1
|
Tan H, Ren R, Wang X, Hu W, Yang B. Genetic polymorphisms of rs73620203 in the transforming growth interacting factor gene associated with rheumatoid arthritis in a Chinese population. Immunobiology 2023; 228:152741. [PMID: 37716127 DOI: 10.1016/j.imbio.2023.152741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE To explore the association of single nucleotide polymorphisms (SNPs) in the transforming growth interacting factor (TGIF) gene with bone metabolism markers and rheumatoid arthritis (RA) susceptibility. METHODS Three SNPs were genotyped in 155 RA patients and 168 healthy controls using high-resolution melting (HRM) analysis. The serum levels of osteocalcin, bone alkaline phosphatase (BALP), and β type I collagen-crosslinked C telopeptide (β-CTX) were detected using electrochemical luminescence in 108 patients randomly selected from the RA group. RESULTS Genotype and allele frequency analysis showed that rs73620203 was associated with bone erosion in RA (P = 0.012 and P = 0.003, respectively), and individuals carrying the T allele for rs73620203 showed a decreased RA risk (OR = 0.59, 95% CI = 0.42-0.84; P = 0.003). In sex-specific analysis, the rs73620203 polymorphism was associated with susceptibility to RA in women (P = 0.022 and P = 0.006, respectively). In addition, RA patients with three genotypes at the rs73620203 locus showed significant differences in serum osteocalcin and BALP (P = 0.006 and P = 0.037, respectively). Haplotype analysis revealed that the haploid ATG and GCA frequencies were significantly lower in the RA group (P = 0.036, OR = 0.693; P = 0.002, OR = 0.189, respectively), while the haploid ACA frequency of the RA group was enhanced (P < 0.01, OR = 5.058). CONCLUSION Our study provides the first evidence that rs73620203 is associated with RA susceptibility and the relationship between TGIF gene SNPs and the regulation of bone metabolism in RA patients.
Collapse
Affiliation(s)
- Huiling Tan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ruyu Ren
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuean Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchuang Hu
- Precision Medicine Center & Precision Diagnostics Innovation Lab, West China Hospital, Sichuan University, Chengdu, China.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
He X, Nie Y, Zhou H, Hu R, Li Y, He T, Zhu J, Yang Y, Liu M. Structural Insight into the Binding of TGIF1 to SIN3A PAH2 Domain through a C-Terminal Amphipathic Helix. Int J Mol Sci 2021; 22:ijms222312631. [PMID: 34884456 PMCID: PMC8657803 DOI: 10.3390/ijms222312631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/03/2023] Open
Abstract
TGIF1 is a transcriptional repressor playing crucial roles in human development and function and is associated with holoprosencephaly and various cancers. TGIF1-directed transcriptional repression of specific genes depends on the recruitment of corepressor SIN3A. However, to date, the exact region of TGIF1 binding to SIN3A was not clear, and the structural basis for the binding was unknown. Here, we demonstrate that TGIF1 utilizes a C-terminal domain (termed as SIN3A-interacting domain, SID) to bind with SIN3A PAH2. The TGIF1 SID adopts a disordered structure at the apo state but forms an amphipathic helix binding into the hydrophobic cleft of SIN3A PAH2 through the nonpolar side at the holo state. Residues F379, L382 and V383 of TGIF1 buried in the hydrophobic core of the complex are critical for the binding. Moreover, homodimerization of TGIF1 through the SID and key residues of F379, L382 and V383 was evidenced, which suggests a dual role of TGIF1 SID and a correlation between dimerization and SIN3A-PAH2 binding. This study provides a structural insight into the binding of TGIF1 with SIN3A, improves the knowledge of the structure–function relationship of TGIF1 and its homologs and will help in recognizing an undiscovered SIN3A-PAH2 binder and developing a peptide inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Xiaoling He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Yao Nie
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhou
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li M, Wu J, Hu G, Song Y, Shen J, Xin J, Li Z, Liu W, Dong E, Xu M, Zhang Y, Xiao H. Pathological matrix stiffness promotes cardiac fibroblast differentiation through the POU2F1 signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2021; 64:242-254. [PMID: 32617828 DOI: 10.1007/s11427-019-1747-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
Cardiac fibroblast (CF) differentiation into myofibroblasts is a crucial cause of cardiac fibrosis, which increases in the extracellular matrix (ECM) stiffness. The increased stiffness further promotes CF differentiation and fibrosis. However, the molecular mechanism is still unclear. We used bioinformatics analysis to find new candidates that regulate the genes involved in stiffness-induced CF differentiation, and found that there were binding sites for the POU-domain transcription factor, POU2F1 (also known as Oct-1), in the promoters of 50 differentially expressed genes (DEGs) in CFs on the stiffer substrate. Immunofluorescent staining and Western blotting revealed that pathological stiffness upregulated POU2F1 expression and increased CF differentiation on polyacrylamide hydrogel substrates and in mouse myocardial infarction tissue. A chromatin immunoprecipitation assay showed that POU2F1 bound to the promoters of fibrosis repressors IL1R2, CD69, and TGIF2. The expression of these fibrosis repressors was inhibited on pathological substrate stiffness. Knockdown of POU2F1 upregulated these repressors and attenuated CF differentiation on pathological substrate stiffness (35 kPa). Whereas, overexpression of POU2F1 downregulated these repressors and enhanced CF differentiation. In conclusion, pathological stiffness upregulates the transcription factor POU2F1 to promote CF differentiation by inhibiting fibrosis repressors. Our work elucidated the crosstalk between CF differentiation and the ECM and provided a potential target for cardiac fibrosis treatment.
Collapse
Affiliation(s)
- Mingzhe Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Guomin Hu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yao Song
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Jing Shen
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Junzhou Xin
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wei Liu
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Beijing, 100191, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
4
|
Pu Y, Xiang J, Zhang J. RETRACTED: KDM5B-mediated microRNA-448 up-regulation restrains papillary thyroid cancer cell progression and slows down tumor growth via TGIF1 repression. Life Sci 2020; 250:117519. [PMID: 32147429 DOI: 10.1016/j.lfs.2020.117519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Transwell assay results shown in Figures 3G, 6F, and 7F, which appear to contain image similarities within some of the panels, as detailed here: https://pubpeer.com/publications/7680482DF471CF3FADB2D14154BCFF and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. In addition, several suspected image similarities were detected within the whole brain images in Figure 7I, and within the Transwell assays of Figure 7G. The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not able to satisfactorily fulfill this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Ying Pu
- Senile endocrinology, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Juan Xiang
- Senile endocrinology, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Jiani Zhang
- Senile endocrinology, Xiangya Hospital Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
5
|
Wotton D, Taniguchi K. Functions of TGIF homeodomain proteins and their roles in normal brain development and holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:128-139. [PMID: 29749689 DOI: 10.1002/ajmg.c.31612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
Holoprosencephaly (HPE) is a frequent human forebrain developmental disorder with both genetic and environmental causes. Multiple loci have been associated with HPE in humans, and potential causative genes at 14 of these loci have been identified. Although TGIF1 (originally TGIF, for Thymine Guanine-Interacting Factor) is among the most frequently screened genes in HPE patients, an understanding of how mutations in this gene contribute to the pathogenesis of HPE has remained elusive. However, mouse models based on loss of function of Tgif1, and the related Tgif2 gene, have shed some light on how human TGIF1 variants might cause HPE. Functional analyses of TGIF proteins and of TGIF1 single nucleotide variants from HPE patients, combined with analysis of forebrain development in mouse embryos lacking both Tgif1 and Tgif2, suggest that TGIFs regulate the transforming growth factor ß/Nodal signaling pathway and sonic hedgehog (SHH) signaling independently. Although, some developmental processes that are regulated by TGIFs may be Nodal-dependent, it appears that the forebrain patterning defects and HPE in Tgif mutant mouse embryos is primarily due to altered signaling via the Shh pathway.
Collapse
Affiliation(s)
- David Wotton
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia
| | - Kenichiro Taniguchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
6
|
Yang CS, Melhuish TA, Spencer A, Ni L, Hao Y, Jividen K, Harris T, Snow C, Frierson H, Wotton D, Paschal BM. The protein kinase C super-family member PKN is regulated by mTOR and influences differentiation during prostate cancer progression. Prostate 2017; 77:1452-1467. [PMID: 28875501 PMCID: PMC5669364 DOI: 10.1002/pros.23400] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/31/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND Phosphoinositide-3 (PI-3) kinase signaling has a pervasive role in cancer. One of the key effectors of PI-3 kinase signaling is AKT, a kinase that promotes growth and survival in a variety of cancers. Genetically engineered mouse models of prostate cancer have shown that AKT signaling is sufficient to induce prostatic epithelial neoplasia (PIN), but insufficient for progression to adenocarcinoma. This contrasts with the phenotype of mice with prostate-specific deletion of Pten, where excessive PI-3 kinase signaling induces both PIN and locally invasive carcinoma. We reasoned that additional PI-3 kinase effector kinases promote prostate cancer progression via activities that provide biological complementarity to AKT. We focused on the PKN kinase family members, which undergo activation in response to PI-3 kinase signaling, show expression changes in prostate cancer, and contribute to cell motility pathways in cancer cells. METHODS PKN kinase activity was measured by incorporation of 32 P into protein substrates. Phosphorylation of the turn-motif (TM) in PKN proteins by mTOR was analyzed using the TORC2-specific inhibitor torin and a PKN1 phospho-TM-specific antibody. Amino acid substitutions in the TM of PKN were engineered and assayed for effects on kinase activity. Cell motility-related functions and PKN localization was analyzed by depletion approaches and immunofluorescence microscopy, respectively. The contribution of PKN proteins to prostate tumorigenesis was characterized in several mouse models that express PKN transgenes. The requirement for PKN activity in prostate cancer initiated by loss of phosphatase and tensin homolog deleted on chromosome 10 (Pten), and the potential redundancy between PKN isoforms, was analyzed by prostate-specific deletion of Pkn1, Pkn2, and Pten. RESULTS AND CONCLUSIONS PKN1 and PKN2 contribute to motility pathways in human prostate cancer cells. PKN1 and PKN2 kinase activity is regulated by TORC2-dependent phosphorylation of the TM, which together with published data indicates that PKN proteins receive multiple PI-3 kinase-dependent inputs. Transgenic expression of active AKT and PKN1 is not sufficient for progression beyond PIN. Moreover, Pkn1 is not required for tumorigenesis initiated by loss of Pten. Triple knockout of Pten, Pkn1, and Pkn2 in mouse prostate results in squamous cell carcinoma, an uncommon but therapy-resistant form of prostate cancer.
Collapse
Affiliation(s)
- Chun-Song Yang
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Tiffany A. Melhuish
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Adam Spencer
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Li Ni
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yi Hao
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Thurl Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Chelsi Snow
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Henry Frierson
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - David Wotton
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, VA, 22908, USA
| | - Bryce M. Paschal
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, VA, 22908, USA
- corresponding author: Bryce M. Paschal, Center for Cell Signaling, Department of Biochemistry & Molecular Genetics, University of Virginia, Room 7021 West Complex, Box 800577, Health Sciences Center, 1400 Jefferson Park Avenue, Charlottesville, VA 22908-0577, , Office 434.243.6521, Lab 434.924.1532, Fax 434.924.1236
| |
Collapse
|
7
|
Wu S, He X, Li M, Shi F, Wu D, Pan M, Guo M, Zhang R, Luo S, Gu N, Dou J. MiRNA-34a overexpression inhibits multiple myeloma cancer stem cell growth in mice by suppressing TGIF2. Am J Transl Res 2016; 8:5433-5443. [PMID: 28078014 PMCID: PMC5209494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Hematological malignancy originated from B-cell line, multiple myeloma (MM), is a kind of plasma cells in bone marrow hyperplasia and cause of osteoclast-mediated skeletal destruction disease. MiR-34a plays an important epigenetic regulating role in malignant tumors and presents a therapeutic potential. In this study, we investigated the effects of overexpression of miR-34a in MM cancer stem cells (CSCs) on tumor growth and bone lesions. Here we showed that miR-34a overexpression inhibited cell proliferation, colony formation, and increased CSC apoptosis in vitro. The apparent epigenetic modulation induced by miR-34a overexpression was found no only in MM RPMI8226 cells but also in CSC xenograft MM. Both bioinformatics prediction and dual-luciferase reporter assay showed that transforming growth interaction factor 2 (TGIF2) was sufficient to confer miR-34a regulation. The results of qRT-PCR and Western blot assays demonstrated that the expression of TGIF2 was significant decreased in tumor tissues from NOD/SCID mice injected with miR-34a-MM CSCs. We conclude that miR-34a overexpression in MM CSCs significantly suppressed the tumorigenicity and lytic bone lesions in mouse model by inducing apoptosis and inhibiting TGIF2 expression.
Collapse
Affiliation(s)
- Songyan Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast UniversityNanjing 210009, China
- Changzhou Blood CenterChangzhou 213004, China
| | - Xiangfeng He
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast UniversityNanjing 210009, China
| | - Fangfang Shi
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast UniversityNanjing 210009, China
| | - Di Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast UniversityNanjing 210009, China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast UniversityNanjing 210009, China
| | - Mei Guo
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast UniversityNanjing 210009, China
| | - Rong Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast UniversityNanjing 210009, China
| | - Shouhua Luo
- School of Biological Science & Medical Engineering, Southeast UniversityNanjing 210096, China
| | - Ning Gu
- School of Biological Science & Medical Engineering, Southeast UniversityNanjing 210096, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast UniversityNanjing 210009, China
| |
Collapse
|