1
|
Pantos CI, Grigoriou KP, Trikas AG, Alexopoulos NA, Mourouzis IS. Translating thyroid hormone into clinical practice: lessons learned from the post-hoc analysis on data available from the ThyRepair study. Front Endocrinol (Lausanne) 2024; 15:1405251. [PMID: 39129922 PMCID: PMC11310054 DOI: 10.3389/fendo.2024.1405251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Background Thyroid hormone (TH) appears to have a reparative action on the postinfarcted myocardium. This novel action was recently tested in a pilot, randomized, double-blind, placebo-controlled trial (ThyRepair). The present study performed a post-hoc analysis of data from the ThyRepair study to provide further insights into the novel actions of TH on the human postischemic myocardium. Methods Data from 41 patients participating in the ThyRepair study (n = 20 placebo and n = 21 LT3) were included in the analysis. LT3 treatment started after stenting and continued intravenously for 48 h. All patients had cardiac magnetic resonance (CMR) at hospital discharge; left ventricular (LV) ejection fraction (LVEF%), LV end-diastolic volume index (LVEDVi; mL/m2), LV end-systolic volume index (LVESVi; mL/m2), infarct volume (IV), left ventricular mass index (LVMi) as edema index, and microvascular obstruction (MVO) were assessed. Patients were divided into two groups based on the median value of the IV: patients with IV ≤ 20% of the LV (group A) and patients with IV > 20% (group B). CMR measurements at discharge are expressed as mean ± SD. Results In group A, the placebo and T3-treated groups had similar LVEF% (56.8 ± 10.2 vs. 52.2 ± 10.5), LVEDVi (90.9 ± 19.8 vs. 92.8 ± 14.5), and LVESVi (40.8 ± 18.2 vs. 44.9 ± 14.1) at discharge. In group B, LVEDVi and LVESVi were 112 ± 23.8 and 68.3 ± 21.5 for placebo vs. 91.8 ± 18.6 and 49.0 ± 14.0 for the T3-treated group, respectively, p < 0.05. LVEF% was significantly increased in the T3-treated group vs. placebo, 47.3 ± 6.5 vs. 39.9 ± 8.7, p < 0.05. In group B, CMR LVMi was lower in T3-treated patients vs. placebo but did not reach statistical significance (p = 0.1). MVO was 1.95 ± 2.2 in placebo vs. 0.84 ± 0.9 in the LT3-treated group, p = 0.15. Conclusion The present study suggests that acute LT3 treatment may exert more favorable effects on the recovery of cardiac function in patients with large infarct size. Furthermore, it signals a potential effect of LT3 on myocardial edema and microvascular obstruction. These novel findings merit further investigation in large trials.
Collapse
Affiliation(s)
- Constantinos I. Pantos
- Department of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Nikolaos A. Alexopoulos
- Department of Radiology, IASO Hospital of Athens, Athens, Greece
- Cardiovascular Imaging Unit, Department of Radiology Athens Euroclinic, Athens, Greece
| | - Iordanis S. Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Casis O, Echeazarra L, Sáenz-Díez B, Gallego M. Deciphering the roles of triiodothyronine (T3) and thyroid-stimulating hormone (TSH) on cardiac electrical remodeling in clinical and experimental hypothyroidism. J Physiol Biochem 2024; 80:1-9. [PMID: 38019451 PMCID: PMC10808292 DOI: 10.1007/s13105-023-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Hypothyroidism is the most frequent endocrine pathology. Although clinical or overt hypothyroidism has been traditionally associated to low T3 / T4 and high thyrotropin (TSH) circulating levels, other forms exist such as subclinical hypothyroidism, characterized by normal blood T3 / T4 and high TSH. In its different forms is estimated to affect approximately 10% of the population, especially women, in a 5:1 ratio with respect to men. Among its consequences are alterations in cardiac electrical activity, especially in the repolarization phase, which is accompanied by an increased susceptibility to cardiac arrhythmias. Although these alterations have traditionally been attributed to thyroid hormone deficiency, recent studies, both clinical trials and experimental models, demonstrate a fundamental role of TSH in cardiac electrical remodeling. Thus, both metabolic thyroid hormones and TSH regulate cardiac ion channel expression in many and varied ways. This means that the different combinations of hormones that predominate in different types of hypothyroidism (overt, subclinic, primary, central) can generate different forms of cardiac electrical remodeling. These new findings are raising the relevant question of whether serum TSH reference ranges should be redefined.
Collapse
Affiliation(s)
- Oscar Casis
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
| | - Leire Echeazarra
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Beatriz Sáenz-Díez
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Mónica Gallego
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Razvi S, Jabbar A, Bano A, Ingoe L, Carey P, Junejo S, Thomas H, Addison C, Austin D, Greenwood JP, Zaman AG. Triiodothyronine (T3), inflammation and mortality risk in patients with acute myocardial infarction. Eur Thyroid J 2022; 11:e210085. [PMID: 35007210 PMCID: PMC9142797 DOI: 10.1530/etj-21-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To study the relationship between serum-free T3 (FT3), C-reactive protein (CRP) and all-cause mortality in patients with acute myocardial infarction (AMI). DESIGN Prospective multicentre longitudinal cohort study. METHODS Between December 2014 and December 2016, thyroid function and CRP were analysed in AMI (both ST-elevation (STEMI) and non-ST-elevation) patients from the Thyroxine in Acute Myocardial Infarction study. The relationship of FT3 and CRP at baseline with all-cause mortality up to June 2020 was assessed. Mediation analysis was performed to evaluate if CRP mediated the relationship between FT3 and mortality. RESULTS In 1919 AMI patients (29.2% women, mean (s.d.) age: 64.2 (12.1) years and 48.7% STEMI) followed over a median (interquartile range) period of 51 (46-58) months, there were 277 (14.4%) deaths. Overall, lower serum FT3 and higher CRP levels were associated with higher risk of mortality. When divided the patients into tertiles based on the levels of FT3 and CRP; the group with the lowest FT3 and highest CRP levels had a 2.5-fold increase in mortality risk (adjusted hazard ratio (95% CI) of 2.48 (1.82-3.16)) compared to the group with the highest FT3 and lowest CRP values. CRP mediated 9.8% (95% CI: 6.1-15.0%) of the relationship between FT3 and mortality. CONCLUSIONS In AMI patients, lower serum FT3 levels on admission are associated with a higher mortality risk, which is partly mediated by inflammation. Adequately designed trials to explore the potential benefits of T3 in AMI patients are required.
Collapse
Affiliation(s)
- Salman Razvi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Endocrinology, Gateshead Health NHS Foundation Trust, Gateshead, UK
- Correspondence should be addressed to S Razvi:
| | - Avais Jabbar
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Cardiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Arjola Bano
- Department of Cardiology, Institute of Social and Preventive Medicine, University of Bern, Bern University Hospital, Bern, Switzerland
| | - Lorna Ingoe
- Department of Endocrinology, Gateshead Health NHS Foundation Trust, Gateshead, UK
| | - Peter Carey
- Departments of Endocrinology and Cardiology, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Shahid Junejo
- Departments of Endocrinology and Cardiology, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Honey Thomas
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, Cramlington, UK
| | - Caroline Addison
- Department of Biochemistry, Gateshead Health NHS Foundation Trust, Gateshead, UK
| | - David Austin
- Department of Cardiology, South Tees Health NHS Foundation Trust, Middlesbrough, UK
| | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Azfar G Zaman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Cardiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Gluvic ZM, Zafirovic SS, Obradovic MM, Sudar-Milovanovic EM, Rizzo M, Isenovic ER. Hypothyroidism and Risk of Cardiovascular Disease. Curr Pharm Des 2022; 28:2065-2072. [PMID: 35726428 DOI: 10.2174/1381612828666220620160516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Thyroid hormones (TH) have a significant impact on cellular oxidative metabolism. Besides that, they maintain vascular homeostasis by positive effects on endothelial and vascular smooth muscle cells. Subclinical (SCH) and clinical (CH) hypothyroidism influences target organs by changing their morphology and function and impaired blood and oxygen supply induced by accelerated atherosclerosis. The increased risk of acceleration and extension of atherosclerosis in patients with SCH and CH could be explained by dyslipidemia, diastolic hypertension, increased arterial stiffness, endothelial dysfunction, and altered blood coagulation. Instability of atherosclerotic plaque in hypothyroidism could cause excessive activity of the elements of innate immunity, which are characterized by the significant presence of macrophages in atherosclerotic plaques, increased nuclear factor kappa B (NFkB) expression, and elevated levels of tumor necrosis factor α (TNF-α) and matrix metalloproteinase (MMP) 9, with reduced interstitial collagen; all of them together creates inflammation milieu, resulting in plaque rupture. Optimal substitution by levothyroxine (LT4) restores biochemical euthyroidism. In postmenopausal women and elderly patients with hypothyroidism and associated vascular comorbidity, excessive LT4 substitution could lead to atrial rhythm disorders and osteoporosis. Therefore, it is of interest to maintain thyroid-stimulating hormone (TSH) levels in the reference range, thus eliminating the deleterious effects of lower or higher TSH levels on the cardiovascular system. This review summarizes the recent literature on subclinical and clinical hypothyroidism and atherosclerotic cardiovascular disease and discusses the effects of LT4 replacement therapy on restoring biochemical euthyroidism and atherosclerosis processes.
Collapse
Affiliation(s)
- Zoran M Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sonja S Zafirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan M Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Emina M Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Pingitore A, Mastorci F, Berti S, Sabatino L, Palmieri C, Iervasi G, Vassalle C. Hypovitaminosis D and Low T3 Syndrome: A Link for Therapeutic Challenges in Patients with Acute Myocardial Infarction. J Clin Med 2021; 10:jcm10225267. [PMID: 34830551 PMCID: PMC8625651 DOI: 10.3390/jcm10225267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aims: Vitamin D counteracts the reduction in the peripheral conversion of tiroxine (T4) into triiodothyronine (T3), which is the mechanism of low T3 syndrome (LT3) in acute myocardial infarction (AMI). The aim of this study was to assess the relationship between LT3 and hypovitaminosis D in AMI patients. Methods and Results: One hundred and twenty-four AMI patients were enrolled. Blood samples were taken at admission, and at 3, 12, 24, 48, and 72 h after admission. LT3 was defined as a value of fT3 ≤ 2.2 pg/mL, occurring within 3 days of hospital admission. Levels were defined as follows: sufficiency as a value of ±30 ng/mL, vitamin D insufficiency as 25-hydroxyvitamin D (25(OH)D) between 21 and 29 ng/mL, deficiency in 25(OH)D as below 20 ng/mL, and severe deficiency as values under 10 ng/mL. The percentage of subjects with severe 25(OH)D deficiency was significantly higher in the LT3 group (33% vs. 13%, p < 0.01). When LT3S was evaluated as a dependent variable, severe 25(OH)D deficiency (OR 2.6: 95%CI 1–6.7, p < 0.05) remained as an independent determinant after logistic multivariate adjustment together with age (>69 yrs, 50th percentile; OR 3.4, 95% CI 1.3–8.3, p < 0.01), but not female gender (OR 1.7, 95% CI 0.7–4.2, p = ns). Conclusions: This pilot study shows a relationship between hypovitaminosis D and LT3 in AMI patients. This association opens potential therapeutic challenges concerning the restoration of euthyroidism through vitamin D administration, together with the normalization of hypovitaminosis.
Collapse
Affiliation(s)
- Alessandro Pingitore
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (F.M.); (L.S.); (G.I.)
- Correspondence:
| | - Francesca Mastorci
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (F.M.); (L.S.); (G.I.)
| | - Sergio Berti
- Fondazione CNR-Regione Toscana G. Monasterio, 54100 Massa, Italy; (S.B.); (C.P.); (C.V.)
| | - Laura Sabatino
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (F.M.); (L.S.); (G.I.)
| | - Cataldo Palmieri
- Fondazione CNR-Regione Toscana G. Monasterio, 54100 Massa, Italy; (S.B.); (C.P.); (C.V.)
| | - Giorgio Iervasi
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (F.M.); (L.S.); (G.I.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, 54100 Massa, Italy; (S.B.); (C.P.); (C.V.)
| |
Collapse
|
6
|
Aguilar M, Rose RA, Takawale A, Nattel S, Reilly S. New aspects of endocrine control of atrial fibrillation and possibilities for clinical translation. Cardiovasc Res 2021; 117:1645-1661. [PMID: 33723575 PMCID: PMC8208746 DOI: 10.1093/cvr/cvab080] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Hormones are potent endo-, para-, and autocrine endogenous regulators of the function of multiple organs, including the heart. Endocrine dysfunction promotes a number of cardiovascular diseases, including atrial fibrillation (AF). While the heart is a target for endocrine regulation, it is also an active endocrine organ itself, secreting a number of important bioactive hormones that convey significant endocrine effects, but also through para-/autocrine actions, actively participate in cardiac self-regulation. The hormones regulating heart-function work in concert to support myocardial performance. AF is a serious clinical problem associated with increased morbidity and mortality, mainly due to stroke and heart failure. Current therapies for AF remain inadequate. AF is characterized by altered atrial function and structure, including electrical and profibrotic remodelling in the atria and ventricles, which facilitates AF progression and hampers its treatment. Although features of this remodelling are well-established and its mechanisms are partly understood, important pathways pertinent to AF arrhythmogenesis are still unidentified. The discovery of these missing pathways has the potential to lead to therapeutic breakthroughs. Endocrine dysfunction is well-recognized to lead to AF. In this review, we discuss endocrine and cardiocrine signalling systems that directly, or as a consequence of an underlying cardiac pathology, contribute to AF pathogenesis. More specifically, we consider the roles of products from the hypothalamic-pituitary axis, the adrenal glands, adipose tissue, the renin–angiotensin system, atrial cardiomyocytes, and the thyroid gland in controlling atrial electrical and structural properties. The influence of endocrine/paracrine dysfunction on AF risk and mechanisms is evaluated and discussed. We focus on the most recent findings and reflect on the potential of translating them into clinical application.
Collapse
Affiliation(s)
- Martin Aguilar
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Robert A Rose
- Department of Cardiac Sciences, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, Health Research Innovation Center, University of Calgary, AB, Canada
| | - Abhijit Takawale
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stanley Nattel
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Faculty of Medicine, Department of Pharmacology and Physiology, and Research Centre, Montreal Heart Institute and University of Montreal, Montreal, QC, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany.,IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
7
|
Zeng B, Liu L, Liao X, Zhang C. Cardiomyocyte protective effects of thyroid hormone during hypoxia/reoxygenation injury through activating of IGF-1-mediated PI3K/Akt signalling. J Cell Mol Med 2021; 25:3205-3215. [PMID: 33724692 PMCID: PMC8034470 DOI: 10.1111/jcmm.16389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Ischaemia/reperfusion (I/R) injury is a common clinical condition that results in apoptosis and oxidative stress injury. Thyroid hormone was previously reported to elicit cardiac myocyte hypertrophy and promote cardiac function after cardiac injury. We used an in vivo mouse model of I/R injury and in vitro primary cardiomyocyte culture assays to investigate the effects of thyroid hormone on cardiomyocytes during hypoxia/reoxygenation (H/R) injury. The results showed that T3 pretreatment in vivo significantly improved left ventricular function after I/R injury. In vitro, T3 pretreatment decreased cell apoptosis rate, inhibited caspase‐3 activity and decreased the Bax/Bcl‐2 ration induced by H/R injury. T3 pretreatment significantly attenuated the loss of mitochondrial membrane potential. Furthermore, it was observed that T3 diminished the expression of NCX1 protein and decreased SERCA2a protein expression in H/R‐induced cardiomyocytes, and T3 prevented intracellular Ca2+ increase during H/R injury. Also, T3 increased the expression of IGF‐1, and PI3K/Akt signalling in cardiomyocytes under H/R‐induced injury, and that the protective effect of T3 against H/R‐induced injury was blocked by the PI3K inhibitor LY294002. IGF‐1 receptor (IGF‐1R) inhibitor GSK1904529A significantly inhibited the expression of IGF‐1R and PI3K/Akt signalling. In summary, T3 pretreatment protects cardiomyocytes against H/R‐induced injury by activating the IGF‐1‐mediated PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Bin Zeng
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Liu
- Department of Cardiology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Xiaoting Liao
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Caixia Zhang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Chen K, Wang S, Sun QW, Zhang B, Ullah M, Sun Z. Klotho Deficiency Causes Heart Aging via Impairing the Nrf2-GR Pathway. Circ Res 2021; 128:492-507. [PMID: 33334122 PMCID: PMC8782577 DOI: 10.1161/circresaha.120.317348] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Cardiac aging is an important contributing factor for heart failure, which affects a large population but remains poorly understood. OBJECTIVE The purpose of this study is to investigate whether Klotho plays a role in cardiac aging. METHODS AND RESULTS Heart function declined in old mice (24 months), as evidenced by decreases in fractional shortening, ejection fraction, and cardiac output. Heart size and weight, cardiomyocyte size, and cardiac fibrosis were increased in old mice, indicating that aging causes cardiac hypertrophy and remodeling. Circulating Klotho levels were dramatically decreased in old mice, which prompted us to investigate whether the Klotho decline may cause heart aging. We found that Klotho gene mutation (KL-/-) largely decreased serum klotho levels and impaired heart function. Interestingly, supplement of exogenous secreted Klotho prevented heart failure, hypertrophy, and remodeling in both old mice and KL (-/-) mice. Secreted Klotho treatment inhibited excessive cardiac oxidative stress, senescence and apoptosis in old mice and KL (-/-) mice. Serum phosphate levels in KL (-/-) mice were kept in the normal range, suggesting that Klotho deficiency-induced heart aging is independent of phosphate metabolism. Mechanistically, Klotho deficiency suppressed GR (glutathione reductase) expression and activity in the heart via inhibition of transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2). Furthermore, cardiac-specific overexpression of GR prevented excessive oxidative stress, apoptosis, and heart failure in both old and KL (-/-) mice. CONCLUSIONS Klotho deficiency causes cardiac aging via impairing the Nrf2-GR pathway. Supplement of exogenous secreted Klotho represents a promising therapeutic strategy for aging-associated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Kai Chen
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Qiwei Wilton Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bo Zhang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mujib Ullah
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Rajagopalan V, Gorecki M, Costello C, Schultz E, Zhang Y, Gerdes AM. Cardioprotection by triiodothyronine following caloric restriction via long noncoding RNAs. Biomed Pharmacother 2020; 131:110657. [DOI: 10.1016/j.biopha.2020.110657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022] Open
|
10
|
Sabatino L, Kusmic C, Iervasi G. Modification of cardiac thyroid hormone deiodinases expression in an ischemia/reperfusion rat model after T3 infusion. Mol Cell Biochem 2020; 475:205-214. [PMID: 32780210 DOI: 10.1007/s11010-020-03873-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
The deiodinases regulate the activation and inactivation of Thyroid hormones (TH), in both physiological and pathological conditions. The three deiodinases, DIO1, DIO2 and DIO3, have different catalytic role and cellular and tissue distribution. Aim of this study is to evaluate a rat model of regional ischemia/reperfusion (I/R), the modification of cardiac main function after the administration of 6 µg/kg/day of triiodothyronine (T3), and the associated to DIO1, DIO2 and DIO3 gene expression. We also aim to study DIO1 and DIO2 protein levels in different left ventricular regions after an ischemic event. Four groups of rats were studied: sham-operated, sham-operated + T3, I/R rats and I/R rats + T3. DIO1, DIO2 and DIO3 expression were evaluated in I/R region (AAR: area-at-risk) and in a more distant region from ischemic wound (RZ: remote zone). In I/R group, circulating free-T3 (FT3) levels were significantly decreased with respect to basal values, whereas in I/R + T3 rats, FT3 levels were comparable to basal values. In AAR of I/R + T3 rats, DIO1 and DIO2 gene expression significantly increased with respect to sham. In RZ, DIO1 and DIO3 gene expression was significantly lower in sham and I/R rats when compared to I/R + T3. In sham + T3 group, DIO1 and DIO2 gene expression was not detectable, whereas DIO3 was significantly higher than in the other three groups. The present study gives interesting new insights on DIO1, DIO2 and DIO3 in the ischemic heart and their role in relation to T3-mediated amelioration of cardiac function and structure.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Research Council (C.N.R.), Pisa, Italy.
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research Council (C.N.R.), Pisa, Italy
| | - Giorgio Iervasi
- Institute of Clinical Physiology, National Research Council (C.N.R.), Pisa, Italy
| |
Collapse
|
11
|
Teixeira RB, Zimmer A, Godoy AEG, de Castro AL, Campos-Carraro C, Belló-Klein A, da Rosa Araujo AS. Thyroid hormone treatment improved the response to maximum exercise test and preserved the ventricular geometry in myocardial infarcted rats. Exp Physiol 2020; 105:1561-1570. [PMID: 32667095 DOI: 10.1113/ep088614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does thyroid hormone treatment given after myocardial infarction preserve left ventricular function and treadmill exercise performance, and improve parameters of oxidative stress in the right ventricle and lungs of Wistar rats? What is the main finding and its importance? Thyroid hormone treatment improved the performance of the maximum exercise test in infarcted rats and induced effects in the heart and lungs that were similar to those observed with exercise training. This suggests there is a significant value of thyroid hormones for preserving exercise tolerance after myocardial infarction. ABSTRACT Left ventricular myocardial infarction (MI) provokes damage in the heart and in other tissues, such as right ventricle and lungs. The present study elucidated whether thyroid hormone treatment (THT) may present positive effects in heart and lungs after MI, and whether or not these effects are similar to those of exercise training (ET). Male Wistar rats were divided into four groups: sham operated (SHAM), infarcted (MI), infarcted + exercise training (MIE), and infarcted + thyroid hormones (MIH). A maximum exercise test, left ventricle echocardiography, pulmonary histology, and oxidative stress in the right ventricle and lung were evaluated. THT and ET both reduced left ventricular dilatation and end-diastolic wall stress indexes to a similar extent. MI accentuated the content of macrophages and inflammatory infiltrate in the lungs, which was partially prevented in the MIH and MIE groups. THT and ET presented similar effects in the heart and lungs, and both improved the performance of the maximum exercise test in infarcted animals.
Collapse
Affiliation(s)
- Rayane Brinck Teixeira
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexsandra Zimmer
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Alexandre Luz de Castro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristina Campos-Carraro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Wang K, Ojamaa K, Samuels A, Gilani N, Zhang K, An S, Zhang Y, Tang YD, Askari B, Gerdes AM. BNP as a New Biomarker of Cardiac Thyroid Hormone Function. Front Physiol 2020; 11:729. [PMID: 32733267 PMCID: PMC7363952 DOI: 10.3389/fphys.2020.00729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cardiac re-expression of fetal genes in patients with heart failure (HF) suggests the presence of low cardiac tissue thyroid hormone (TH) function. However, serum concentrations of T3 and T4 are often normal or subclinically low, necessitating an alternative serum biomarker for low cardiac TH function to guide treatment of these patients. The clinical literature suggests that serum Brain Natriuretic Peptide (BNP) levels are inversely associated with serum triiodo-L-thyronine (T3) levels. The objective of this study was to investigate BNP as a potential serum biomarker for TH function in the heart. Methods Two animal models of thyroid hormone deficiency: (1) 8-weeks of propyl thiouracil-induced hypothyroidism (Hypo) in adult female rats were subsequently treated with oral T3 (10 μg/kg/d) for 3, 6, or 14 days; (2) HF induced by coronary artery ligation (myocardial infarction, MI) in adult female rats was treated daily with low dose oral T3 (5 μg/kg/d) for 8 or 16 wks. Results Six days of T3 treatment of Hypo rats normalized most cardiac functional parameters. Serum levels of BNP increased 5-fold in Hypo rats, while T3 treatment normalized BNP by day 14, showing a significant inverse relationship between serum BNP and free or total T3 concentrations. Myocardial BNP mRNA was increased 2.5-fold in Hypo rats and its expression was decreased to normal values by 14 days of T3 treatment. Measurements of hemodynamic function showed significant dysfunction in MI rats after 16 weeks, with serum BNP increased by 4.5-fold and serum free and total T3 decreased significantly. Treatment with T3 decreased serum BNP while increasing total T3 indicating an inverse correlation between these two biologic factors (r 2 = 0.676, p < 0.001). Myocardial BNP mRNA was increased 5-fold in MI rats which was significantly decreased by T3 over 8 to 16 week treatment periods. Conclusions Results from the two models of TH dysfunction confirmed an inverse relationship between tissue and serum T3 and BNP, such that the reduction in serum BNP could potentially be utilized to monitor efficacy and dosing of T3 treatment. Thus, serum BNP may serve as a reliable biomarker for cardiac TH function.
Collapse
Affiliation(s)
- Kaihao Wang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States.,Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaie Ojamaa
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Abigail Samuels
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Nimra Gilani
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Kuo Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States.,Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shimin An
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States.,Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bardia Askari
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Anthony Martin Gerdes
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
13
|
Liu L, Shen L, Liu S, Tu B, Li G, Hu F, Hu Z, Wu L, Fan X, Zheng L, Ding L, Yao Y. Correlations between low thyroid function and incidence of atrial fibrillation in hypertrophic obstructive cardiomyopathy. Chronic Dis Transl Med 2020; 6:35-45. [PMID: 32226933 PMCID: PMC7096325 DOI: 10.1016/j.cdtm.2020.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 10/26/2022] Open
Affiliation(s)
- Li‐Min Liu
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Li‐Shui Shen
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Shang‐Yu Liu
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Bin Tu
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Guo‐Liang Li
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Feng Hu
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Zhi‐Cheng Hu
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Ling‐Min Wu
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Xiao‐Han Fan
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Li‐Hui Zheng
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Li‐Gang Ding
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Yan Yao
- Department of Cardiovascular MedicineClinical EP Lab & Arrhythmia CenterFuwai HospitalState Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| |
Collapse
|
14
|
Adverse transverse-tubule remodeling in a rat model of heart failure is attenuated with low-dose triiodothyronine treatment. Mol Med 2019; 25:53. [PMID: 31810440 PMCID: PMC6898920 DOI: 10.1186/s10020-019-0120-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract Pre-clinical animal studies have shown that triiodothyronine (T3) replacement therapy improves cardiac contractile function after myocardial infarction (MI). We hypothesized that T3 treatment could prevent adverse post-infarction cardiomyocyte remodeling by maintaining transverse-tubule (TT) structures, thus improving calcium dynamics and contractility. Methods Myocardial infarction (MI) or sham surgeries were performed on female Sprague-Dawley rats (aged 12 wks), followed by treatment with T3 (5μg/kg/d) or vehicle in drinking water for 16 wks (n = 10–11/group). After in vivo echocardiographic and hemodynamic analyses, left ventricular myocytes were isolated by collagenase digestion and simultaneous calcium and contractile transients in single cardiomyocytes were recorded using IonOptix imaging. Live cardiomyocytes were stained with AlexaFluor-488 conjugated wheat germ agglutinin (WGA-488) or di-8-ANEPPS, and multiple z-stack images per cell were captured by confocal microscopy for analysis of TT organization. RTqPCR and immunoblot approaches determined expression of TT proteins. Results Echocardiography and in vivo hemodynamic measurements showed significant improvements in systolic and diastolic function in T3- vs vehicle-treated MI rats. Isolated cardiomyocyte analysis showed significant dysfunction in measurements of myocyte relengthening in MI hearts, and improvements with T3 treatment: max relengthening velocity (Vmax, um/s), 2.984 ± 1.410 vs 1.593 ± 0.325, p < 0.05 and time to Vmax (sec), 0.233 ± 0.037 vs 0.314 ± 0.019, p < 0.001; MI + T3 vs MI + Veh, respectively. Time to peak contraction was shortened by T3 treatment (0.161 ± 0.021 vs 0.197 ± 0.011 s., p < 0.01; MI + T3 vs MI + Veh, respectively). Analysis of TT periodicity of WGA- or ANEPPS-stained cardiomyocytes indicated significant TT disorganization in MI myocytes and improvement with T3 treatment (transverse-oriented tubules (TE%): 9.07 ± 0.39 sham, 6.94 ± 0.67 MI + Veh and 8.99 ± 0.38 MI + T3; sham vs MI + Veh, p < 0.001; MI + Veh vs MI + T3, p < 0.01). Quantitative RT-PCR showed that reduced expression of BIN1 (Bridging integrator-1), Jph2 (junctophilin-2), RyR2 (ryanodine receptor) and Cav1.2 (L-type calcium channel) in the failing myocardium were increased by T3 and immunoblot analysis further supporting a potential T3 effect on the TT-associated proteins, BIN1 and Jph2. In conclusion, low dose T3 treatment initiated immediately after myocardial infarction attenuated adverse TT remodeling, improved calcium dynamics and contractility, thus supporting the potential therapeutic utility of T3 treatment in heart failure.
Collapse
|
15
|
Protective Effects of Euthyroidism Restoration on Mitochondria Function and Quality Control in Cardiac Pathophysiology. Int J Mol Sci 2019; 20:ijms20143377. [PMID: 31295805 PMCID: PMC6678270 DOI: 10.3390/ijms20143377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunctions are major contributors to heart disease onset and progression. Under ischemic injuries or cardiac overload, mitochondrial-derived oxidative stress, Ca2+ dis-homeostasis, and inflammation initiate cross-talking vicious cycles leading to defects of mitochondrial DNA, lipids, and proteins, concurrently resulting in fatal energy crisis and cell loss. Blunting such noxious stimuli and preserving mitochondrial homeostasis are essential to cell survival. In this context, mitochondrial quality control (MQC) represents an expanding research topic and therapeutic target in the field of cardiac physiology. MQC is a multi-tier surveillance system operating at the protein, organelle, and cell level to repair or eliminate damaged mitochondrial components and replace them by biogenesis. Novel evidence highlights the critical role of thyroid hormones (TH) in regulating multiple aspects of MQC, resulting in increased organelle turnover, improved mitochondrial bioenergetics, and the retention of cell function. In the present review, these emerging protective effects are discussed in the context of cardiac ischemia-reperfusion (IR) and heart failure, focusing on MQC as a strategy to blunt the propagation of connected dangerous signaling cascades and limit adverse remodeling. A better understanding of such TH-dependent signaling could provide insights into the development of mitochondria-targeted treatments in patients with cardiac disease.
Collapse
|
16
|
von Hafe M, Neves JS, Vale C, Borges-Canha M, Leite-Moreira A. The impact of thyroid hormone dysfunction on ischemic heart disease. Endocr Connect 2019; 8:R76-R90. [PMID: 30959486 PMCID: PMC6499922 DOI: 10.1530/ec-19-0096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
Thyroid hormones have a central role in cardiovascular homeostasis. In myocardium, these hormones stimulate both diastolic myocardial relaxation and systolic myocardial contraction, have a pro-angiogenic effect and an important role in extracellular matrix maintenance. Thyroid hormones modulate cardiac mitochondrial function. Dysfunction of thyroid axis impairs myocardial bioenergetic status. Both overt and subclinical hypothyroidism are associated with a higher incidence of coronary events and an increased risk of heart failure progression. Endothelial function is also impaired in hypothyroid state, with decreased nitric oxide-mediated vascular relaxation. In heart disease, particularly in ischemic heart disease, abnormalities in thyroid hormone levels are common and are an important factor to be considered. In fact, low thyroid hormone levels should be interpreted as a cardiovascular risk factor. Regarding ischemic heart disease, during the late post-myocardial infarction period, thyroid hormones modulate left ventricular structure, function and geometry. Dysfunction of thyroid axis might even be more prevalent in the referred condition since there is an upregulation of type 3 deiodinase in myocardium, producing a state of local cardiac hypothyroidism. In this focused review, we summarize the central pathophysiological and clinical links between altered thyroid function and ischemic heart disease. Finally, we highlight the potential benefits of thyroid hormone supplementation as a therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- Madalena von Hafe
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Sergio Neves
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Porto, Portugal
- Correspondence should be addressed to J S Neves:
| | - Catarina Vale
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Borges-Canha
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Forini F, Nicolini G, Pitto L, Iervasi G. Novel Insight Into the Epigenetic and Post-transcriptional Control of Cardiac Gene Expression by Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:601. [PMID: 31555215 PMCID: PMC6727178 DOI: 10.3389/fendo.2019.00601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) signaling is critically involved in the regulation of cardiovascular physiology. Even mild reductions of myocardial TH levels, as occur in hypothyroidism or low T3 state conditions, are thought to play a role in the progression of cardiac disorders. Due to recent advances in molecular mechanisms underlying TH action, it is now accepted that TH-dependent modulation of gene expression is achieved at multiple transcriptional and post-transcriptional levels and involves the cooperation of many processes. Among them, the epigenetic remodeling of chromatin structure and the interplay with non-coding RNA have emerged as novel TH-dependent pathways that add further degrees of complexity and broaden the network of genes controlled by TH signaling. Increasing experimental and clinical findings indicate that aberrant function of these regulatory mechanisms promotes the evolution of cardiac disorders such as post-ischemic injury, pathological hypertrophy, and heart failure, which may be reversed by the correction of the underlying TH dyshomeostasis. To encourage the clinical implementation of a TH replacement strategy in cardiac disease, here we discuss the crucial effect of epigenetic modifications and control of non-coding RNA in TH-dependent regulation of biological processes relevant for cardiac disease evolution.
Collapse
|
18
|
Zhang K, Tang YD, Zhang Y, Ojamaa K, Li Y, Saini AS, Carrillo-Sepulveda MA, Rajagopalan V, Gerdes AM. Comparison of Therapeutic Triiodothyronine Versus Metoprolol in the Treatment of Myocardial Infarction in Rats. Thyroid 2018; 28:799-810. [PMID: 29580170 PMCID: PMC5994663 DOI: 10.1089/thy.2017.0544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Beta blockers are standard therapy for myocardial infarction (MI). Preclinical studies have shown efficacy and safety of thyroid hormone (TH) treatment of cardiovascular disorders. Since THs interact with the sympathoadrenergic system, this study aimed to compare triiodothyronine (T3) and metoprolol (Met) in the treatment of rats with MI on pathophysiology and TH-adrenergic signaling. METHODS Female Sprague-Dawley rats aged 12 weeks underwent left anterior descending coronary artery ligation (MI) or sham surgeries. T3 (5 μg/kg/day) or Met (100 mg/kg/day) was given in drinking water immediately after surgery for eight weeks. At the terminal of the experiments, the rats were subjected to morphological, functional, and molecular examination. RESULTS T3 and Met significantly enhanced left ventricular contractility (left ventricular fractional shortening 21.37 ± 2.58% and 21.14 ± 3.71%, respectively) compared to untreated MI (17.88 ± 1.23%), and decreased the incidence of inducible atrial tachyarrhythmia by 87.5% and 62.5%, respectively. Although both treatments showed efficacy, T3 but not Met showed statistically significant improvements compared to MI in arrhythmia duration, left atrial diameter (T3 vs. MI 4.33 ± 0.63 vs. 5.65 ± 1.32 mm; p < 0.05), fibrosis (6.1 ± 0.6%, 6.6 ± 0.6% vs. 8.2 ± 0.7%, T3, Met vs. MI, respectively), and aortic vasorelaxation responsiveness to acetylcholine (pD2 6.97 ± 0.22, 6.83 ± 0.21 vs. 6.66 ± 0.22, T3, Met vs. MI, respectively). Quantitative polymerase chain reaction showed that T3 and Met attenuated expression of genes associated with inflammation and oxidative stress and restored expression of ion channels and contractile proteins. CONCLUSION These results support comparable efficacy of T3 and Met treatments, suggesting that T3 may provide a therapeutic alternative to standard β-receptor blockade, especially for patients intolerant to treatment with β-blockers after MI.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York
| | - Kaie Ojamaa
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York
| | - Amandeep Singh Saini
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York
| | | | - Viswanathan Rajagopalan
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Jonesboro, Arkansas
| | - A. Martin Gerdes
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York
| |
Collapse
|
19
|
Modification of gene expression profiling related to renin–angiotensin system in an ischemia/reperfusion rat model after T3 infusion. Mol Cell Biochem 2018; 449:277-283. [DOI: 10.1007/s11010-018-3364-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
|
20
|
Free triiodothyronine level correlates with statin responsiveness in acute myocardial infarction. J Geriatr Cardiol 2018; 15:290-297. [PMID: 29915619 PMCID: PMC5997620 DOI: 10.11909/j.issn.1671-5411.2018.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Although thyroid hormone (TH) has important effects on lipid metabolism, the relationship between TH and statin responsiveness has never been investigated. We hypothesize that TH plays an important role in statin responsiveness in patients with acute myocardial infarction (AMI). METHODS Consecutive 1091 hospitalized AMI patients in Fuwai hospital (Beijing, China) were enrolled into this current study. The study population was divided into three groups based on the intensity of statin treatment: low-intensity (n = 221), moderate-intensity (n = 712) and high-intensity (n = 158). Lipid levels were measured after statin therapy lasting for 10-14 days. The association between TH, lipid profile levels and achievement of low-density lipoprotein cholesterol (LDL-C) lowering goals was explored in patients with AMI on statin therapy. RESULTS By general linear analysis, a significant linear trend between free triiodothyronine (FT3) and LDL-C level (linear coefficient r = -0.082, P = 0.001) and FT3 and total cholesterol (TC) level (r = -0.105, P = 0.031) was observed in the moderate-intensity statin group. A more apparent linear trend was detected in the high-intensity statin group (for LDL-C: r = -0.113, P = 0.005; for TC: r = -0.172, P = 0.029, respectively). However, no significant correlation was observed in the low-intensity statin group. Compared with the low-FT3 group (defined as FT3 < 1.79 pg/mL), the OR (95% CI) for attaining a LDL-C < 3.0mmol/L was found to be 2.217 (1.001-4.839) in the higher FT3 group (> 2.95 pg/mL). The OR (95% CI) for attaining the more intensive goal (LDL-C < 1.8mmol/L) was 2.836 (1.014-5.182). CONCLUSIONS Our study reveals that variation in FT3 levels is related to the cholesterol-lowering responsiveness of statins in AMI patients. These findings suggest that low FT3 may be a factor responsible for lack of LDL-C goal attainment and patients' poor responsiveness to statin treatment.
Collapse
|
21
|
Zhang K, Meng X, Wang W, Zheng J, An S, Wang S, Qi Y, Gao C, Tang YD. Prognostic Value of Free Triiodothyronine Level in Patients With Hypertrophic Obstructive Cardiomyopathy. J Clin Endocrinol Metab 2018; 103:1198-1205. [PMID: 29304228 DOI: 10.1210/jc.2017-02386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/28/2017] [Indexed: 01/01/2023]
Abstract
CONTEXT Thyroid hormone acts as a fundamental regulator in cardiovascular homeostasis in pathophysiological conditions. OBJECTIVE This study aims to determine whether thyroid hormone could be an independent predictor of adverse events in patients with hypertrophic obstructive cardiomyopathy (HOCM). DESIGN, PATIENTS, AND OUTCOME MEASURES The original cohort consisted of 965 consecutive patients with HOCM who were admitted to Fuwai Hospital from October 2009 to December 2014, and 756 patients completed thyroid function evaluations. Patients were divided into three groups according to free triiodothyronine (FT3) levels: tertile 1 (<2.81 pg/mL, n = 247), tertile 2 (2.81 to 3.11 pg/mL, n = 250), tertile 3 (3.12 to 4.09 pg/mL, n = 259). RESULTS In correlation analysis, FT3 showed significantly positive correlation with left ventricular ejection fraction (r = 0.109, P = 0.003). After a median follow-up of 44 months, a total of 45 (6.0%) endpoints (all-cause mortality or cardiac transplantation) occurred with rates of 13.4%, 3.6%, and 1.2% in tertiles 1, 2, and 3, respectively. Univariate Cox analysis established FT3 as a predictor of endpoint [hazard ratio (HR), 0.111; 95% confidence interval (CI), 0.065, 0.189; P < 0.001]. After adjustment for traditional risk factors, the prognostic value of FT3 level was still significant (HR, 0.216; 95% CI, 0.083, 0.559; P = 0.002). Compared with patients in tertile 3, those in tertile 1 were at a much higher risk of endpoint (HR, 4.918; 95% CI, 1.076, 22.485; P = 0.040). CONCLUSIONS FT3 correlated with cardiac function and could serve as an independent predictor of all-cause mortality and cardiac transplantation in patients with HOCM. These results suggest that monitoring thyroid function in HOCM patients is necessary.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangbin Meng
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Wenyao Wang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jilin Zheng
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shimin An
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyuan Wang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Qi
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Teixeira RB, Zimmer A, de Castro AL, Carraro CC, Casali KR, Dias IGM, Godoy AEG, Litvin IE, Belló-Klein A, da Rosa Araujo AS. Exercise training versus T3 and T4 hormones treatment: The differential benefits of thyroid hormones on the parasympathetic drive of infarcted rats. Life Sci 2018; 196:93-101. [PMID: 29366748 DOI: 10.1016/j.lfs.2018.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 02/02/2023]
Abstract
AIMS This study aimed to investigate whether beneficial effects of thyroid hormones are comparable to those provided by the aerobic exercise training, to verify its applicability as a therapeutic alternative to reverse the pathological cardiac remodeling post-infarction. MATERIALS AND METHODS Male rats were divided into SHAM-operated (SHAM), myocardial infarction (MI), MI subjected to exercise training (MIE), and MI who received T3 and T4 treatment (MIH) (n = 8/group). MI, MIE and MIH groups underwent an infarction surgery while SHAM was SHAM-operated. One-week post-surgery, MIE and MIH groups started the exercise training protocol (moderate intensity on treadmill), or the T3 (1.2 μg/100 g/day) and T4 (4.8 μg/100 g/day) hormones treatment by gavage, respectively, meanwhile SHAM and MI had no intervention for 9 weeks. The groups were accompanied until 74 days after surgery, when all animals were anesthetized, left ventricle echocardiography and femoral catheterization were performed, followed by euthanasia and left ventricle collection for morphological, oxidative stress, and intracellular kinases expression analysis. KEY FINDINGS Thyroid hormones treatment was more effective in cardiac dilation and infarction area reduction, while exercise training provided more protection against fibrosis. Thyroid hormones treatment increased the lipoperoxidation and decreased GSHPx activity as compared to MI group, increased the t-Akt2 expression as compared to SHAM group, and increased the vascular parasympathetic drive. SIGNIFICANCE Thyroid hormones treatment provided differential benefits on the LV function and autonomic modulation as compared to the exercise training. Nevertheless, the redox unbalance induced by thyroid hormones highlights the importance of more studies targeting the ideal duration of this treatment.
Collapse
Affiliation(s)
- Rayane Brinck Teixeira
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexsandra Zimmer
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Luz de Castro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karina Rabello Casali
- Institute of Science and Technology (ICT), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | - Isnard Elman Litvin
- Research Institute for Multicenter Studies (IPCEM), University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Adriane Belló-Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Teixeira RB, Zimmer A, de Castro AL, de Lima-Seolin BG, Türck P, Siqueira R, Belló-Klein A, Singal PK, da Rosa Araujo AS. Long-term T3 and T4 treatment as an alternative to aerobic exercise training in improving cardiac function post-myocardial infarction. Biomed Pharmacother 2017; 95:965-973. [DOI: 10.1016/j.biopha.2017.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022] Open
|
24
|
Thyroid hormone biosynthesis machinery is altered in the ischemic myocardium: An epigenomic study. Int J Cardiol 2017; 243:27-33. [DOI: 10.1016/j.ijcard.2017.05.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022]
|
25
|
Janssen R, Muller A, Simonides WS. Cardiac Thyroid Hormone Metabolism and Heart Failure. Eur Thyroid J 2017; 6:130-137. [PMID: 28785539 PMCID: PMC5527173 DOI: 10.1159/000469708] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
The heart is a principal target of thyroid hormone, and a reduction of cardiac thyroid hormone signaling is thought to play a role in pathological ventricular remodeling and the development of heart failure. Studies in various rodent models of heart disease have identified increased activity of cardiac type III deiodinase as a possible cause of diminished levels and action of thyroid hormone. Recent data indicate novel mechanisms underlying the induction of this thyroid hormone-degrading enzyme in the heart as well as post-transcriptional regulation of its expression by microRNAs. In addition, the relevance of diminished thyroid hormone signaling for cardiac remodeling is suggested to include miRNA-mediated effects on pathological signaling pathways. These and other recent studies are reviewed and discussed in the context of other processes and factors that have been implicated in the reduction of cardiac thyroid hormone signaling in heart failure.
Collapse
Affiliation(s)
| | | | - Warner S. Simonides
- *Warner S. Simonides, PhD, Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1118, NL–1081 HV Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
26
|
Rajagopalan V, Zhang Y, Pol C, Costello C, Seitter S, Lehto A, Savinova OV, Chen YF, Gerdes AM. Modified Low-Dose Triiodo-L-thyronine Therapy Safely Improves Function Following Myocardial Ischemia-Reperfusion Injury. Front Physiol 2017; 8:225. [PMID: 28446882 PMCID: PMC5388763 DOI: 10.3389/fphys.2017.00225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022] Open
Abstract
Background: We have shown that thyroid hormones (THs) are cardioprotective and can be potentially used as safe therapeutic agents for diabetic cardiomyopathy and permanent infarction. However, no reliable, clinically translatable protocol exists for TH treatment of myocardial ischemia-reperfusion (IR) injury. We hypothesized that modified low-dose triiodo-L-thyronine (T3) therapy would confer safe therapeutic benefits against IR injury. Methods: Adult female rats underwent left coronary artery ligation for 60 min or sham surgeries. At 2 months following surgery and T3 treatment (described below), the rats were subjected to functional, morphological, and molecular examination. Results: Following surgery, the rats were treated with T3 (8 μg/kg/day) or vehicle in drinking water ad libitum following IR for 2 months. Oral T3 significantly improved left ventricular (LV) contractility, relaxation, and relaxation time constant, and decreased beta-myosin heavy chain gene expression. As it takes rats ~6 h post-surgery to begin drinking water, we then investigated whether modified T3 dosing initiated immediately upon reperfusion confers additional improvement. We injected an intraperitoneal bolus of T3 (12 μg/kg) upon reperfusion, along with low-dose oral T3 (4.5 μg/kg/day) in drinking water for 2 months. Continuous T3 therapy (bolus + low-dose oral) enhanced LV contractility compared with oral T3 alone. Relaxation parameters were also improved compared to vehicle. Importantly, these were accomplished without significant increases in hypertrophy, serum free T3 levels, or blood pressure. Conclusions: This is the first study to provide a safe cardiac therapeutic window and optimized, clinically translatable treatment-monitoring protocol for myocardial IR using commercially available and inexpensive T3. Low-dose oral T3 therapy supplemented with bolus treatment initiated upon reperfusion is safer and more efficacious.
Collapse
Affiliation(s)
- Viswanathan Rajagopalan
- Department of Basic Sciences, New York Institute of Technology-College of Osteopathic MedicineJonesboro, AR, USA.,Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic MedicineOld Westbury, NY, USA
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic MedicineOld Westbury, NY, USA
| | - Christine Pol
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic MedicineOld Westbury, NY, USA
| | - Clifford Costello
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic MedicineOld Westbury, NY, USA
| | - Samantha Seitter
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic MedicineOld Westbury, NY, USA
| | - Ann Lehto
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic MedicineOld Westbury, NY, USA
| | - Olga V Savinova
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic MedicineOld Westbury, NY, USA
| | - Yue-Feng Chen
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic MedicineOld Westbury, NY, USA
| | - A Martin Gerdes
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic MedicineOld Westbury, NY, USA
| |
Collapse
|
27
|
Szeiffová Bačová B, Egan Beňová T, Viczenczová C, Soukup T, Rauchová H, Pavelka S, Knezl V, Barančík M, Tribulová N. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol Res 2017; 65 Suppl 1:S77-90. [PMID: 27643942 DOI: 10.33549/physiolres.933413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones are powerful modulators of heart function and susceptibility to arrhythmias via both genomic and non-genomic actions. We aimed to explore expression of electrical coupling protein connexin-43 (Cx43) in the heart of rats with altered thyroid status and impact of omega-3 polyunsaturated fatty acids (omega-3) supplementation. Adult male Lewis rats were divided into following six groups: euthyroid controls, hyperthyroid (treated with T(3)) and hypothyroid (treated with methimazol) with or without six-weeks lasting supplementation with omega-3 (20 mg/100 g/day). Left and right ventricles, septum and atria were used for immunoblotting of Cx43 and protein kinase C (PKC). Total expression of Cx43 and its phosphorylated forms were significantly increased in all heart regions of hypothyroid rats compared to euthyroid controls. In contrast, the total levels of Cx43 and its functional phosphorylated forms were decreased in atria and left ventricle of hyperthyroid rats. In parallel, the expression of PKC epsilon that phosphorylates Cx43, at serine 368, was increased in hypothyroid but decreased in hyperthyroid rat hearts. Omega-3 intake did not significantly affect either Cx43 or PKC epsilon alterations. In conclusion, there is an inverse relationship between expression of cardiac Cx43 and the levels of circulating thyroid hormones. It appears that increased propensity of hyperthyroid while decreased of hypothyroid individuals to malignant arrhythmias may be in part attributed to the changes in myocardial Cx43.
Collapse
Affiliation(s)
- B Szeiffová Bačová
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev 2017; 38:69-102. [PMID: 27901588 DOI: 10.1210/er.2016-1103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular quality control and energy-providing process that is under strict control by intra- and extracellular stimuli. Recently, there has been an exponential increase in autophagy research and its implications for mammalian physiology. Autophagy deregulation is now being implicated in many human diseases, and its modulation has shown promising results in several preclinical studies. However, despite the initial discovery of autophagy as a hormone-regulated process by De Duve in the early 1960s, endocrine regulation of autophagy still remains poorly understood. In this review, we provide a critical summary of our present understanding of the basic mechanism of autophagy, its regulation by endocrine hormones, and its contribution to endocrine and metabolic homeostasis under physiological and pathological settings. Understanding the cross-regulation of hormones and autophagy on endocrine cell signaling and function will provide new insight into mammalian physiology as well as promote the development of new therapeutic strategies involving modulation of autophagy in endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Brijesh K Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| |
Collapse
|
29
|
Jabbar A, Pingitore A, Pearce SHS, Zaman A, Iervasi G, Razvi S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol 2016; 14:39-55. [PMID: 27811932 DOI: 10.1038/nrcardio.2016.174] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial and vascular endothelial tissues have receptors for thyroid hormones and are sensitive to changes in the concentrations of circulating thyroid hormones. The importance of thyroid hormones in maintaining cardiovascular homeostasis can be deduced from clinical and experimental data showing that even subtle changes in thyroid hormone concentrations - such as those observed in subclinical hypothyroidism or hyperthyroidism, and low triiodothyronine syndrome - adversely influence the cardiovascular system. Some potential mechanisms linking the two conditions are dyslipidaemia, endothelial dysfunction, blood pressure changes, and direct effects of thyroid hormones on the myocardium. Several interventional trials showed that treatment of subclinical thyroid diseases improves cardiovascular risk factors, which implies potential benefits for reducing cardiovascular events. Over the past 2 decades, accumulating evidence supports the association between abnormal thyroid function at the time of an acute myocardial infarction (MI) and subsequent adverse cardiovascular outcomes. Furthermore, experimental studies showed that thyroid hormones can have an important therapeutic role in reducing infarct size and improving myocardial function after acute MI. In this Review, we summarize the literature on thyroid function in cardiovascular diseases, both as a risk factor as well as in the setting of cardiovascular diseases such as heart failure or acute MI, and outline the effect of thyroid hormone replacement therapy for reducing the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Avais Jabbar
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.,Freeman Hospital, Freeman Rd, High Heaton, Newcastle upon Tyne NE7 7DN, UK
| | | | - Simon H S Pearce
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.,Department of Endocrinology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
| | - Azfar Zaman
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.,Freeman Hospital, Freeman Rd, High Heaton, Newcastle upon Tyne NE7 7DN, UK
| | - Giorgio Iervasi
- Clinical Physiology Institute, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Salman Razvi
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.,Gateshead Health NHS Foundation Trust, Saltwell Road South, Gateshead NE8 4YL, UK
| |
Collapse
|
30
|
Pingitore A, Iervasi G, Forini F. Role of the Thyroid System in the Dynamic Complex Network of Cardioprotection. Eur Cardiol 2016; 11:36-42. [PMID: 30310446 DOI: 10.15420/ecr.2016:9:2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cardioprotection is a common goal of new therapeutic strategies in patients with coronary artery disease and/or left ventricular dysfunction. Myocardial damage following ischaemia/reperfusion injury lead to left ventricular adverse remodelling through many mechanisms arising from different cell types in different myocardial districts, namely the border and remote zone. Cardioprotection must face this complex, dynamic network of cooperating units. In this scenario, thyroid hormones can represent an effective therapeutic strategy due to the numerous actions and regulating mechanisms carried out at the level of the myocytes, interstitium and the vasculature, as well as to the activation of different pro-survival intracellular pathways involved in cardioprotection.
Collapse
Affiliation(s)
| | - Giorgio Iervasi
- Clinical Physiology Institute, National Research Council (CNR), Pisa, Italy
| | - Francesca Forini
- Clinical Physiology Institute, National Research Council (CNR), Pisa, Italy
| |
Collapse
|