1
|
Brennan AA, Tata SC, Renshaw CP, Tal-Gan Y. Elucidating the Role of the Competence Regulon Quorum Sensing Circuitry in Streptococcus cristatus. ACS Chem Biol 2025; 20:1123-1136. [PMID: 40257361 DOI: 10.1021/acschembio.5c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Streptococcus cristatus belongs to the Mitis group of streptococci and is an early colonizer of the human oral cavity. This species has recently been reclassified from Streptococcus oligofermentans, and as such, much information regarding the competence regulon and its regulatory role in modulating downstream phenotypes remains unknown. In this work, we set out to investigate the role of the competence-stimulating peptide (CSP) in competence regulon activation and modulation, as well as define the resultant transcriptomic and phenotypic effects of CSP exposure. To this end, following confirmation of the CSP identity, structure activity relationship (SAR) analyses were conducted and revealed residues integral for CSP::ComD binding and activation, as well as provided insights about the CSP secondary structure. The ability of synthesized CSP analogs to modulate the competence regulon was quantified with the aid of a newly developed luciferase-based reporter strain, after which the biological activity was correlated with peptide secondary structure derived through CD analysis. Furthermore, RNA-seq was utilized to gain broader insights about subsequent transcriptomic changes following CSP incubation, while phenotypic assays helped with visualizing resultant expression profiles. Lastly, to further explore the potential of S. cristatus as a potential biotherapeutic against the oral pathogen, Streptococcus mutans, interspecies competition assays were used to evaluate interactions between these two species.
Collapse
Affiliation(s)
- Alec A Brennan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Steven C Tata
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Clay P Renshaw
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
2
|
Toussaint F, Henry de Frahan M, Poncelet F, Ladrière JM, Horvath P, Fremaux C, Hols P. Unveiling the regulatory network controlling natural transformation in lactococci. PLoS Genet 2024; 20:e1011340. [PMID: 38950059 PMCID: PMC11244767 DOI: 10.1371/journal.pgen.1011340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/12/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Lactococcus lactis is a lactic acid bacterium of major importance for food fermentation and biotechnological applications. The ability to manipulate its genome quickly and easily through competence for DNA transformation would accelerate its general use as a platform for a variety of applications. Natural transformation in this species requires the activation of the master regulator ComX. However, the growth conditions that lead to spontaneous transformation, as well as the regulators that control ComX production, are unknown. Here, we identified the carbon source, nitrogen supply, and pH as key factors controlling competence development in this species. Notably, we showed that these conditions are sensed by three global regulators (i.e., CcpA, CodY, and CovR), which repress comX transcription directly. Furthermore, our systematic inactivation of known signaling systems suggests that classical pheromone-sensing regulators are not involved. Finally, we revealed that the ComX-degrading MecA-ClpCP machinery plays a predominant role based on the identification of a single amino-acid substitution in the adaptor protein MecA of a highly transformable strain. Contrasting with closely-related streptococci, the master competence regulator in L. lactis is regulated both proximally by general sensors and distantly by the Clp degradation machinery. This study not only highlights the diversity of regulatory networks for competence control in Gram-positive bacteria, but it also paves the way for the use of natural transformation as a tool to manipulate this biotechnologically important bacterium.
Collapse
Affiliation(s)
- Frédéric Toussaint
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie Henry de Frahan
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félix Poncelet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Marc Ladrière
- IFF Health & Biosciences, Danisco France SAS, Dangé-Saint-Romain, France
| | - Philippe Horvath
- IFF Health & Biosciences, Danisco France SAS, Dangé-Saint-Romain, France
| | - Christophe Fremaux
- IFF Health & Biosciences, Danisco France SAS, Dangé-Saint-Romain, France
| | - Pascal Hols
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
4
|
Guo M, Renshaw CP, Mull RW, Tal-Gan Y. Noncanonical Streptococcus sanguinis ComCDE circuitry integrates environmental cues in transformation outcome decision. Cell Chem Biol 2024; 31:298-311.e6. [PMID: 37832551 PMCID: PMC10922391 DOI: 10.1016/j.chembiol.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Natural competence is the principal driver of streptococcal evolution. While acquisition of new traits could facilitate rapid fitness improvement for bacteria, entry into the competent state is a highly orchestrated event, involving an interplay between various pathways. We present a new type of competence-predation coordination mechanism in Streptococcus sanguinis. Unlike other streptococci that mediate competence through the ComABCDE regulon, several key components are missing in the S. sanguinis ComCDE circuitry. We assembled two synthetic biology devices linking competence-stimulating peptide (CSP) cleavage and export with a quantifiable readout to unravel the unique features of the S. sanguinis circuitry. Our results revealed the ComC precursor cleavage pattern and the two host ABC transporters implicated in the export of the S. sanguinis CSP. Moreover, we discovered a ComCDE-dependent bacteriocin locus. Overall, this study presents a mechanism for commensal streptococci to maximize transformation outcome in a fluid environment through extensive circuitry rewiring.
Collapse
Affiliation(s)
- Mingzhe Guo
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Clay P Renshaw
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Ryan W Mull
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA.
| |
Collapse
|
5
|
Knoops A, Ledesma-García L, Waegemans A, Lamontagne M, Decat B, Degand H, Morsomme P, Soumillion P, Delvigne F, Hols P. Competence shut-off by intracellular pheromone degradation in salivarius streptococci. PLoS Genet 2022; 18:e1010198. [PMID: 35613247 PMCID: PMC9173638 DOI: 10.1371/journal.pgen.1010198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/07/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Competence for DNA transformation is a major strategy for bacterial adaptation and survival. Yet, this successful tactic is energy-consuming, shifts dramatically the metabolism, and transitory impairs the regular cell-cycle. In streptococci, complex regulatory pathways control competence deactivation to narrow its development to a sharp window of time, a process known as competence shut-off. Although characterized in streptococci whose competence is activated by the ComCDE signaling pathway, it remains unclear for those controlled by the ComRS system. In this work, we investigate competence shut-off in the major human gut commensal Streptococcus salivarius. Using a deterministic mathematical model of the ComRS system, we predicted a negative player under the control of the central regulator ComX as involved in ComS/XIP pheromone degradation through a negative feedback loop. The individual inactivation of peptidase genes belonging to the ComX regulon allowed the identification of PepF as an essential oligoendopeptidase in S. salivarius. By combining conditional mutants, transcriptional analyses, and biochemical characterization of pheromone degradation, we validated the reciprocal role of PepF and XIP in ComRS shut-off. Notably, engineering cleavage site residues generated ultra-resistant peptides producing high and long-lasting competence activation. Altogether, this study reveals a proteolytic shut-off mechanism of competence in the salivarius group and suggests that this mechanism could be shared by other ComRS-containing streptococci. The human oral cavity is one of the most challenging ecological niches for bacteria. In this ecosystem, hundreds of species compete for food and survival in a physicochemical fluctuating environment. To outcompete, Streptococcus salivarius has developed a particular physiological state called competence during which antibacterial compounds are produced together with the uptake of external DNA that can be integrated in its own genome. Although this strategy is of main importance for evolution and adaptation, its short-term cost in terms of energy and metabolism reprogramming are important. To restrain competence activation to a sharp window of time, bacteria use a process known as shut-off. Although described in some species, this process is still mostly unknown in streptococci. In this work, we used predictive mathematical simulations to infer the role of a pheromone-degradation machinery involved in the exit from competence. We confirmed experimentally this mechanism by identifying PepF as a competence-induced oligoendopeptidase with a specific activity towards the XIP pheromone. Importantly, we show that this peptidase is not only shutting down competence but also preventing its development under inappropriate conditions.
Collapse
Affiliation(s)
- Adrien Knoops
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Laura Ledesma-García
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Alexandra Waegemans
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Morgane Lamontagne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Baptiste Decat
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Hervé Degand
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Frank Delvigne
- Microbial Processes and Interactions, TERRA Research and Teaching Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Pascal Hols
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- * E-mail:
| |
Collapse
|
6
|
Fan Q, Zuo J, Wang H, Grenier D, Yi L, Wang Y. Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria. Biotechnol Adv 2022; 59:107965. [PMID: 35487393 DOI: 10.1016/j.biotechadv.2022.107965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Quorum sensing (QS), which is a key part of cell/cell communication, is widely distributed in microorganisms, especially in bacteria. Bacteria can produce and detect the presence of QS signal molecule, perceive the composition and density of microorganisms in their complex habitat, and then dynamically regulate their own gene expression to adapt to their environment. Among the many traits controlled by QS in pathogenic bacteria is the expression of virulence factors and antibiotic resistance. Many pathogenic bacteria rely on QS to govern the production of virulence factors and express drug-resistance, especially in zoonotic bacteria. The threat of antibiotic resistant zoonotic bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Targeting QS has proven to be a promising alternative to conventional antibiotic for controlling infections. Here we review the QS systems in common zoonotic pathogenic bacteria and outline how QS may control the virulence and antibiotic resistance of zoonotic bacteria.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Canada
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
7
|
The CovRS Environmental Sensor Directly Controls the ComRS Signaling System To Orchestrate Competence Bimodality in Salivarius Streptococci. mBio 2022; 13:e0312521. [PMID: 35089064 PMCID: PMC8725580 DOI: 10.1128/mbio.03125-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, phenotypic heterogeneity in an isogenic population compensates for the lack of genetic diversity and allows concomitant multiple survival strategies when choosing only one is too risky. This powerful tactic is exploited for competence development in streptococci where only a subset of the community triggers the pheromone signaling system ComR-ComS, resulting in a bimodal activation. However, the regulatory cascade and the underlying mechanisms of this puzzling behavior remained partially understood. Here, we show that CovRS, a well-described virulence regulatory system in pathogenic streptococci, directly controls the ComRS system to generate bimodality in the gut commensal Streptococcus salivarius and the closely related species Streptococcus thermophilus. Using single-cell analysis of fluorescent reporter strains together with regulatory mutants, we revealed that the intracellular concentration of ComR determines the proportion of competent cells in the population. We also showed that this bimodal activation requires a functional positive-feedback loop acting on ComS production, as well as its exportation and reinternalization via dedicated permeases. As the intracellular ComR concentration is critical in this process, we hypothesized that an environmental sensor could control its abundance. We systematically inactivated all two-component systems and identified CovRS as a direct repression system of comR expression. Notably, we showed that the system transduces its negative regulation through CovR binding to multiple sites in the comR promoter region. Since CovRS integrates environmental stimuli, we suggest that it is the missing piece of the puzzle that connects environmental conditions to (bimodal) competence activation in salivarius streptococci. IMPORTANCE Combining production of antibacterial compounds and uptake of DNA material released by dead cells, competence is one of the most efficient survival strategies in streptococci. Yet, this powerful tactic is energy consuming and reprograms the metabolism to such an extent that cell proliferation is transiently impaired. To circumvent this drawback, competence activation is restricted to a subpopulation, a process known as bimodality. In this work, we explored this phenomenon in salivarius streptococci and elucidated the molecular mechanisms governing cell fate. We also show that an environmental sensor controlling virulence in pathogenic streptococci is diverted to control competence in commensal streptococci. Together, those results showcase how bacteria can sense and transmit external stimuli to complex communication devices for fine-tuning collective behaviors.
Collapse
|
8
|
Coevolution of the bacterial pheromone ComS and sensor ComR fine-tunes natural transformation in streptococci. J Biol Chem 2021; 297:101346. [PMID: 34715127 PMCID: PMC8605241 DOI: 10.1016/j.jbc.2021.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Competence for natural transformation extensively contributes to genome evolution and the rapid adaptability of bacteria dwelling in challenging environments. In most streptococci, this process is tightly controlled by the ComRS signaling system, which is activated through the direct interaction between the (R)RNPP-type ComR sensor and XIP pheromone (mature ComS). The overall mechanism of activation and the basis of pheromone selectivity have been previously reported in Gram-positive salivarius streptococci; however, detailed 3D-remodeling of ComR leading up to its activation remains only partially understood. Here, we identified using a semirational mutagenesis approach two residues in the pheromone XIP that bolster ComR sensor activation by interacting with two aromatic residues of its XIP-binding pocket. Random and targeted mutagenesis of ComR revealed that the interplay between these four residues remodels a network of aromatic–aromatic interactions involved in relaxing the sequestration of the DNA-binding domain. Based on these data, we propose a comprehensive model for ComR activation based on two major conformational changes of the XIP-binding domain. Notably, the stimulation of this newly identified trigger point by a single XIP substitution resulted in higher competence and enhanced transformability, suggesting that pheromone-sensor coevolution counter-selects for hyperactive systems in order to maintain a trade-off between competence and bacterial fitness. Overall, this study sheds new light on the ComRS activation mechanism and how it could be exploited for biotechnological and biomedical purposes.
Collapse
|
9
|
Mignolet J, Cerckel G, Damoczi J, Ledesma-Garcia L, Sass A, Coenye T, Nessler S, Hols P. Subtle selectivity in a pheromone sensor triumvirate desynchronizes competence and predation in a human gut commensal. eLife 2019; 8:e47139. [PMID: 31433299 PMCID: PMC6703854 DOI: 10.7554/elife.47139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022] Open
Abstract
Constantly surrounded by kin or alien organisms in nature, eukaryotes and prokaryotes developed various communication systems to coordinate adaptive multi-entity behavior. In complex and overcrowded environments, they require to discriminate relevant signals in a myriad of pheromones to execute appropriate responses. In the human gut commensal Streptococcus salivarius, the cytoplasmic Rgg/RNPP regulator ComR couples competence to bacteriocin-mediated predation. Here, we describe a paralogous sensor duo, ScuR and SarF, which circumvents ComR in order to disconnect these two physiological processes. We highlighted the recurring role of Rgg/RNPP in the production of antimicrobials and designed a robust genetic screen to unveil potent/optimized peptide pheromones. Further mutational and biochemical analyses dissected the modifiable selectivity toward their pheromone and operating sequences at the subtle molecular level. Additionally, our results highlight how we might mobilize antimicrobial molecules while silencing competence in endogenous populations of human microflora and temper gut disorders provoked by bacterial pathogens.
Collapse
Affiliation(s)
- Johann Mignolet
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
- SyngulonSeraingBelgium
| | - Guillaume Cerckel
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
| | - Julien Damoczi
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
| | - Laura Ledesma-Garcia
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
| | - Andrea Sass
- Laboratory of Pharmaceutical MicrobiologyGhent UniversityGhentBelgium
| | - Tom Coenye
- Laboratory of Pharmaceutical MicrobiologyGhent UniversityGhentBelgium
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198Gif-sur-Yvette cedexFrance
| | - Pascal Hols
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
| |
Collapse
|
10
|
Mignolet J, Fontaine L, Sass A, Nannan C, Mahillon J, Coenye T, Hols P. Circuitry Rewiring Directly Couples Competence to Predation in the Gut Dweller Streptococcus salivarius. Cell Rep 2019; 22:1627-1638. [PMID: 29444418 DOI: 10.1016/j.celrep.2018.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
Small distortions in transcriptional networks might lead to drastic phenotypical changes, especially in cellular developmental programs such as competence for natural transformation. Here, we report a pervasive circuitry rewiring for competence and predation interplay in commensal streptococci. Canonically, in streptococci paradigms such as Streptococcus pneumoniae and Streptococcus mutans, the pheromone-based two-component system BlpRH is a central node that orchestrates the production of antimicrobial compounds (bacteriocins) and incorporates signal from the competence activation cascade. However, the human commensal Streptococcus salivarius does not contain a functional BlpRH pair, while the competence signaling system ComRS directly couples bacteriocin production and competence commitment. This network shortcut might underlie an optimal adaptation against microbial competitors and explain the high prevalence of S. salivarius in the human digestive tract. Moreover, the broad spectrum of bacteriocin activity against pathogenic bacteria showcases the commensal and genetically tractable S. salivarius species as a user-friendly model for competence and bacterial predation.
Collapse
Affiliation(s)
- Johann Mignolet
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Laetitia Fontaine
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Catherine Nannan
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Pascal Hols
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
11
|
Intensive targeting of regulatory competence genes by transposable elements in streptococci. Mol Genet Genomics 2018; 294:531-548. [DOI: 10.1007/s00438-018-1507-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
|
12
|
Feuillie C, Valotteau C, Makart L, Gillis A, Mahillon J, Dufrêne YF. Bacterial Sexuality at the Nanoscale. NANO LETTERS 2018; 18:5821-5826. [PMID: 30169045 DOI: 10.1021/acs.nanolett.8b02463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the basic mechanisms of bacterial sexuality is an important topic in current microbiology and biotechnology. While classical methods used to study gene transfer provide information on whole cell populations, nanotechnologies offer new opportunities for analyzing the behavior of individual mating partners. We introduce an innovative atomic force microscopy (AFM) platform to study and mechanically control DNA transfer between single bacteria, focusing on the large conjugative pXO16 plasmid of the Gram-positive bacterium Bacillus thuringiensis. We demonstrate that the adhesion forces between single donor and recipient cells are very strong (∼2 nN). Using a mutant plasmid, we find that these high forces are mediated by a pXO16 aggregation locus that contains two large surface protein genes. Notably, we also show that AFM can be used to mechanically induce plasmid transfer between single partners, revealing that transfer is very fast (<15 min) and triggers major cell surface changes in transconjugant cells. We anticipate that the single-cell technology developed here will enable researchers to mechanically control gene transfer among a wide range of Gram-positive and Gram-negative bacterial species and to understand the molecular forces involved. Also, the method could be useful in nanomedicine for the design of antiadhesion compounds capable of preventing intimate cell-cell contacts, therefore providing a means to control the resistance and virulence of bacterial pathogens.
Collapse
Affiliation(s)
- Cécile Feuillie
- Louvain Institute of Biomolecular Science and Technology , Université catholique de Louvain , Croix du Sud, 4-5 , B-1348 Louvain-la-Neuve , Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology , Université catholique de Louvain , Croix du Sud, 4-5 , B-1348 Louvain-la-Neuve , Belgium
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute , Université catholique de Louvain , B-1348 Louvain-la-Neuve , Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute , Université catholique de Louvain , B-1348 Louvain-la-Neuve , Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute , Université catholique de Louvain , B-1348 Louvain-la-Neuve , Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology , Université catholique de Louvain , Croix du Sud, 4-5 , B-1348 Louvain-la-Neuve , Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO) , B-1300 Wavre , Belgium
| |
Collapse
|
13
|
ABC transporter content diversity in Streptococcus pneumoniae impacts competence regulation and bacteriocin production. Proc Natl Acad Sci U S A 2018; 115:E5776-E5785. [PMID: 29866828 PMCID: PMC6016807 DOI: 10.1073/pnas.1804668115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) participates in horizontal gene transfer through genetic competence and produces antimicrobial peptides called “bacteriocins.” Here, we show that the competence and bacteriocin-related ABC transporters ComAB and BlpAB share the same substrate pool, resulting in bidirectional crosstalk between competence and bacteriocin regulation. We also clarify the role of each transporter in bacteriocin secretion and show that, based on their transporter content, pneumococcal strains can be separated into a majority opportunist group that uses bacteriocins only to support competence and a minority aggressor group that uses bacteriocins in broader contexts. Our findings will impact how bacteriocin regulation and production is modeled in the many other bacterial species that use ComAB/BlpAB-type transporters. The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) uses natural genetic competence to increase its adaptability through horizontal gene transfer. One method of acquiring DNA is through predation of neighboring strains with antimicrobial peptides called “bacteriocins.” Competence and production of the major family of pneumococcal bacteriocins, pneumocins, are regulated by the quorum-sensing systems com and blp, respectively. In the classical paradigm, the ABC transporters ComAB and BlpAB each secretes its own system’s signaling pheromone and in the case of BlpAB also secretes the pneumocins. While ComAB is found in all pneumococci, only 25% of strains encode an intact version of BlpAB [BlpAB(+)] while the rest do not [BlpAB(−)]. Contrary to the classical paradigm, it was previously shown that BlpAB(−) strains can activate blp through ComAB-mediated secretion of the blp pheromone during brief periods of competence. To better understand the full extent of com-blp crosstalk, we examined the contribution of each transporter to competence development and pneumocin secretion. We found that BlpAB(+) strains have a greater capacity for competence activation through BlpAB-mediated secretion of the com pheromone. Similarly, we show that ComAB and BlpAB are promiscuous and both can secrete pneumocins. Consequently, differences in pneumocin secretion between BlpAB(+) and BlpAB(−) strains derive from the regulation and kinetics of transporter expression rather than substrate specificity. We speculate that BlpAB(−) strains (opportunists) use pneumocins mainly in a narrowly tailored role for DNA acquisition and defense during competence while BlpAB(+) strains (aggressors) expand their use for the general inhibition of rival strains.
Collapse
|
14
|
Unleashing Natural Competence in Lactococcus lactis by Induction of the Competence Regulator ComX. Appl Environ Microbiol 2017; 83:AEM.01320-17. [PMID: 28778888 DOI: 10.1128/aem.01320-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies.IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially relevant organism can accelerate research aiming to understand industrially relevant traits of these bacteria and can facilitate engineering strategies to harness the natural biodiversity of the species in optimized starter strains.
Collapse
|
15
|
Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel) 2017; 8:genes8010015. [PMID: 28067778 PMCID: PMC5295010 DOI: 10.3390/genes8010015] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 11/17/2022] Open
Abstract
The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the competence pathway is controlled by the two-component signal transduction pathway ComCDE, which directly regulates SigX, the alternative sigma factor required for the initiation into competence. Over the past two decades, effectors of cellular killing (i.e., fratricides) have been recognized as important targets of the pneumococcal competence QS pathway. Recently, direct interactions between the ComCDE and the paralogous BlpRH pathway, regulating bacteriocin production, were identified, further strengthening the interconnections between these two QS systems. Interestingly, a similar theme is being revealed in S. mutans, the primary etiological agent of dental caries. This review compares the relationship between the bacteriocin and the competence QS pathways in both S. pneumoniae and S. mutans, and hopes to provide clues to regulatory pathways across the genus Streptococcus as a potential tool to efficiently investigate putative competence pathways in nontransformable streptococci.
Collapse
|
16
|
Zaccaria E, Wels M, van Baarlen P, Wells JM. Temporal Regulation of the Transformasome and Competence Development in Streptococcus suis. Front Microbiol 2016; 7:1922. [PMID: 28066332 PMCID: PMC5167698 DOI: 10.3389/fmicb.2016.01922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022] Open
Abstract
In S. suis the ComX-inducing peptide (XIP) pheromone regulates ComR-dependent transcriptional activation of comX (or sigX) the regulator of the late competence regulon. The aims of this study were to identify the ComR-regulated genes and in S. suis using genome-wide transcriptomics and identify their function based on orthology and the construction of specific knockout mutants. The ComX regulon we identified, includes all homologs of the “transformasome” a type 4-like pilus DNA binding and transport apparatus identified in Streptococcus pneumoniae, Streptococcus mutans, and Streptococcus thermophilus. A conserved CIN-box (YTACGAAYW), predicted to be bound by ComX, was found in the promoters of operons encoding genes involved in expression of the transformasome. Mutants lacking the major pilin gene comYC were not transformable demonstrating that the DNA uptake pilus is indeed required for competence development in S. suis. Competence was a transient state with the comX regulon shut down after ~15 min even when transcription of comX had not returned to basal levels, indicating other mechanisms control the exit from competence. The ComX regulon also included genes involved in DNA repair including cinA which we showed to be required for high efficiency transformation. In contrast to S. pneumoniae and S. mutans the ComX regulon of S. suis did not include endA which converts the transforming DNA into ssDNA, or ssbA, which protects the transforming ssDNA from degradation. EndA appeared to be essential in S. suis so we could not generate mutants and confirm its role in DNA transformation. Finally, we identified a putative homolog of fratricin, and a putative bacteriocin gene cluster, that were also part of the CIN-box regulon and thus may play a role in DNA release from non-competent cells, enabling gene transfer between S. suis pherotypes or S. suis and other species. S. suis mutants of oppA, the binding subunit of the general oligopeptide transporter were not transformable, suggesting that it is required for the import of XIP.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host-Microbe Interactomics, Animal Sciences, Wageningen University Wageningen, Netherlands
| | | | - Peter van Baarlen
- Host-Microbe Interactomics, Animal Sciences, Wageningen University Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Animal Sciences, Wageningen University Wageningen, Netherlands
| |
Collapse
|