123. [DOI: 10.1016/j.vetmic.2017.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
|
22
|
Novakovic P, Harding JCS, Al-Dissi AN, Detmer SE. Type 2 porcine reproductive and respiratory syndrome virus infection increases apoptosis at the maternal-fetal interface in late gestation pregnant gilts. PLoS One 2017; 12:e0173360. [PMID: 28253336 PMCID: PMC5333878 DOI: 10.1371/journal.pone.0173360] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/19/2017] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of fetal death associated with porcine reproductive and respiratory syndrome (PRRS) is hypothesized to be a consequence of PRRS virus-induced apoptosis at the maternal-fetal interface (MFI). The objectives of this study were to evaluate distribution and degree of apoptosis in the uterine and fetal placental tissues during the experimental type 2 PRRS virus (PRRSV) infection and determine associations between apoptosis at the MFI, PRRSV RNA concentration and antigen staining intensity, PRRSV-induced microscopic lesions, and fetal preservation status. A total of 114 naïve, high-health pregnant gilts were inoculated with type 2 PRRSV on gestation day 85±1 with euthanasia 21 days later; 19 sham-inoculated gilts served as controls. Two hundred and fifty samples of uterine tissue with fetal placenta were selected based on negative, low PRRSV RNA, and high PRRSV RNA concentration (0, < or > 2.7 log10 copies/mg, respectively). TUNEL assay was used to detect apoptosis in the endometrium and at the MFI. PRRSV RNA concentration and numbers of PRRSV immunopositive cells in uterine and placental tissue were positively associated with the severity of apoptosis in the endometrium and the MFI (P<0.001, P<0.05 and P<0.001, respectively). The number of TUNEL positive cells at the MFI was also positively associated with the severity (P<0.001) of vasculitis, but not total numbers of inflammatory cells in the endometrium. Increased numbers of TUNEL positive cells at the MFI were associated with PRRSV load in the fetal thymus, and greater odds of meconium staining of the fetus at 21 days post infection (P<0.001 for both). These findings suggest an important role of apoptosis in the pathogenesis of uterine epithelial and trophoblastic cell death at the MFI. Moreover, apoptosis at the MFI is significantly associated with fetal demise during in utero type 2 PRRSV infection.
Collapse
Affiliation(s)
- Predrag Novakovic
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ahmad N Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Susan E. Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
23
|
Novakovic P, Harding JCS, Ladinig A, Al-Dissi AN, MacPhee DJ, Detmer SE. Relationships of CD163 and CD169 positive cell numbers in the endometrium and fetal placenta with type 2 PRRSV RNA concentration in fetal thymus. Vet Res 2016; 47:76. [PMID: 27494990 PMCID: PMC4974782 DOI: 10.1186/s13567-016-0364-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/25/2016] [Indexed: 11/10/2022] Open
Abstract
Several routes of porcine reproductive and respiratory virus PRRSV transmission across the porcine diffuse epitheliochorial placentation have been proposed, but none have been proven. The objectives of this study were to investigate associations between numbers of CD163 and CD169 positive macrophages, cathepsin positive areolae, and type 2 PRRSV load at the maternal-fetal interface in order to examine important factors related to transplacental infection. On gestation day 85 ± 1, naïve pregnant gilts were inoculated with PRRSV (n = 114) or were sham inoculated (n = 19). At 21 days post-inoculation (dpi), dams and their litters were humanely euthanized and necropsied. Samples of the maternal-fetal interface (uterus with fully attached placenta) and fetal thymus were collected for analysis by RT-qPCR to quantify PRRSV RNA concentration. The corresponding paraffin-embedded uterine tissue sections were subjected to immunohistochemistry for PRRSV nucleocapsid N protein, CD163, CD169, and cathepsin. Our findings confirm significant increases in the numbers of PRRSV, CD163 and CD169 positive cells at the maternal-fetal interface during type 2 PRRSV infection in pregnant gilts. PRRSV load in fetal thymus was positively related to CD163(+) cell count in endometrium and negatively related to CD163(+) cell count in placenta, but unrelated to CD169 counts or cathepsin positive areolae. The endometrium:placenta ratio of CD163 cells, and to a lesser extent CD169 cells, was significantly associated with an increase fetal viral load in thymus. These findings suggest a more important role for CD163(+) cells following trans-placental PRRSV infection, but dichotomous responses in endometrium and placenta for both CD163 and CD169 cells.
Collapse
Affiliation(s)
- Predrag Novakovic
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrea Ladinig
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ahmad N Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susan E Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|