1
|
Barati S, Ghazanfari S, Karimi Torshizi MA, Khani K. Optimizing embryo growth and broiler chick performance under thermal stress: The role of thyme and peppermint extracts in enhancing health and survival. J Therm Biol 2025; 129:104116. [PMID: 40319604 DOI: 10.1016/j.jtherbio.2025.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
This study investigated the effects of thyme and peppermint extract sprays on eggs, emphasizing their antioxidant properties and impact on poultry embryo growth. Key evaluated traits included embryonic quality, hatchling metrics, yolk sac residue, intestinal morphology, and broiler performance during the first week, alongside blood stress indicators. A 5 × 2 factorial experiment was conducted on 1500 eggs treated with ascorbic acid, peppermint extract, thyme extract, distilled water, or no spray, under both normal and heat stress conditions. The results revealed that thyme and peppermint sprays significantly increased egg weight and reduced water loss. Peppermint extract increased yolk sac weight on day 18 (P < 0.05), while thyme extract decreased embryonic mortality under normal temperatures. However, peppermint extract and ascorbic acid negatively affected mortality and incubation time, respectively (P < 0.05). Thyme extract reduced the yolk sac-to-chick weight ratio in hatched chicks under normal conditions. Under heat stress, untreated chicks had higher body surface temperatures compared to those treated with ascorbic acid (P < 0.05). Thyme extract reduced cortisol levels and white blood cell counts under heat stress compared to peppermint extract (P < 0.05). Thyme extract also improved intestinal morphology in heat-stressed chicks, increasing villus height and the villus-to-crypt depth ratio. Peppermint under heat stress and ascorbic acid under normal conditions increased crypt depth, while ascorbic acid under heat stress improved villus width. Thyme extract additionally increased goblet cell numbers compared to distilled water (P < 0.05). Forty-eight hours post-hatch, heat stress elevated chicks' body temperatures, while thyme extract sprays significantly reduced them (P < 0.05). Chicks sprayed with distilled water under heat stress showed the highest weight gain. In conclusion, thyme extract spray is an effective intervention for improving hatchability, yolk sac absorption, intestinal morphology, and reducing cortisol levels under heat stress, offering practical applications for enhancing poultry production efficiency and health.
Collapse
Affiliation(s)
- Shima Barati
- Department of Livestock and Poultry Sciences, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran, 3391653755.
| | - Shokoufe Ghazanfari
- Department of Livestock and Poultry Sciences, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran, 3391653755.
| | | | - Kambiz Khani
- Department of Livestock and Poultry Sciences, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran, 3391653755.
| |
Collapse
|
2
|
Khamoun C, Kupittayanant S, Kupittayanant P. Effect of egg incubator temperature on sex differentiation in Korat chickens. J Therm Biol 2024; 125:103984. [PMID: 39353363 DOI: 10.1016/j.jtherbio.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The effect of incubator temperature on sex differentiation in Korat chickens was investigated. The experiments were divided into two sets: temperature applied throughout the entire incubation period and temperature applied during certain periods (days 3-6 of incubation) by either increasing above the standard or decreasing below the standard temperature. In each experiment, 300 Korat chicken eggs were separated into three groups of 5 repetitions, with 20 eggs in each group. This was done using a completely randomized design for each experiment: a group using a temperature below the standard for incubation (36.0 °C), a group using the standard incubation temperature (37.7 °C), and a group using a temperature above the standard for incubation (38.0 °C). W chromosomes were detected at hatch; histology examined reproductive structures after 35 days. Increasing the temperature to 38.0 °C throughout the entire incubation period resulted in no significant difference in hatching rates compared to the standard temperature (P > 0.05). Raising the temperature to 38.0 °C throughout the entire incubation and during certain periods resulted in changes in the reproductive structure of chickens, leading to a mismatch between chromosomal and gonadal sex, observed at 9.7% and 5.9% of individuals with W chromosomes possessed testes, indicating a mismatch between chromosomal and gonadal sex. However, decreasing the temperature to 36.0 °C throughout the incubation period resulted in lower hatching rates compared to the standard temperature (P < 0.05). Incubating eggs at 36.0 °C for specific periods resulted in 19.4% of genetic males developing ovaries instead of testes. The presence of ovaries in individuals without W chromosomes indicated this mismatch. The results of this study provide evidence that temperature plays a role in sex differentiation in Korat chickens, as demonstrated by the detection of W chromosomes and histological studies of testes and ovaries. Moreover, this study presents the first evidence in broilers that temperature can affect sex differentiation.
Collapse
Affiliation(s)
- Chanoknan Khamoun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sajeera Kupittayanant
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pakanit Kupittayanant
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
3
|
Kustra K, Trela M, Hejdysz M, Kaczmarek S, Węsierska E, Babuszkiewicz M, Lis MW. A conventional hatchery vs "on-farm" hatching of broiler chickens in terms of microbiological and microclimatic conditions. Animal 2024; 18:101223. [PMID: 39013332 DOI: 10.1016/j.animal.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
"On-farm hatching" is one of the proposed alternatives to conventional hatchery-hatching. This solution reduces distress and improves the welfare of the chicks around the hatching period. Therefore, it seemed interesting to compare conventional hatchery and "on-farm" hatching in terms of microbiological and microclimatic conditions. Hatching eggs (Ross 308) were incubated in a commercial hatchery. The control group (HH, 683 eggs) hatched in a conventional hatcher, while the other eggs were transported into the experimental chicken-hall for on-farm hatching, and set in pens directly on litter (OL, 667 eggs) or plastic trays (OT, 678 eggs). One-day-old chicks were also placed in the experimental hall. Microclimatic parameters were controlled every 12 h. The microbiological status of the surface of the eggshells and the litter was assessed based on the total number of aerobic mesophilic microorganisms and also the selected individual genus/species of bacteria. The hatchability of HH was 96.4% in comparison to 93.9% and 95.8% for OL and OT, respectively (P > 0.05). On the other hand, 2.1% of the HH chicks were found injured/dead, while only 0.2-0.3% of the on-farm groups were. The total number of aerobic mesophilic microflora on the surface of as-hatched shells was 4.93 ± 0.629 log CFU/g in HH, while only 1.14 ± 0.995 and 1.93 ± 1.709 log CFU/g in OL and OT, respectively (P < 0.001). Similarly, the total count of bacteria in the litter in the on-farm hatched pens was 1.9-fold lower than in pens set with HH chicks (P < 0.001). In summary, on-farm hatching results in hatchability that is no worse than in a conventional hatcher, while the microbiological status of as-hatched eggshells and litter is significantly better. Therefore, on-farm hatching seems to provide appropriate environmental conditions for newly hatched chicks and poses no epizootic risk.
Collapse
Affiliation(s)
- K Kustra
- Department of Zoology and Animal Welfare, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Kraków, Poland
| | - M Trela
- Department of Zoology and Animal Welfare, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Kraków, Poland
| | - M Hejdysz
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Science, Wołyńska 33, 60-637 Poznań, Poland
| | - S Kaczmarek
- Department of Animal Nutrition, Poznan University of Life Science, Wołyńska 33, 60-637 Poznań, Poland
| | - E Węsierska
- University Centre of Veterinary Medicine, Institute of Veterinary Sciences, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Kraków, Poland
| | | | - M W Lis
- Department of Zoology and Animal Welfare, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Kraków, Poland.
| |
Collapse
|
4
|
Meteyake HT, Collin A, Bilalissi A, Dassidi N, Assion MEP, Tona K. Naked neck gene and intermittent thermal manipulations during embryogenesis improve posthatch performance and thermotolerance in slow-growing chickens under tropical climates. Poult Sci 2023; 102:102912. [PMID: 37499617 PMCID: PMC10393816 DOI: 10.1016/j.psj.2023.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Many studies have shown that thermal manipulations during the incubation (TMI) and naked neck gene (Na) positively affect heat-stressed broilers' thermotolerance, hatching process, and posthatch performance. Their combination could increase the beneficial effect on broilers reared under natural tropical climatic conditions. The aim of this study was to investigate the effects of the Na gene and TMI on hatching and posthatch performance of slow-growing broilers under tropical climates. The study included 1,200 hatching eggs from 2 different crosses: 1) females and males, both with a normal or fully feathered neck (na na group), and 2) females (with a normal neck) and males (bare neck) (Na na group), incubated in similar conditions until d 7. Thereafter, they were assigned to 3 subgroups for each cross: the control group (C) was incubated at standard incubation conditions (37.8°C, 60% RH). The TMI-1 group was subjected to TMI-1 (T = 38.5°C, RH = 65%, E10-18, 6 h/d) and TMI-2 group to TMI-2 (T = 39.5°C, RH = 65%, E7-16, 12 h/d). Between 450 and 504 h of incubation, eggs were checked for hatching events. During the posthatch phase, chicks from each incubation subgroups (Na na-C, Na na-TMI-1, Na na-TMI-2, na na-C, na na-TMI-1, na na-TMI-2) were raised for 12 wk at a tropical natural ambient temperature. Hatchability, hatching time, chick's temperature, final body weight (FBW), and feed conversion ratio (FCR) were determined. The results revealed that the Na gene reduced (P ˂ 0.05) hatchability. The control group had the highest mortality rate compared to TMI-1 and TMI-2 groups. There was an interaction between genotype and TMI on incubation duration, hatching weight, chick quality, FBW, and FCR (P ˂ 0.05). In conclusion, the Na gene influenced the effects of thermal manipulation. TMI-1 combined with Na gene improved the productive performances of broilers in a tropical climate.
Collapse
Affiliation(s)
- Hèzouwè T Meteyake
- Laboratory of Poultry Sciences, Regional Center of Excellence on Poultry Science, University of Lome, B.P. 1515 Lome, Togo.
| | - Anne Collin
- INRAE, University of Tours, 37380 Nouzilly, France
| | - Abidi Bilalissi
- Laboratory of Poultry Sciences, Regional Center of Excellence on Poultry Science, University of Lome, B.P. 1515 Lome, Togo
| | - Nideou Dassidi
- Abéché Graduate National Institute of Sciences and Technology , B.P. 130 Abeché, Chad
| | - Mauril E P Assion
- Laboratory of Poultry Sciences, Regional Center of Excellence on Poultry Science, University of Lome, B.P. 1515 Lome, Togo
| | - Kokou Tona
- Laboratory of Poultry Sciences, Regional Center of Excellence on Poultry Science, University of Lome, B.P. 1515 Lome, Togo
| |
Collapse
|
5
|
Lee S, Moniruzzaman M, Farris N, Min T, Bai SC. Interactive Effect of Dietary Gamma-Aminobutyric Acid (GABA) and Water Temperature on Growth Performance, Blood Plasma Indices, Heat Shock Proteins and GABAergic Gene Expression in Juvenile Olive Flounder Paralichthys olivaceus. Metabolites 2023; 13:metabo13050619. [PMID: 37233660 DOI: 10.3390/metabo13050619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the central nervous system of living organisms and has the ability to reduce the magnitude of stress in humans and animals. In this study, we evaluated the supplemental effects of GABA on normal and high water temperature based on growth, blood plasma composition as well as heat shock proteins and GABA-related gene expression in juvenile olive flounder. For this, a 2 × 2 factorial design of experiment was employed to investigate the dietary effects of GABA at 0 mg/kg of diet (GABA0 diet) and 200 mg/kg of diet (GABA200 diet) in water temperatures of 20 ± 1 °C (normal temperature) and 27 ± 1 °C (high temperature) for 28 days. A total of 180 fish with an average initial weight of 40.1 ± 0.4 g (mean ± SD) were distributed into 12 tanks, of which, each tank contained 15 fish based on the 4 dietary treatment groups in triplicate. At the end of the feeding trial, the results demonstrated that both temperature and GABA had significant effects on the growth performance of the fish. However, fish fed the GABA200 diet had a significantly higher final body weight, weight gain and specific growth rate as well as a significantly lower feed conversion ratio than the fish fed the GABA0 diet at the high water temperature. A significant interactive effect of water temperature and GABA was observed on the growth performance of olive flounder based on the two-way analysis of variance. The plasma GABA levels in fish were increased in a dose-dependent manner at normal or high water temperatures, whereas cortisol and glucose levels were decreased in fish fed GABA-supplemented diets under temperature stress. The GABA-related mRNA expression in the brains of the fish such as GABA type A receptor-associated protein (Gabarap), GABA type B receptor 1 (Gabbr1) and glutamate decarboxylase 1 (Gad1) were not significantly affected by GABA-supplemented diets under normal or temperature stressed conditions. On the other hand, the mRNA expression of heat shock proteins (hsp) in the livers of the fish, such as hsp70 and hsp90, were unchanged in fish fed the GABA diets compared to the control diet at the high water temperature. Collectively, the present study showed that dietary supplementation with GABA could enhance growth performance, and improve the feed utilization, plasma biochemical parameters and heat shock proteins and GABA-related gene expression under the stress of high water temperatures in juvenile olive flounder.
Collapse
Affiliation(s)
- Seunghan Lee
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang 37517, Republic of Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Nathaniel Farris
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Feeds and Foods Nutrition Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Bio-Resources Computing Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Sungchul C Bai
- Feeds and Foods Nutrition Research Center, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Goel A, Ncho CM, Gupta V, Choi YH. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. ANIMAL NUTRITION 2023; 13:150-159. [PMID: 37123616 PMCID: PMC10130083 DOI: 10.1016/j.aninu.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Healthy chickens are necessary to meet the ever-increasing demand for poultry meat. Birds are subjected to numerous stressful conditions under commercial rearing systems, including variations in the environmental temperature. However, it is difficult to counter the effects of global warming on the livestock industry. High environmental temperature is a stressful condition that has detrimental effects on growth and production performance, resulting in decreased feed intake, retarded growth, compromised gut health, enhanced oxidative stress, and altered immune responses. Traditional approaches include nutritional modification and housing management to mitigate the harmful effects of hot environments. Currently, broiler chickens are more susceptible to heat stress (HS) than layer chickens because of their high muscle mass and metabolic rate. In this review, we explored the possibility of in ovo manipulation to combat HS in broiler chickens. Given their short lifespan from hatching to market age, embryonic life is thought to be one of the critical periods for achieving these objectives. Chicken embryos can be modulated through either temperature treatment or nourishment to improve thermal tolerance during the rearing phase. We first provided a brief overview of the harmful effects of HS on poultry. An in-depth evaluation was then presented for in ovo feeding and thermal manipulation as emerging strategies to combat the negative effects of HS. Finally, we evaluated a combination of the two methods using the available data. Taken together, these investigations suggest that embryonic manipulation has the potential to confer heat resistance in chickens.
Collapse
|
7
|
Increased temperature during incubation increases the sociality of male broilers in later life. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Rocha AC, Patrone LGA, Cristina-Silva C, Silva KSDC, Bícego KC, Szawka RE, Gargaglioni LH. Metabolic and respiratory chemosensitivity and brain monoaminergic responses to cold exposure in chicks subjected to thermal manipulation during incubation. J Therm Biol 2022; 109:103317. [DOI: 10.1016/j.jtherbio.2022.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
|
9
|
Effects of late incubation temperature and moment of first post-hatch feed access on neonatal broiler development, temperature preference, and stress response. Poult Sci 2022; 101:102088. [PMID: 36055023 PMCID: PMC9449862 DOI: 10.1016/j.psj.2022.102088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Early life experiences are known to be of great importance for later life. For instance, exposure to stress during early life can increase fearfulness at later age. In broilers, delayed feeding after hatch may cause metabolic stress. Besides, delayed feeding after hatch may affect neonatal broiler development and thermogenesis and consequently preferred ambient temperature. Moreover, these effects of feeding strategy may be dependent on late incubation temperature. To study this, eggs (n = 1,338) from a 54-wk-old Ross broiler breeder flock were incubated at 37.8°C (control) or 36.7°C (lower) eggshell temperature (EST) during late incubation (≥ embryonic d 17). At hatch, two feeding strategies were applied (direct access (early feeding) or 51 to 54 h delayed access (delayed feeding)). Broilers (n = 960) were equally divided over 32 pens and grown for 3 wk. Stress was assessed by determination of corticosterone in blood at 0 h, 48 h, 96 h and d 21 after hatch. Fearfulness was assessed by tonic immobility at d 13. Temperature preference was assessed at d 2 and d 12. Broiler development was determined at 0 h, 48 h, and 96 h after hatch. There was no EST × feeding strategy interaction for any parameter (P ≥ 0.07). Early feeding resulted in a 2.5× lower plasma corticosterone concentration at 48 h (P < 0.01) and a 2.2°C and 2.0°C lower preference temperature for d 2 and d 12 respectively (P = 0.01) compared to delayed feeding. Tonic immobility was not affected. In conclusion, early feeding reduces exposure to stress in the short term and stimulates thermoregulatory ability of broilers in the longer term.
Collapse
|
10
|
Almeida AR, Morita VS, Matos Junior JB, Sgavioli S, Vicentini TI, Boleli IC. Long-Lasting Effects of Incubation Temperature During Fetal Development on Subcutaneous Adipose Tissue of Broilers. Front Physiol 2022; 13:913496. [PMID: 35734000 PMCID: PMC9207451 DOI: 10.3389/fphys.2022.913496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence indicates that fetal programming may cause permanent effects on offspring adipose tissue and body composition. Previous study showed reduction in newly-hatched broiler chick adiposity by manipulating incubation temperature during fetal development. The present study examined whether incubation temperature during fetal development has long-term effects on post-hatching fat deposition in broilers. Broiler breeder eggs (Cobb-500®) were incubated under constant low (36°C, LT), control (37.5°C, CT) or high (39°C, HT) temperature from day 13 onward, giving to eggshell temperature of 37.3 ± 0.08°C, 37.8 ± 0.2°C, and 38.8 ± 0.3°C, respectively. Male chicks were reared under recommended temperatures until 42 days old. LT 21 days old broilers exhibited higher blood cholesterol than CT broilers, and higher triglycerids, VLDL, and LDL, and lower HDL than CT and HT broilers. LT broilers presented higher liver cholesterol than CT broilers and lower ether extract percentage than CT broilers. Adipocyte count was lower in the abdomen than in the thigh. Until day 21 of age, feed intake was higher in LT than in HT broilers. At day 42 of age, blood cholesterol and LDL were higher in HT broilers than in CT and LT broilers. Liver cholesterol was higher in LT than in HT broilers. LT treatment reduced neck and increased thigh adipocyte size compared to CT treatment, while the HT treatment reduced abdomen and neck adipocyte size compared to other two treatments and in the thigh compared to LT treatment. In CT broilers, thigh adipocytes were smaller than abdomen and neck adipocytes. HT treatment increased adipocyte number per area in the neck compared to LT and CT treatment, and LT and HT treatments reduced adipocyte count in the thigh compared to CT treatment. CT broilers presented higher adipocyte count in the thigh than the abdomen and neck, while HT broilers presented higher adipocyte count in the neck than the abdomen and thigh. Cell proliferation was lower in the abdomen than in the thigh. The results show incubation temperature manipulation during fetal development has long-term and distinct effects on regional adiposity, and can be used to modulate broiler fat deposition.
Collapse
Affiliation(s)
- Ayla R. Almeida
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University—UNESP, Sao Paulo, Brazil
| | - Viviane S. Morita
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University—UNESP, Sao Paulo, Brazil
| | | | | | - Tamiris I. Vicentini
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University—UNESP, Sao Paulo, Brazil
| | - Isabel C. Boleli
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University—UNESP, Sao Paulo, Brazil
- *Correspondence: Isabel C. Boleli,
| |
Collapse
|
11
|
Tona K, Voemesse K, N’nanlé O, Oke OE, Kouame YAE, Bilalissi A, Meteyake H, Oso OM. Chicken Incubation Conditions: Role in Embryo Development, Physiology and Adaptation to the Post-Hatch Environment. Front Physiol 2022; 13:895854. [PMID: 35677093 PMCID: PMC9170334 DOI: 10.3389/fphys.2022.895854] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
The chicken hatching egg is a self-contained life-supporting system for the developing embryo. However, the post-hatch performance of birds depends on several factors, including the breeder management and age, egg storage conditions and duration before incubation, and the incubation conditions. Studies have determined the effect of incubation factors on chick post-hatch growth potential. Therefore, chick physical quality at hatch is receiving increasing attention. Indeed, although incubation temperature, humidity, turning and ventilation are widely investigated, the effects of several variables such as exposure of the embryo to high or low levels, time of exposure, the amplitude of variations and stage exposures on embryo development and post-hatch performance remain poorly understood. This review paper focuses on chick quality and post-hatch performance as affected by incubation conditions. Also, chick physical quality parameters are discussed in the context of the parameters for determining chick quality and the factors that may affect it. These include incubation factors such as relative humidity, temperature, turning requirements, ventilation, in ovo feeding and delay in feed access. All these factors affect chick embryo physiology and development trajectory and consequently the quality of the hatched chicks and post-hatch performance. The potential application of adapted incubation conditions for improvement of post-hatch performance up to slaughter age is also discussed. It is concluded that incubation conditions affect embryo parameters and consequently post-hatch growth differentially according to exposure time and stage of exposure. Therefore, classical physical conditions are required to improve hatchability, chick quality and post-hatch growth.
Collapse
Affiliation(s)
- K. Tona
- Centre d’Excellence Régional sur les Sciences Aviaires, University of Lome, Lome, Togo
- *Correspondence: K. Tona,
| | - K. Voemesse
- Centre d’Excellence Régional sur les Sciences Aviaires, University of Lome, Lome, Togo
- Institut Togolais de Recherche Agronomique, Lome, Togo
| | - O. N’nanlé
- Centre d’Excellence Régional sur les Sciences Aviaires, University of Lome, Lome, Togo
| | - O. E. Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Y. A. E. Kouame
- Centre d’Excellence Régional sur les Sciences Aviaires, University of Lome, Lome, Togo
| | - A. Bilalissi
- Centre d’Excellence Régional sur les Sciences Aviaires, University of Lome, Lome, Togo
| | - H. Meteyake
- Centre d’Excellence Régional sur les Sciences Aviaires, University of Lome, Lome, Togo
| | - O. M. Oso
- Centre d’Excellence Régional sur les Sciences Aviaires, University of Lome, Lome, Togo
| |
Collapse
|
12
|
Verlinden SMD, Larsen MLV, Debontridder P, Youssef A, Everaert N, Norton T. Effect of lower temperature stimuli during incubation on fear and social-related behaviours in broilers. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Goel A, Ncho CM, Jeong CM, Choi YH. Embryonic Thermal Manipulation and in ovo Gamma-Aminobutyric Acid Supplementation Regulating the Chick Weight and Stress-Related Genes at Hatch. Front Vet Sci 2022; 8:807450. [PMID: 35071394 PMCID: PMC8777219 DOI: 10.3389/fvets.2021.807450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023] Open
Abstract
Chickens are exposed to numerous types of stress from hatching to shipping, influencing poultry production. Embryonic manipulation may develop resistance against several stressors. This study investigates the effects of thermoneutral temperature (T0; 37.8°C) with no injection (N0) (T0N0), T0 with 0.6 ml of 10% in ovo gamma-aminobutyric acid (GABA) supplementation (N1) at 17.5th embryonic day (ED) (T0N1), thermal manipulation (T1) at 39.6°C from the 10th to 18th ED (6 h/day) with N0 (T1N0), and T1 with N1 (T1N1) on hatchability parameters and hepatic expression of stress-related genes in day-old Arbor Acres chicks. The parameters determined were hatchability, body weight (BW), organ weight, hepatic malondialdehyde (MDA), and antioxidant-related gene expression. Percent hatchability was calculated on a fertile egg basis. Growth performance was analyzed using each chick as an experimental unit. Eight birds per group were used for organ weight. Two-way ANOVA was used taking temperature and GABA as the main effect for growth performance and gene expression studies. Analysis was performed using an IBM SPSS statistics software package 25.0 (IBM software, Chicago, IL, USA). Hatchability was similar in all the groups and was slightly lower in the T1N1. Higher BW was recorded in both T1 and N1. Intestinal weight and MDA were higher in T0N1 against T0N0 and T1N1, respectively. The expression of HSP70, HSP90, NOX1, and NOX4 genes was higher and SOD and CAT genes were lower in the T1 group. The present results show that T1 and N1 independently improve the BW of broiler chicks at hatch, but T1 strongly regulates stress-related gene expression and suggests that both T1 and N1 during incubation can improve performance and alleviate stress after hatch.
Collapse
Affiliation(s)
- Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Chae-Mi Jeong
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea.,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, South Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea.,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
14
|
Andrieux C, Petit A, Collin A, Houssier M, Métayer-Coustard S, Panserat S, Pitel F, Coustham V. Early Phenotype Programming in Birds by Temperature and Nutrition: A Mini-Review. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.755842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development is a critical period during which environmental influences can have a significant impact on the health, welfare, robustness and performance of livestock. In oviparous vertebrates, such as birds, embryonic development takes place entirely in the egg. This allows the effects of environmental cues to be studied directly on the developing embryo. Interestingly, beneficial effects have been identified in several studies, leading to innovative procedures to improve the phenotype of the animals in the long term. In this review, we discuss the effects of early temperature and dietary programming strategies that both show promising results, as well as their potential transgenerational effects. The timing, duration and intensity of these procedures are critical to ensure that they produce beneficial effects without affecting animal survival or final product quality. For example, cyclic increases in egg incubation temperature have been shown to improve temperature tolerance and promote muscular growth in chickens or fatty liver production in mule ducks. In ovo feeding has also been successfully used to enhance digestive tract maturation, optimize chick development and growth, and thus obtain higher quality chicks. In addition, changes in the nutritional availability of methyl donors, for example, was shown to influence offspring phenotype. The molecular mechanisms behind early phenotype programming are still under investigation and are probably epigenetic in nature as shown by recent work in chickens.
Collapse
|
15
|
Impact of Treating Hatching Eggs with Curcumin after Exposure to Thermal Stress on Embryonic Development, Hatchability, Physiological Body Reactions, and Hormonal Profiles of Dokki-4 Chickens. Animals (Basel) 2021; 11:ani11113220. [PMID: 34827952 PMCID: PMC8614242 DOI: 10.3390/ani11113220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Curcumin has been used as a suitable feed supplement for poultry to improve several hematological and biochemical indicators, diminish heat stress, and increase antioxidant activity. This experiment evaluated the effects of incubation temperatures and spraying hatching eggs with curcumin during the incubation phase on chick embryo development, hatchability, physiological body reactions, and hormonal profiles of Dokki 4 chickens. The findings indicated that the relative water loss and dead after piping in the chronic incubation temperature group were significantly increased compared with the normal incubation temperature group. Post-hatch, the triiodothyronine level in the high incubation temperature group was significantly decreased than in the control group. Regarding curcumin treatments, relative water loss from eggs and the hatchability of fertile eggs in treated groups significantly increased, while body surface temperature significantly decreased compared with the control. Abstract This study evaluated the impact of incubation temperature and spraying hatching eggs with curcumin during the early embryogenesis phase on chick embryo developments, hatchability, physiological body reactions, and hormonal profiles of Dokki 4 chickens. A total of 720 fertile eggs were equally distributed into two groups. In the first group, the eggs were incubated at normal incubation temperature/NIT (37.8 °C and 55–60% RH) for up to 19 days of incubation, whereas those in the second group were incubated in the same conditions except from 6 to 8 day, in which they were daily exposed to chronic incubation temperature/CIT (39.0 °C) for 3 h. Each group was classified into four curcumin treatment doses; the 1st treatment (control) was sprayed with distilled water, while the 2nd, 3rd, and 4th treatments were sprayed with 250, 500, and 1000 mg curcumin/liter distilled water. The results indicated that the lowest hatchability of fertile eggs (%) was obtained in the CIT group (p = 0.02), whereas the highest body surface temperature/BST compared in the NIT group (p = 0.01). Regarding curcumin treatments, the percentages of heart, gizzard, spleen, and T3 hormone levels in the treated group were significantly increased, while the H/L ratio was significantly reduced (p = 0.001) compared with the control. At 8 weeks of age, the testes and ovary percentages in treated groups were significantly (p = 0.05) increased compared with the control. In conclusion, exposure of hatching eggs to high thermal stress (39 °C) during the incubation phase had deleterious effects on chick performance and T3 hormone level. Moreover, spraying hatching eggs had beneficial impacts on growth, reproductive organs, T3 hormone level, and reducing H/L ratio.
Collapse
|
16
|
Rocha ACG, Cristina-Silva C, Taxini CL, da Costa Silva KS, Lima VTM, Macari M, Bícego KC, Szawka RE, Gargaglioni LH. Embryonic Thermal Manipulation Affects Ventilation, Metabolism, Thermal Control and Central Dopamine in Newly Hatched and Juvenile Chicks. Front Physiol 2021; 12:699142. [PMID: 34220555 PMCID: PMC8249324 DOI: 10.3389/fphys.2021.699142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
The first third of incubation is critical for embryonic development, and environmental changes during this phase can affect the physiology and survival of the embryos. We evaluated the effects of low (LT), control (CT), and high (HT) temperatures during the first 5 days of incubation on ventilation (V.E), body temperature (Tb), oxygen consumption (V.O2), respiratory equivalent (V.E/V.O2), and brain monoamines on 3-days-old (3d) and 14-days-old (14d) male and female chickens. The body mass of LT animals of both ages and sexes was higher compared to HT and CT animals (except for 3d males). The heart mass of 14d HT animals was higher than that of CT animals. Thermal manipulation did not affect V.E, V.O2 or V.E/V.O2 of 3d animals in normoxia, except for 3d LT males V.E, which was lower than CT. Regarding 14d animals, the HT females showed a decrease in V.E and V.O2 compared to CT and LT groups, while the HT males displayed a lower V.O2 compared to CT males, but no changes in V.E/V.O2. Both sexes of 14d HT chickens presented a greater Tb compared to CT animals. Thermal manipulations increased the dopamine turnover in the brainstem of 3d females. No differences were observed in ventilatory and metabolic parameters in the 3d animals of either sexes, and 14d males under 7% CO2. The hypercapnic hyperventilation was attenuated in the 14d HT females due to changes in V.O2, without alterations in V.E. The 14d LT males showed a lower V.E, during hypercapnia, compared to CT, without changes in V.O2, resulting in an attenuation in V.E/V.O2. During hypoxia, 3d LT females showed an attenuated hyperventilation, modulated by a higher V.O2. In 14d LT and HT females, the increase in V.E was greater and the hypometabolic response was attenuated, compared to CT females, which resulted in no change in the V.E/V.O2. In conclusion, thermal manipulations affect hypercapnia-induced hyperventilation more so than hypoxic challenge, and at both ages, females are more affected by thermal manipulation than males.
Collapse
Affiliation(s)
- Aline C G Rocha
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Caroline Cristina-Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | | | - Kaoma Stephani da Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Virgínia T M Lima
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Marcos Macari
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
17
|
Hope SF, DuRant SE, Hallagan JJ, Beck ML, Kennamer RA, Hopkins WA. Incubation temperature as a constraint on clutch size evolution. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sydney F. Hope
- Department of Fish and Wildlife Conservation Virginia Tech Blacksburg VA USA
| | - Sarah E. DuRant
- Department of Biological Sciences University of Arkansas Fayetteville AR USA
| | - John J. Hallagan
- Department of Fish and Wildlife Conservation Virginia Tech Blacksburg VA USA
- School of Natural Sciences and Mathematics Stockton University Galloway NJ USA
| | - Michelle L. Beck
- Department of Fish and Wildlife Conservation Virginia Tech Blacksburg VA USA
- Department of Biology Rivier University Nashua NH USA
| | | | - William A. Hopkins
- Department of Fish and Wildlife Conservation Virginia Tech Blacksburg VA USA
| |
Collapse
|
18
|
Costa B, Lopes T, Mesquita M, Lara L, Araújo I. Thermal manipulations of birds during embryogenesis. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1823302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- B.T.A. Costa
- Graduate Student, Department of Animal Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - T.S.B. Lopes
- Graduate Student, Department of Animal Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M.A. Mesquita
- Poultry Science Research, Department of Animal Science, Universidade Federal de Goiás, Goiânia, Brazil
| | - L.J.C. Lara
- Poultry Science Group, Department of Animal Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - I.C.S. Araújo
- Poultry Science Group, Department of Animal Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Morita VS, Almeida AR, Matos Junior JB, Vicentini TI, Zanirato GL, Boleli IC. Neither altered incubation temperature during fetal development nor preferred rearing temperature improves leg bone characteristics of broilers. J Therm Biol 2020; 93:102726. [PMID: 33077137 DOI: 10.1016/j.jtherbio.2020.102726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
The present study evaluated whether broiler femoral and tibiotarsal characteristics (as assessed at slaughter age) could be improved if birds were reared under their preferred temperature and whether continuous high or low incubation temperature during the fetal period improves bone characteristics of broilers reared under heat stress or thermal preference. Broiler breeder eggs were incubated from day 13 until hatching under cold (36 °C), control (37.5 °C), or hot (39 °C) temperatures. Under these conditions, the eggshell temperatures were 37.4 ± 0.1°C, 37.8 ± 0.15°C, and 38.8 ± 0.3°C, respectively. Then, broiler chicks were reared under control, preferred (determined previously in thermal preference test), or high temperatures. At day 42 of age, the broilers were weighed and euthanized, and femora and tibiotarsi collected to measure weight, length, diaphysis perimeter, breaking strength, maximum flexion, rigidity, ash, phosphorus, and calcium. Rearing under the preferred temperature did not affect broiler body weight or femoral and tibiotarsal characteristics (P > 0.05). In contrast, high rearing temperature, decreased the body weight, mineral contents of both bones, femoral breaking strength, and tibiotarsal rigidity (P < 0.05). Regarding incubation temperature effects, egg exposure to cold and hot temperatures during the fetal period minimized or avoided a few effects of high rearing temperature, such as those on femoral and tibiotarsal morphological characteristics, mineral composition, and mechanical properties at slaughter age (P < 0.05), but not all. In conclusion, rearing under the preferred broiler temperature did not improve the bone characteristics, and the negative effects of high rearing temperature on bone development were minimized but not completely prevented by high or low temperature incubation during the fetal period.
Collapse
Affiliation(s)
- Viviane S Morita
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University - UNESP. Access Road Professor Paulo Donato Castellane S/n Km5, Jaboticabal, 14884-900, São Paulo, Brazil
| | - Ayla R Almeida
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University - UNESP. Access Road Professor Paulo Donato Castellane S/n Km5, Jaboticabal, 14884-900, São Paulo, Brazil
| | - João B Matos Junior
- Faculty Marechal Rondon - FARON, Medicine Veterinary Sector, Marechal Rondon Avenue N.10058, Vilhena, 76980-000, Rondônia, Brazil
| | - Tamiris I Vicentini
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University - UNESP. Access Road Professor Paulo Donato Castellane S/n Km5, Jaboticabal, 14884-900, São Paulo, Brazil
| | - Gisele L Zanirato
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University - UNESP. Access Road Professor Paulo Donato Castellane S/n Km5, Jaboticabal, 14884-900, São Paulo, Brazil
| | - Isabel C Boleli
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University - UNESP. Access Road Professor Paulo Donato Castellane S/n Km5, Jaboticabal, 14884-900, São Paulo, Brazil.
| |
Collapse
|
20
|
Matos Júnior JB, Vicentini TI, Almeida AR, Morita VDS, Sgavioli S, Boleli IC. Hatching phase influences thermal preference of broilers throughout rearing. PLoS One 2020; 15:e0235600. [PMID: 32628711 PMCID: PMC7337320 DOI: 10.1371/journal.pone.0235600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/19/2020] [Indexed: 11/18/2022] Open
Abstract
Here we aimed for the first time to analyse whether opposite hatching patterns associated or not to high incubation temperature from day 13 to hatching interferes with the thermal preference and response of broilers to heat stress throughout the rearing period. Fertile eggs from 56-week-old broiler breeders (Cobb-500®) were used in a completely randomized trial with a 2x2 factorial arrangement (Short-Long and Long-Short hatching patterns: short time interval between internal and external pipping followed by long time interval between external pipping and hatching, and long time interval between internal and external pipping followed by short time interval between external pipping and hatching, respectively; and control and high incubation temperatures: 37.5°C and 39°C from the 13rd day, respectively). Thermal manipulation from day 13 was chosen because it is known endocrine axes are already established at this time. At hatching, male chicks were reared in climatical chamber with 16 boxes, maintained at the temperature recommended for this strain, with 4 replicates of 18 chicks per treatment. Broilers with Long-Short hatching pattern and from eggs incubation at 37.5°C preferred the lowest ambient temperature at all analyzed ages, whereas broilers with Short-Long hatching pattern and from eggs incubated at 39°C preferred the highest temperatures from 21 days of age. Heat-exposed broilers showed increased respiratory frequency in all ages analyzed, which should have to contributed to maintainance of their rectal (body) temperature. The hatching patterns did not influence the feed intake, but broilers with Short-Long hatching pattern had better feed conversion, weight gain, and body weight. High incubation temperature reduced the feed consumption, as well as the weight gain and body weight by worsening the feed conversion. The results of this study reveal that hatching patterns associated or not to high incubation temperature influence the broiler thermal preference and heat response throughout the rearing period. Chicks with Long-Short and Short-Long hatching patterns should be reared separately, although this is not practical within a hatcher.
Collapse
Affiliation(s)
| | - Tamiris Iara Vicentini
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University–UNESP, Jaboticabal, São Paulo, Brazil
| | - Ayla Rosa Almeida
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University–UNESP, Jaboticabal, São Paulo, Brazil
| | - Viviane de Souza Morita
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University–UNESP, Jaboticabal, São Paulo, Brazil
| | | | - Isabel Cristina Boleli
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University–UNESP, Jaboticabal, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
21
|
da S Oliveira G, Dos Santos VM, Rodrigues JC, Nascimento ST. Effects of different egg turning frequencies on incubation efficiency parameters. Poult Sci 2020; 99:4417-4420. [PMID: 32867985 PMCID: PMC7598115 DOI: 10.1016/j.psj.2020.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the effects of different egg turning frequencies on incubation efficiency parameters. Nine hundred sixty brown fertile eggs, with an average weight of 52.20 ± 0.85 g, from 38-week-old CJD (Carijó Pesadão) breeder hens were randomly distributed among 4 treatments before incubation. Each treatment corresponded to a turning frequency, being 24 (control), 12, 6, or 3 times per day, at an angle of 45°, until day 18 of incubation. The experimental design was a randomized complete block design with 4 treatments. Analysis of the incubation parameters was based on 6 replications per treatment. The eggs that were turned 12, 6, and 3 times per day exhibited a decrease in hatchability of the fertile eggs of 6.61, 15.51, and 19.70%, respectively, when compared with the control group (91.84 ± 2.73%). With a decrease in turning frequency, there was a gradual increase in early (2.84 ± 1.89 to 14.31 ± 1.82%) and late (3.57 ± 1.39 to 8.05 ± 1.24%) mortality rates. An egg turning frequency of 24 times per day during incubation provided high hatchability rates. In contrast, the turning frequencies of 12, 6, and 3 times per day showed significant losses in hatchability.
Collapse
Affiliation(s)
- Gabriel da S Oliveira
- Faculty of Agronomy and Veterinary Medicine (FAV), University of Brasília, Brasília 70.910-900, DF, Brazil
| | - Vinícius M Dos Santos
- Laboratory of Poultry Science, Federal Institute of Brasília - Campus Planaltina, Brasília 73.380-900, DF, Brazil.
| | - Jullyana C Rodrigues
- Laboratory of Poultry Science, Federal Institute of Brasília - Campus Planaltina, Brasília 73.380-900, DF, Brazil
| | - Sheila T Nascimento
- Faculty of Agronomy and Veterinary Medicine (FAV), University of Brasília, Brasília 70.910-900, DF, Brazil
| |
Collapse
|
22
|
Kouame YAE, Nideou D, Kouakou K, Tona K. Effect of guinea fowl egg storage duration on embryonic and physiological parameters, and keet juvenile growth. Poult Sci 2020; 98:6046-6052. [PMID: 31111949 DOI: 10.3382/ps/pez264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/20/2019] [Indexed: 11/20/2022] Open
Abstract
This study investigated the effects of guinea fowl hatching eggs storage time on embryo parameters and post-hatch juvenile growth. A total 1,800 eggs of guinea fowl were used. They were numbered, weighed, and divided into four groups of 450 eggs each according to storage time of 3, 7, 11, and 15 D before storage at a temperature of 18°C. Then, they were incubated at 37.7°C and 55% relative humidity for 28 D in a forced-draft incubator. Egg weight loss, albumen pH and weight, embryo weight, hatching events, and keet growth up to 7 D post-hatch were recorded. In addition, thyroid hormone and corticosterone levels were determined. The results indicate that during storage, relative egg weight loss increased with storage duration. However, albumen pH increased with storage time up to 11 D of storage and remained unchanged between 11 and 15 D. In addition, from 19 to 22 D of incubation, albumen weight was higher for eggs stored for 15 D compared to that of eggs stored for 3 to 11 D. But, from 16 D of incubation, embryos from eggs stored for 3 D grew faster than those from eggs stored for 7 to 15 D. Incubation durations up to internal pipping (IP), external pipping (EP), and hatching events increased with egg storage duration. At IP, corticosterone and triiodothyronine (T3) concentrations of eggs stored for 15 D had the lowest (P < 0.05) compared to those of eggs stored for 3 to 11 D. Moreover, the levels of thyroxine (T4) decreased with storage duration (P < 0.05). At hatch, corticosterone levels increased while T4 levels decreased with storage duration (P < 0.05). Also, hatchability decreased with egg storage duration. In addition, 7-day-old keets from eggs stored for 3 and 7 D had comparable weight and were heavier than those from eggs stored for 11 D. It was concluded that storage of guinea fowl hatching eggs more than 7 D negatively affects egg quality and subsequently depresses embryo and post-hatch growth.
Collapse
Affiliation(s)
- Y A E Kouame
- Centre d'Excellence Régional sur les Sciences Aviaires, University of Lomé, BP 1515 Lomé, Togo.,Laboratoire d'Endocrinologie et Biologie de la Reproduction Animale, Université Felix Houphouët Boigny, 01BP V 34 Abidjan 01, Côte d'Ivoire
| | - D Nideou
- Centre d'Excellence Régional sur les Sciences Aviaires, University of Lomé, BP 1515 Lomé, Togo
| | - K Kouakou
- Laboratoire d'Endocrinologie et Biologie de la Reproduction Animale, Université Felix Houphouët Boigny, 01BP V 34 Abidjan 01, Côte d'Ivoire
| | - K Tona
- Centre d'Excellence Régional sur les Sciences Aviaires, University of Lomé, BP 1515 Lomé, Togo.,Department of Animal and Veterinary Sciences, School of Agriculture, University of Lomé, BP 1515 Lome, Togo
| |
Collapse
|
23
|
Al-Zghoul MB, Alliftawi ARS, Saleh KMM, Jaradat ZW. Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poult Sci 2019; 98:4113-4122. [PMID: 31065718 DOI: 10.3382/ps/pez249] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/10/2019] [Indexed: 01/21/2023] Open
Abstract
Heat stress has a serious impact on nutrient digestion and absorption in broiler chickens. This study aimed to investigate the effects of chronic heat stress (CHS) on the mRNA expression of digestive enzymes and nutrient transporter genes in thermally manipulated (TM) broiler chickens. The evaluated genes encompassed pancreatic lipase, trypsin, amylase, maltase, and alkaline phosphatase as well as certain glucose transporter (GLUT2, SGLT1), amino acid transporter (y+LAT1, CAT1), and fatty acid transporter (FABP1, CD36) genes in the jejunal mucosa. Thermal manipulation was carried out at 39°C and 65% relative humidity for 18 h daily from embryonic days (ED) 10-18, while CHS was induced by raising the temperature to 35°C for 7 D throughout post-hatch days 28 to 35. After 0, 1, 3, 5, and 7 D of CHS, the pancreas and jejunal mucosa were collected from the control and TM groups to evaluate the mRNA expression by relative-quantitative real-time qRT-qPCR. Thermal manipulation significantly decreased the cloacal temperature (Tc) and the hatchling weight, and improved weight gain in broilers during post-hatch life and CHS. In addition, TM decreased the mortality rate during CHS. During CHS, the mRNA expression levels of SGLT1, GLUT2, FABP1, and trypsin were significantly decreased after 1 D in control chickens, and this lower expression persisted until day 7, after which it further decreased. In contrast, in TM chickens, SGLT1, GLUT2, and FABP1 expression decreased after 3, 5, and 7 D of CHS, respectively, while no significant change in trypsin expression was observed throughout the CHS period. Moreover, it was found that TM significantly modulated the mRNA expression dynamics of CD36, alkaline phosphatase, y+LAT1, CAT1, lipase, amylase, and maltase during CHS exposure. The findings of this study suggest that, in broiler chickens, TM has a long-lasting impact on nutrient digestion and absorption capabilities as well as Tc, mortality rates, and BW during CHS.
Collapse
Affiliation(s)
- Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Aseel Ra'ed Said Alliftawi
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Khaled Musa Mohammad Saleh
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ziad Waheed Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
24
|
Babacanoğlu E. Responses of developmental and physiological traits to manipulated incubation conditions in broiler embryos at hypoxic high altitude. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-337-2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract. The effects of hypoxia at
increased altitude levels on the cardio-respiratory development of broiler
embryos are distinct in comparison with those at sea level. The aim of the
study was to investigate the effects of high incubation temperature (H) and
oxygen supplementation (O) during hypoxic high altitude (HA) on developmental
and physiological traits of embryos and hatching performance of embryonated
hatching eggs in broilers at different embryonic stages. A total of 1280 eggs
obtained from broiler breeders laid at sea level were used. Eggshell quality
characteristics were measured for 20 eggs. The rest of the 1260 eggs were
divided into seven incubation condition (IC) groups (180 eggs per group)
including a control group at 37.8 ∘C and 21 % O2; O
groups, with daily 1 h 23.5 % O2 supplementation at
37.8 ∘C as O0−11, O12−21, and O18−21; H groups
at 38.5 ∘C high incubation temperature at 21 % O2 as
H0−11, H12−21, and H18−21 from days 0 to 11, 12 to 21, and 18 to 21 of incubation,
respectively. All groups were incubated in three different incubators at
hypoxic HA. The effect of IC was determined on eggshell temperature, hatching
performance, embryo development, right ventricular (RV) to total ventricular
(TV) ratio, and blood parameters. The highest egg water loss and embryonic
mortality and the lowest hatchability were in the H0−11 group, which
depended on increased eggshell temperature during incubation. On day 18 of
incubation, due to the decreased egg water loss in the O12−21 and
O18−21 groups, there was an increase in hatchability in fertile eggs
similar to the middle and late H groups. Towards the end of incubation,
embryo/chick weights were not different and RV and TV weights increased in
the treated groups, and the RV ∕ TV ratio changed between 15 and
26 %. At hatching, yolk
sac weight increased in H0−11 and H12−21 groups. The O groups
had the lowest serum tri-iodothyronine (T3) concentration as distinct
from H groups. The serum thyroxine (T4) concentration increased in the
treated groups, dependent on sex of the embryo. Blood hemoglobin
concentration of O groups decreased relative to other groups. The hematocrit
value was the lowest in the O12−21 and highest in the H12−21
groups. The H and O treatments during pre-hatch hypoxic HA condition can be
positively evaluated on physiological traits of embryos after half of
incubation depended on the timing of the IC exposure to the hatching eggs
obtained from broiler breeders at sea level.
Collapse
|
25
|
Vinoth A, Thirunalasundari T, Shanmugam M, Uthrakumar A, Suji S, Rajkumar U. Evaluation of DNA methylation and mRNA expression of heat shock proteins in thermal manipulated chicken. Cell Stress Chaperones 2018; 23:235-252. [PMID: 28842808 PMCID: PMC5823805 DOI: 10.1007/s12192-017-0837-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 01/20/2023] Open
Abstract
Thermal manipulation during embryogenesis has been demonstrated to enhance the thermotolerance capacity of broilers through epigenetic modifications. Heat shock proteins (HSPs) are induced in response to stress for guarding cells against damage. The present study investigates the effect of thermal conditioning during embryogenesis and thermal challenge at 42 days of age on HSP gene and protein expression, DNA methylation and in vitro luciferase assay in brain tissue of Naked Neck (NN) and Punjab Broiler-2 (PB-2) chicken. On the 15th day of incubation, fertile eggs from two breeds, NN and PB-2, were randomly divided in to two groups: control (C)-eggs were incubated under standard incubation conditions, and thermal conditioning (TC)-eggs were exposed to higher incubation temperature (40.5°C) for 3 h on the 15th, 16th, and 17th days of incubation. The chicks obtained from each group were further subdivided and reared under different environmental conditions from the 15th to the 42nd day as normal [N; 25 ± 1 °C, 70% relative humidity (RH)] and heat exposed (HE; 35 ± 1 °C, 50% RH) resulting in four treatment groups (CN, CHE, TCN, and TCHE). The results revealed that HSP promoter activity was stronger in CHE, which had lesser methylation and higher gene expression. The activity of promoter region was lesser in TCHE birds that were thermally manipulated at the embryonic stage, thus reflecting their stress-free condition. This was confirmed by the lower level of mRNA expression of all the HSP genes. In conclusion, thermal conditioning during embryogenesis has a positive impact and improves chicken thermotolerance capacity in postnatal life.
Collapse
Affiliation(s)
- A Vinoth
- Department of Industrial Biotechnology, Bharathidhasan University, Tiruchirappalli, Tamilnadu, 620 024, India
| | - T Thirunalasundari
- Department of Industrial Biotechnology, Bharathidhasan University, Tiruchirappalli, Tamilnadu, 620 024, India
| | - M Shanmugam
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana, 500 030, India
| | - A Uthrakumar
- Tamilnadu Veterinary and Animal Sciences University, Chennai, Tamilnadu, India
| | - S Suji
- M.S. Swaminathan Research Institute, Taramani, Chennai, Tamilnadu, India
| | - U Rajkumar
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana, 500 030, India.
| |
Collapse
|
26
|
High temperature and oxygen supplementation can mitigate the effects of hypoxia on developmental stability of bilateral traits during incubation of broiler breeder eggs. Animal 2018; 12:1584-1593. [DOI: 10.1017/s1751731118000344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Marks C, Nickles NE, Wise T, Mavroidis S. Incubation Temperature Alters Temperature-Dependent Oxygen Consumption in Northern Bobwhite Quail Hatchlings (Colinus virginianus). Physiol Biochem Zool 2017; 90:478-483. [PMID: 28418272 DOI: 10.1086/692127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study investigated the effect of mismatching incubation and posthatch temperatures in northern bobwhite quail hatchlings. Quail embryos were incubated at 35.5° or 37.5°C. Metabolic rates were then measured in hatchlings acclimated to either the same or the opposite temperature treatment. While hatchlings expressed higher oxygen consumption when posthatch temperature did not match incubation temperature, the effect of mismatching temperatures was significant only when posthatch temperature was higher than incubation temperature. Our data suggest that bobwhite quail hatchlings may express increased metabolism due to mismatches between incubation and posthatch temperatures. More specifically, the nature or direction of the mismatch can determine the magnitude of the metabolic effect. These findings highlight the importance of considering the context of specific conditions experienced throughout ontogeny when observing phenotypic outcomes.
Collapse
Affiliation(s)
| | | | - Tom Wise
- Department of Biology, University of Mount Union, Alliance, Ohio
| | - Spiro Mavroidis
- Department of Biology, University of Mount Union, Alliance, Ohio
| |
Collapse
|
28
|
Boleli IC, Morita VS, Matos Jr JB, Thimotheo M, Almeida VR. Poultry Egg Incubation: Integrating and Optimizing Production Efficiency. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2016-0292] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|